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The technical evolution of wireless communication technology and the need for accurately modeling these
increasingly complex systems causes a steady growth in the complexity of simulation models. At the same
time, multi-core systems have become the de facto standard hardware platform. Unfortunately, wireless
systems pose a particular challenge for parallel execution due to a tight coupling of network entities in
space and time. Moreover, model developers are often domain experts with no in-depth understanding of
parallel and distributed simulation. In combination, both aspects severely limit the performance and the
efficiency of existing parallelization techniques.

We address these challenges by presenting parallel expanded event simulation, a novel modeling
paradigm that extends discrete events with durations which span a period in simulated time. The result-
ing expanded events form the basis for a conservative synchronization scheme that considers overlapping
expanded events eligible for parallel processing. We furthermore put these concepts into practice by im-
plementing HORIZON, a parallel expanded event simulation framework specifically tailored to the char-
acteristics of multi-core systems. Our evaluation shows that HORIZON achieves considerable speedups in
synthetic as well as real-world simulation models and considerably outperforms the current state-of-the-art
in distributed simulation.
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1. INTRODUCTION
Discrete event-based simulation of wireless networks currently faces two significant
changes: First, recent advances in wireless communication technology demand highly
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accurate simulation models, as their interaction with the propagation channel as
well as with other transceivers becomes increasingly hard to characterize mathe-
matically. Example technologies to which this applies are multi-carrier transmission
schemes [Koffman et al. 2002], multiple-input multiple-output systems [Gesbert et al.
2003] as well as techniques such as successive interference cancellation [Halperin et al.
2008] or interference alignment [Cadambe and Jafar 2008]. All these technologies are
either already implemented in wireless networking standards or will become part of
future standards soon. However, the simulation of these complex technologies leads to
a steep increase in model complexity and runtime requirements. Unfortunately, this
increasing model complexity cannot be met by increasing processing power any more,
at least in the traditional sense. As excessive power dissipation has set an end to im-
proving CPU performance through higher clock speeds, chip vendors invest increasing
transistor counts in duplicate functionality while clock speeds remain relatively sta-
ble. Consequently, the performance of sequential programs, e. g., discrete event simula-
tions, does not improve significantly with new generations of CPUs. Hence, simulations
must employ parallel event execution to exploit multi-core systems.

However, parallel simulation especially of wireless systems is hard [Liu and Nicol
2002]. Traditionally, the primary application of parallel network simulation is large-
scale models of wired networks [Fujimoto et al. 2003]. Yet, the proliferation of wireless
technology has shifted the focus of interest in the research community from wired to
wireless networks. Three main properties distinguish wireless from wired systems:
i) the wireless channel is a broadcast domain; ii) wireless networks are generally of
smaller size and iii) wireless systems have a much more complex interaction with
the physical medium, i. e., the propagation channel. In terms of parallel simulation,
these properties have significant implications. First of all, models of wireless net-
works exhibit substantially smaller lookaheads than models of wired networks [Liu
and Nicol 2002]. The source for lookaheads in network simulation is typically the
propagation delay along links between simulated entities. For this reason, parallel
discrete event simulation divides large-scale wired networks, e. g., the Internet, along
long-haul backbone links exhibiting usually delays in the range of tens of millisec-
onds [Markopoulou et al. 2006]. In wireless networks, however, links just range from
tens of meters (e. g., Bluetooth) up to a few kilometers (e. g., Global System for Mobile
Communications (GSM)). Therefore, propagation delays span merely nanoseconds to
low microseconds, resulting in extremely small lookaheads. Furthermore, as the wire-
less channel is a broadcast domain, wireless networks comprise a highly connected
topology. This in turn hinders partitioning of the model as the network cannot eas-
ily be divided in loosely connected clusters of network nodes. Instead, each Logical
Process (LP) handling a partition is connected to many neighboring LPs, thereby in-
creasing the synchronization overhead in conservative synchronization or the risk for
receiving a straggler event in optimistic synchronization. Finally, the above two im-
plications are aggravated by the fact that accurate physical layer models of wireless
systems usually lead to computationally complex events. Hence, wireless networks
are a good representative of tightly coupled systems, where – in this special case – the
event complexities are unusually high (for typical network simulations).

Historically, the research community dedicated considerable efforts to investigate
the feasibility and scalability of parallel simulation [Fujimoto 1990a; Liu 2009; Nicol
1996; Perumalla 2006] in general, thereby laying the foundation for parallel simulation
frameworks [Chen and Szymanski 2005; Cowie et al. 2002; Riley 2003; Varga 2001;
Bononi et al. 2006]. The primary focus of many of these works is on distributed sim-
ulation on computing clusters, which matches very well the exact opposite of tightly-
coupled system models, i. e., large-scale models of wired networks with low connectiv-
ity, bigger lookaheads and rather low event complexities. However, as the tight cou-
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pling significantly increases the synchronization overhead and limits the number of
parallelizable events, these approaches do not scale very well anymore, partially due
to the model characteristics but also due to the usage of compute clusters. To miti-
gate some of these problems, the research community devised lookahead extraction
techniques that take the topology of the simulation model into account [Liu and Nicol
2002; Meyer and Bagrodia 1998]. However, these techniques require extensive manual
effort and impose considerable runtime overhead. Therefore, the question for better
simulation approaches of tightly-coupled systems like wireless networks still remains
open.

In this paper, we contribute by presenting and evaluating such a new approach. We
claim that today’s approach of modeling time spans in discrete event simulation hides
information about event dependencies. Processes, such as switching delays of the hard-
ware, the computing time of algorithms, as well as the signal propagation generally
span non-zero periods of wall-clock time. In contrast, the modeling paradigm in dis-
crete event simulation defines that events occur at specific points in simulated time
as defined by their timestamp, yet handling an event does not advance the simulated
time beyond the timestamp. Consequently, a single event by itself cannot represent a
period of simulated time. A typical approach to modeling time spans uses two separate
events which indicate the beginning and the end of a physical process. However, this
method of using two separate events to model the elapse in time hides dependency in-
formation that is valuable for parallel simulation. Based on these observations [Kunz
et al. 2010; Kunz 2013], we make three contributions:

i) We develop expanded event simulation, a modeling paradigm that extends events
with durations to eliminate the modeling mismatch between physical processes
and discrete event simulation.

ii) We define a parallelization scheme that exploits the event dependency information
provided by expanded event simulation to efficiently execute simulation models of
tightly coupled systems.

iii) We tailor the parallelization scheme specifically to the characteristic properties of
multi-core systems in order to fully utilize their processing power.

The last contribution is mainly motivated by the wide-spread availability of multi-core
systems as well as the expected further increase in terms of available cores per CPU
(as multi-core computers exhibit different hardware characteristics than distributed
computing clusters, simply applying parallel simulation techniques designed for dis-
tributed simulation to multi-core computers does not achieve the best possible sim-
ulation performance). Apart from presenting our novel approach, we show by means
of experimentation that our approach outperforms state-of-the-art approaches by two
orders of magnitude in synthetic benchmarks, while it achieves a speedup of up to 6
for 11 worker threads for realistic simulation models of wireless networks. These per-
formance improvements relate to tightly-coupled systems HORIZON is designed for.

In comparison to our previous publications [Kunz et al. 2009; Kunz et al. 2010], this
paper contributes in several significant ways. First, this paper puts a stronger focus on
the formal description of the concepts of parallel expanded event simulation and elabo-
rates on our design decisions. Secondly, all presented performance results are based on
an improved simulation engine. Thirdly, we stress in this paper much more the appli-
cation domain of HORIZON with respect to tightly-coupled systems. In this respect, we
initially compare HORIZON to the state-of-the-art simulation frameworks PRIME [Liu
et al. 2009] and OMNeT++ and determine by means of a synthetic benchmark and a
theoretical performance analysis under which conditions parallel expanded event sim-
ulation outperforms existing approaches. Additionally, while we have updated the per-
formance results with respect to the 3GPP Long Term Evolution (LTE) case study, we
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(a) An expanded event e spans a period
of simulated time ranging from its starting
time ts(e) to its completion time tc(e). The
period between ts(e) and tc(e) is the event
duration td(e).
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(b) Our approach: Advancing the simulated
time according to the starting times of the
events.

Fig. 1. Basics of expanded event simulation.

present results of a second case study, which investigates the performance of HORIZON
in the context of a wireless mesh network. This underlines the suitability of HORIZON
for wireless system simulations either with regular or randomized timing behavior.

The remainder of this paper is structured as follows: Section 2 presents parallel ex-
panded event simulation, a novel modeling paradigm addressing the previously identi-
fied challenges. Section 3 then introduces HORIZON [Kunz et al. 2010], our simulation
framework that puts parallel expanded event simulation into practice. In Section 4,
we present a high-level criterion for when our parallelization scheme outperforms
classical approaches, followed by an in-depth performance evaluation of HORIZONin
Section 5. Finally, we discuss the limitations of our contributions in Section 6, review
related efforts in Section 7, and conclude the paper in Section 8.

2. EXPANDED EVENT SIMULATION
The core idea of our approach is to augment simulation models with additional domain
specific information to support synchronization algorithms in identifying independent
events. We first specify the novel modeling paradigm that explicitly augments events
with time spans, referring to them as expanded events (see Figure 1(a)). Consequently,
we denote a simulation implementing this paradigm an expanded event simulation.

Definition 2.1 (Expanded Event). An expanded event is defined by a distinct start-
ing time and a distinct completion time. We refer to the difference in simulated time
between start and completion time as event duration:
• ts : E → T, e 7→ t maps an event e to its starting time in simulated time T ,
• tc : E → T, e 7→ t maps an event e to its completion time in simulated time T ,
• td : E → T, e 7→ t maps an event e to its duration in simulated time T ,

where E denotes the set of all events that occur in a simulation and T the simulated
time. The event duration td(e) of an expanded event e is td(e) = tc(e) − ts(e) ≥ 0. We
explicitly allow ts(e) = tc(e) in order to represent traditional discrete events due to
backwards compatibility and in order to enable the propagation of meta-data via side
channels. Given an event duration, we furthermore define a restriction on the start-
ing time of newly created events. To this end, we first define a successor relationship
among events.

Definition 2.2 (Successor Event). Event e2 is a successor of e1 if and only if e1 cre-
ates e2, denoted by e1 y e2.

Based on the successor relationship, we restrict the starting time of successor events:
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Definition 2.3 (Starting Time of Successor Events). For all expanded events e1, e2
with e1 y e2 holds tc(e1) ≤ ts(e2).

This means that new events may only start after the event (i. e., the physical process)
that creates them, has finished. Hence, results of an expanded event may only become
visible to the entire system after the event has been processed.

We next define a sequential execution model for expanded event simulation. Specifi-
cally, we address three questions: i) How to integrate event durations in the modeling
process? ii) How to advance the global simulation time when executing an expanded
event? iii) How to sort expanded events in the Future Event Set (FES)?

Modeling Event Durations. From a modeling perspective, the duration of an ex-
panded event is not necessarily static. Much like the processing duration of physical
processes, it can depend on dynamic inputs, e. g., the varying length of packets. Thus,
we integrate dynamic event durations such that right before event execution the dura-
tion can dynamically be determined by the model. Note that in the remainder of this
paper, the terms tc(e) and td(e) for an expanded event e ∈ E always refer to the fi-
nal completion time and event duration, i. e., the final values after dynamic extension,
unless stated otherwise.

Advancing the Global Simulated Time. In expanded event simulation, an event e ∈
E carries two timestamps, ts(e) and tc(e), and spans a period of simulated time. Hence,
we need to define how to advance the simulated time when executing expanded events:

Before executing an expanded event e, the event scheduler sets the global simula-
tion time to ts(e). Furthermore, the global time remains constant at ts(e) throughout
the entire wall-clock processing time of e. Thus, despite spanning a period of simu-
lated time, the global virtual clock does not explicitly advance from ts(e) to tc(e) (see
Figure 1(b)). From a model developer’s perspective, when requesting the current sim-
ulated time from the simulation framework in an event handler, it always returns
ts(e). In addition, model developers can access and dynamically advance td(e) inside
an event handler.

Event Ordering in the Future Event Set. Discrete event simulation sorts events in
the FES in increasing order according to their timestamp. Since an expanded event
e ∈ E is defined by two timestamps, ts(e) and tc(e), sorting can utilize either times-
tamp, combinations of both, or even the event duration td(e). Taking the considera-
tions of the previous section into account, our choice is to use the starting time ts(e)
as relevant sorting key. Moreover, similar to traditional discrete event simulation, the
FES is sorted according to increasing timestamps, i. e., starting times. Note that in
practice discrete/expanded event simulation frameworks apply additional sorting keys
as tie breakers between events with equal (starting) timestamps. These tie breakers,
e. g., the insertion order into the FES, user defined priorities, or event IDs, are needed
to achieve a deterministic event ordering. We abstract from these tie breakers in the
remainder of this paper.

Parallel Expanded Event Execution Model. As stated before, an expanded event e
represents a physical process starting at ts(e) and ending at tc(e). We assume that
the output of such a physical process is neither available nor visible to the entire sys-
tem before the completion of the process. Therefore, we define that all overlapping ex-
panded events, i. e., all events e′ starting between ts(e) and tc(e) of an expanded event
e, are independent of e. Hence, an overlapping event e′ cannot depend on e because
the input of e′ cannot include the output of e which is not yet available at ts(e′) < tc(e).
As a result, the interval between ts(e) and tc(e) naturally opens a window for paral-
lelization as shown in Figure 2. In terms of event processing, this means that when
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ts(e)  tc(e)  
trigger processing fetch results 

expanded event e 

parallelization window 

t [simulated time] 
td(e)  

Fig. 2. Execution scheme of an expanded event e: The results of a simulated continuous task are not needed
in the simulation before tc(e). Hence, the simulation scheduler offloads e to a worker CPU at ts(e) and
fetches the results at tc(e), allowing other events to be processed in-between.

ll li ti i d f tt f f t f tparallelization window of event en:
execute independent events

past of en: 
events, en might depend on

future of event en:
events possibly depending on en

independent
events

event en+3

event en+2

t [simulated time]

event en+4event en-1

event en-2 event en+1

event en

offload for parallel processing block and fetch results

Fig. 3. Parallel event scheduling: The central scheduler advances the global simulation time by iteratively
determining independent events, offloading them to CPUs and fetching the results of completed events.

the global simulated time reaches ts(e) for a given expanded event e, the simulation
framework begins executing e. Specifically, the simulation kernel offloads e for paral-
lel processing to an available processing unit and continues handling further events.
When reaching tc(e) in simulated time, the results of e are available and needed in
the model. Thus, the simulation blocks at tc(e) and waits for the processing unit to
finish executing the offloaded event. Figure 3 illustrates the resulting parallel event
execution model visually.

3. THE HORIZON SIMULATION FRAMEWORK
After presenting parallel expanded event simulation, we now introduce HORIZON, a
parallel simulation framework that puts our novel modeling paradigm into practice.
HORIZON targets multi-core systems in order to fully utilize their processing for simu-
lation. The key challenge in this context is to provide a parallelization framework that
is simple to use and tailored to the properties of typical simulation models of tightly
coupled systems. We address this challenge by proposing a centralized parallelization
architecture comprising a global FES and event scheduler.

Partitioning. The key to efficient partitioning a simulation model is to achieve an
even workload distribution which avoids idle times and reduces cross-partition syn-
chronization. Space-parallel partitioning schemes assign (groups of) components of a
simulation model to the available processing units. However, the workload inflicted by
the events executed on these components can be highly heterogeneous. As a result,
partitioning a given simulation model is a difficult task and manually partitioning
a given model is a considerable additional effort for model developers and users. In
contrast, dynamic partitioning, i. e., load balancing, aims at maintaining an equally
distributed workload by adapting the assignment of components to processing units
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at runtime [Peschlow et al. 2007]. To this end, the simulation framework continuously
measures the workload and idle times of the processing units and migrates simulated
entities between partitions accordingly. However, these measurements as well as the
migration process add to the complexity and the overhead of the simulation frame-
work, and re-assigning entities can have a negative impact on the lookahead.

HORIZON addresses these issues by means of a multi-threaded master-worker ar-
chitecture that avoids partitioning altogether. Instead of splitting the FES according
to partitions, HORIZON retains a single global FES. A central event scheduler thread
continuously dequeues events from the sole FES and distributes independent events to
worker threads for parallel processing. As a result, the workload of a simulation model
is evenly and automatically distributed across all available processing units, thereby
eliminating the need for an explicit load balancing mechanism. This architecture is a
direct consequence of the fact that HORIZON specifically targets multi-core systems.
Such systems provide a global shared memory space across all processing units and
threads, thus enabling any worker to handle any available independent event.

Simulation models in HORIZON exhibit a modular structure. For instance, individual
parts of a simulation model represent separate components of the simulated system,
e. g., hosts, network cards, protocols, the wireless channel. Besides common practice
in software engineering, modularization is imperative for ensuring data consistency
in our multi-threaded simulation framework: In shared-memory parallel simulation,
event handlers are able to change the state of the entire simulation model. Thus, when
executing events in parallel threads, the corresponding event handlers should not read
from and write to the same state variables to avoid race conditions which result in an
inconsistent state. Hence, we employ the modular structure of simulation models in
HORIZON to encapsulate the state of components. An event handler is thus only al-
lowed to modify the state locally to the module it belongs to. In order to avoid race
conditions between multiple events occurring in the same local module, our event han-
dling engine dispatches only one event per module at the same time.

If an event needs to change the state at a remote component, it has to create a new
event that takes place at this particular module. Hence, modules in HORIZON are sim-
ilar to logical processes in traditional parallel discrete event simulation. Structuring
a simulation model in fairly independent components which facilitate parallel event
execution is thus not unique to parallel discrete event simulation, but a challenge in
nearly all parallel simulation approaches.

Synchronization. We now turn to the synchronization1 algorithm of HORIZON. We
initially decided to adopt a conservative synchronization algorithm due to its simplic-
ity but also due to the importance of the lookahead for conservative synchronization
algorithms. Thus, this allows an easier evaluation of the improvements through our
expanded event approach over traditional parallel discrete event simulation. More pre-
cisely, we decided to utilize a barrier-based event synchronization. Recall that in par-
allel expanded event simulation overlapping events are independent. Hence, the event
scheduler continuously dequeues the first event e from the FES F , checks whether
or not it overlaps with currently offloaded events and if so, hands it to a worker for
parallel processing (see Algorithm 1). Conversely, the scheduler does not immediately
offload e if it does not overlap with all previously offloaded events. As a result, the min-
imum completion time among all offloaded events determines an upper bound, i. e., a
barrier, for overlapping events. Thus, the synchronization algorithm coordinates par-

1Despite the centralized nature of HORIZON’s event scheduling, we explicitly use the term synchronization
algorithm for mainly two reasons: i) the scheduling algorithm is designed to achieve synchronization across
the execution of non-independent events and ii) to use the same terminology as being used in related efforts.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article XX, Publication date: 2015.



XX:8 G. Kunz et al.

Algorithm 1 Parallel scheduling of expanded events.
Procedure: ParallelEventScheduler()
1: shared variables: F,O, tb
2: tb :=∞, O := ∅
3: while F ∪O 6= ∅ do
4: if F 6= ∅ then
5: e := argmine∈F (ts(e))
6: if ts(e) ≤ tb then
7: O := O ∪ {e}, F := F\{e}
8: determine tmin

d (e)
9: tb := min{tb, tc(e)}
10: offload(e)
11: else
12: wait for ts(e) ≤ tb
13: end if
14: end if
15: end while

Procedure: ParallelWorker()
1: shared variables: F,O, tb
2: while true do
3: e := getNextOffloadedEvent()
4: execute e and td(e)
5: O := O\{e}
6: update tb
7: end while

(a) Central Event Scheduler (b) Worker Thread

allel event execution by maintaining a barrier computed over all offloaded events. De-
ciding whether or not an event is offloadable hence boils down to checking if its starting
time precedes the barrier. In order to formally state the event synchronization scheme,
we first define the set O of all currently offloaded events.

Definition 3.1 (Set of Offloaded Events). The set O ⊆ E contains all currently off-
loaded expanded events, i. e., all overlapping expanded events being executed concur-
rently on all processing units. The sets F and O are mutually exclusive, i. e., O∩F = ∅.

Based on O, we specify the synchronization barrier tb as follows:

Definition 3.2 (Synchronization Barrier). The synchronization barrier tb ∈ T ∪{∞}
is the minimum completion time of all events in O or infinity if O is empty:

tb =

{
min{tc(e)|e ∈ O} , O 6= ∅
∞ , otherwise

Algorithm 1 gives a formal definition (in pseudo-code) of the barrier-based synchro-
nization scheme for the event scheduler and the workers separately.

Implementation of the HORIZON Framework. HORIZON is based on the widely used
simulation framework OMNeT++ [Varga 2001; 2014] and is publicly available2. We
decided to use OMNeT++ as implementation base for HORIZON, as the source code of
OMNeT++ is publicly available and OMNeT++ has a large base of simulation mod-
els [Varga 2014]. The downside of building on top of an existing simulation frame-
work is that integrating expanded event simulation creates non-trivial technical chal-
lenges. Despite supporting distributed parallel simulation, OMNeT++ is not designed
for multi-threaded simulation. As a result, enabling thread-safe parallel event execu-
tion requires thorough analysis, modification, and verification of the simulation core.

To foster wide-spread use of parallel expanded event simulation, HORIZON is back-
wards compatible with OMNeT++, hence enabling a convenient transition to dura-
tion based modeling. However, to make use of expanded events, the model must be
ported to HORIZON under consideration of two aspects. Every module of the simula-
tion should provide one new method that determines the duration of a given event and

2https://code.comsys.rwth-aachen.de/redmine/projects/horizon-public.
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wrapper module

simulation model

(a) HORIZON wraps OMNeT++ modules.

future expanded-event set

parallel expanded-event scheduler

worker

CPU

worker

CPU

worker

CPU

(b) Event handling in HORIZON.

Fig. 4. High-level overview of the architecture of HORIZON.

returns it to the event scheduler (cf. Section 2). If a module does not implement this
method, the duration defaults to zero, hence rendering all events at this module dis-
crete events. In addition, OMNeT++ utilizes global random number generators which
are not thread safe. Locking these generators does not suffice since concurrent worker
threads can access the generators in an arbitrary order, thereby breaking determinism
across multiple simulation runs. Thus, every module in HORIZON employs only local
random number generators. Since the event order locally at every module is determin-
istic, the mapping of random numbers to events is deterministic as well. Finally, the
same modeling restriction applies as in distributed parallelization using OMNeT++:
Event handlers must only modify data which is local to the module they execute on to
preserve data consistency. Hence, exchanging data between modules relies on events
and global variables are forbidden. Moreover, the event scheduler of HORIZON ensures
that at most one thread is active per module at a time. In combination, these criteria
prevent data races within and across modules.

Figure 4 shows the resulting architecture. HORIZON encapsulates the modules of
classic OMNeT++ simulation models in wrappers which implement functionality for
handling event durations, mutual exclusion of worker threads and additional house-
keeping (see Figure 4(a)). Furthermore, the future event list and the event scheduler
of OMNeT++ have been adapted to handle expanded events, and to forward them to
worker threads for parallel processing (see Figure 4(b)).

4. THEORETICAL PERFORMANCE ANALYSIS
In this section, we present a theoretical model of the centralized parallelization scheme
underlying HORIZON and a classical distributed parallelization approach. The goal of
this section is to determine a high-level criterion for when parallel expanded event
simulation is likely to outperform a classic parallelization scheme and vice versa.

Notations. We define the following additional terms:
• Π: set of partitions of a classical distributed simulation
• Eπ ⊆ E : set of events in partition π ∈ Π
• Θ: simulation time, i. e., real time
• N : number of available CPU cores. For distributed simulation we assume N = |Π|.
• p : E → N : assigns each event the number of parallel events
• l ∈ T : lookahead within the simulation
• X: random variable denoting the number of events which can be executed at a

given point in simulated time
• Y : random variable denoting the number of events of a partition which can be

executed at a given point in simulation time by an LP
• Z: random variable denoting the average degree of parallelization

We now determine the expected value of Z for HORIZON as well as for classical dis-
tributed simulation.
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Parallel Expanded Event Simulation. The degree of parallelization p(e) for an event
e ∈ E depends on the number of overlapping events:

p(e) = |{e′ ∈ E|[ts(e); tc(e)] ∩ [ts(e
′); tc(e

′)] 6= ∅}| (1)

To estimate the average parallelization degree, we make the following assumptions:
• The event starting times are independent and the arrival rate is exponentially

distributed with parameter D.
• The durations are independent and exponentially distributed with parameter d.

The probability for n overlapping events at a given point in simulated time is then a
Poisson distribution, i. e.:

P (X = n, δ) =
e−δ · δn

n!
(2)

for δ := d · D and n = 0..∞. We restrict this to the points in simulated time when
actually events occur by means of the conditional probability P (X = n, δ|X ≥ 1, δ):

P (X = n, δ|X ≥ 1, δ) =
P (X = n, δ ∩X ≥ 1, δ)

P (X ≥ 1, δ)
=
P (X = n, δ)

1− e−δ
, for n = 1..∞ (3)

From this we derive the expected value of the parallelization degree as a function of
the number of available CPU cores by calculating the weighted sum of the probabilities
for each possible degree.

E[Z](N) =

N∑
i=1

i · P (X = i, δ)

1− e−δ
+N · (1−

N∑
i=1

P (X = i, δ)

1− e−δ
) (4)

=

N∑
i=1

i · e−δ · δi

i! · (1− e−δ)
+N · (1−

N∑
i=1

e−δ · δi

i! · (1− e−δ)
) (5)

We derive the parallelization degree for a sufficiently large number of CPUs by as-
suming N → ∞: This function converges to the parallelization degree reachable by
HORIZON using a sufficiently large number of CPUs:

lim
N→∞

E[Z](N) =
δ

1− e−δ
, δ ∈ ]0,∞[ (6)

Intuitively, for δ → 0, the expected parallelization degree converges to 1, corresponding
to sequential execution. Conversely, for large values of δ, the expected parallelization
degree is bounded by the number of overlapping (i. e., parallelizable) events.

Distributed Parallelization. The degree of parallelization p(e) for an event e ∈ E de-
pends on the number of partitions which contain executable events within the looka-
head:

p(e) = |{π ∈ Π|∃e′ ∈ Eπ : ts(e
′) ∈ [ts(e); ts(e) + l]}| (7)

We make the following assumptions:
• The event starting times are independent and the arrival rate is exponentially

distributed with parameter D.
• Each partition has the same total number of events, i. e., ∀π ∈ Π : |Eπ| = |E|/|Π|

The probability for n parallelizable events within a lookahead l is given by

P (Y = n, δ) =
e−δ/N · (δ/N)n

n!
(8)
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Fig. 5. Expected parallelization degree of parallel expanded event simulation and distributed simulation.

for δ := l ·D, N := |Π|, and n = 0..∞. In the following, we only have to consider

P (Y = 0, δ) = e−δ/N and P (Y ≥ 1, δ) = 1− e−δ/N (9)

We determine the probability for n parallel events by adding up all possible combina-
tions of N − n partitions without events and n partitions with at least one event:

P (X = n, δ) =

(
N

n

)
· P (Y = 0, δ)N−n · P (Y ≥ 1, δ)n (10)

With this probability we can apply the same methodology we used for HORIZON to
derive the expected value. We calculate the conditional probability:

P (X = n, δ|X ≥ 1, δ) =
P (X = n, δ)

1− P (X = 0, δ)
=
P (X = n, δ)

1− e−δ
, for n = 1..∞ (11)

We calculate E[Z](N) as the weighted sum of the probabilities:

E[Z](N) =

N∑
i=1

i · P (X = i, δ)

1− e−δ
=

N∑
i=1

i ·
(
N
i

)
· (e−δ/N )

N−i · (1− e−δ/N )
i

1− e−δ
(12)

=
e−δ

1− e−δ
N∑
i=1

i ·
(
N

i

)
· eiδ/N · (1− e−δ/N )

i
(13)

For a sufficiently large number of partitions, we yield

lim
N→∞

E[Z](N) =
δ

1− e−δ
, δ ∈ ]0,∞[ (14)

following the same intuition and ranges as equation (6). Note that this is the same
value as for HORIZON yet with a different δ.

Conclusion. Figure 5 depicts the expected parallelization degree of HORIZON and
distributed simulation from equations (5) and (13) over a varying number of CPU cores
and an exemplary chosen δ = 8. According to equations (6) and (14) both approaches
should converge at ≈ 8.003, which the plot confirms. However, we also observe that
HORIZON converges faster. We observed the same behavior for different values of δ.
Hence, we conclude:

i) If sufficiently many cores are available, HORIZON outperforms classical dis-
tributed simulation when HORIZON’s δ (d · D) is greater than distributed simu-
lation’s δ (l ·D), i. e., d > l, and vice versa.
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ii) For similar values of δ, however, HORIZON requires less CPU cores to achieve
the same speedup. Hence, if the number of available CPU cores is relatively low
compared to the parallelization degree of the model, HORIZON performs better
than distributed simulation.

This formalism assumes that every LP processes the same total number of events.
If this is not the case, less speedup is achieved by distributed simulation, while the
HORIZON scheduler always distributes the load to a currently available CPU core.

5. EVALUATION
We evaluate HORIZON in three steps. First, we utilize synthetic benchmarks to char-
acterize the performance properties of HORIZON with regard to the number of CPUs.
Secondly, we compare HORIZON to the parallelization capabilities of OMNeT++ and
PRIME [Liu et al. 2009]. Finally, we show the applicability of HORIZON by considering
practically relevant simulation models (mesh networks, LTE networks).

Throughout this evaluation, we use the speedup [Bagrodia and Takai 2002] as per-
formance metric which is defined as the ratio between the sequential execution time
tseq(S) and the parallel execution time tpar(S) of a simulation model S. Our evalua-
tion is based on a implementation of HORIZON which builds upon OMNeT++ 4.1. All
performance results show average values collected over 30 independent runs and the
corresponding 99 % confidence intervals, which are however barely visible. We utilized
an AMD Opteron compute server providing 32 GB of RAM and a total of 12 processing
cores, organized in two six-core CPUs running a 64-bit Ubuntu 12.04.1 LTS server OS.

5.1. Performance Characteristics of Horizon
We investigate the scalability of the centralized architecture of HORIZON with regard
to the number of worker threads and the workload. The synthetic benchmark model
allows for adjusting two parameters: i) the degree of parallelism as well as ii) the com-
putational complexity of the events. The latter defines the wall-clock time required to
process a given event. It directly influences the parallelization speedup by changing
the ratio of the event handling and synchronization overhead caused by the simula-
tion framework and the actual workload of the simulation model. Consequently, we
generally expect a better speedup for larger event complexities than for smaller ones.
Moreover, the model consists of a configurable number of independent, i. e., not inter-
connected, benchmark modules. Each module continuously creates expanded events
of specific computational complexity and schedules them for local execution. By main-
taining a perfectly synchronous and overlapping timing among the events, we enable
parallel execution. Since every module executes one expanded event at a time, we con-
trol the degree of parallelism by means of the number of benchmark modules.

To assess the scalability of HORIZON, we analyze the runtime performance of the
benchmark model while varying the number of worker threads and the computational
complexity of the events. Based on runtime performance profiles of publicly available
simulation models and own measurements [Naghibi and Gross 2010] (see Figure 8),
the event complexity ranges from 1 µs to 1 ms in this benchmark. We furthermore vary
the number of workers between 1 and 11. In contrast, the degree of parallelism in this
benchmark is fixed to 110 by using a total of 110 benchmark modules. This guarantees
sufficient parallel workload for keeping the workers busy.

Figure 6 shows the resulting speedup. For event complexities of 1 ms and 0.1 ms,
HORIZON achieves a speedup that grows linearly with the number of workers.3 When

3Note that the slight drop in performance for 9 workers results from mapping 110 independent events to
9 workers, resulting in a sub-optimal resource utilization. We observe the same effect also for the other
measurements points, yet it is less pronounced.
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Fig. 6. Speedup of HORIZON in terms of the number of workers and the event complexity using a continu-
ously parallelizable workload of 110 independent events.

reducing the event complexity to 10 µs, we identify a linear speedup for up to 5 workers.
Beyond 5 workers, however, the speedup converges to 5. This is due to the fact that the
centralized event scheduler handles events sequentially. In order to offload x events for
concurrent processing, the event complexity has to be at least x times the offloading
delay. Thus, given an event complexity of 10 µs, the scheduler is able to offload only 6
events, i. e., to keep at most 6 workers busy. For the same reason the speedup finally
degrades to one when limiting the event complexity to merely 1 µs. 4

5.2. Comparison with Traditional Parallel Discrete Event Simulation
The goal of this benchmark is to analyze the performance improvement of parallel
expanded event simulation over traditional parallel discrete event simulation. To this
end, we compare HORIZON with OMNeT++ and PRIME utilizing their parallel discrete
event simulation capabilities [Liu et al. 2009; Varga 2014; Sekercioglu et al. 2003].
OMNeT++ uses the Null Message Algorithm (NMA) [Chandy and Misra 1979] and re-
lies on MPI (Message Passing Interface) for inter-LP communication, which in turn
exploits shared memory on multi-core computers. PRIME employs a composite syn-
chronization algorithm [Nicol and Liu 2002] and natively supports multi-threading.

Comparing HORIZON to OMNeT++ allows to focus on investigating the efficiency of
the parallelization schemes while excluding differences in the structure of the frame-
works. Specifically, the simulation core and modeling API of HORIZON and OMNeT++
are, by design, nearly identical. This enables us to use one basic benchmark model
for both frameworks. However, it is necessary to re-implement a separate model to
accommodate the process-driven modeling paradigm underlying PRIME.

The key performance factors of expanded and discrete event simulation are the
lookahead and event durations. We incorporate these properties in the benchmark
models as follows: First, we interconnect all modules via links with a configurable
delay since traditional parallelization in OMNeT++ and PRIME derives the looka-
head from link delays. These links form a fully meshed topology, allowing bench-
mark modules to send abstract packets to randomly selected neighbors. Secondly, we
add “send” and “receive”-processes spanning a period of simulated time to each mod-
ule. In HORIZON, we model these processes by means of expanded events while the
model for OMNeT++ resorts to using discrete start and end-events for both processes.
The process-driven model for PRIME instead uses wait statements. We furthermore

4Throughout these benchmarks all CPUs are fully utilized. This is in line with the push-based event han-
dling scheme we presented in a previous publication [Kunz et al. 2011]. In terms of memory consumption,
HORIZON imposes only a small overhead in comparison to OMNeT++ which is mainly due to meta-data
maintained by the worker threads.
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Fig. 7. Runtimes of OMNeT++, PRIME, and HORIZON.

vary the duration of the send and receive events analogously to the link delay since
HORIZON uses this information to identify independent events. All benchmark models
thus provide the same timing information, yet differently embedded. Third, each mod-
ule generates (start-)send events with uniformly distributed interarrival times. These
events trigger the sending process, however, only in 10 % of the cases, a packet is actu-
ally sent to one neighboring module, where it initiates the receive process. This behav-
ior resembles the widely used and accepted PHOLD benchmark [Fujimoto 1990b] used
to profile parallel simulations. Finally, the computational complexity of the events is
0.1 ms, which corresponds to the computational complexity found in simulation models
of wireless systems (see Figure 8). Again, the model comprises 110 benchmark mod-
ules, distributed across 11 partitions/workers.

Figure 7 shows the runtimes of HORIZON, OMNeT++, and PRIME when executing
the respective benchmark models. We observe that OMNeT++ and PRIME achieve a
roughly similar performance which significantly depends on the link delay. For a link
delay of 1 µs, the runtimes of both simulators exceed the runtimes for a link delay of
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Fig. 8. Distribution of event processing complexities in the LTE model (12 cells, 50 MS/cell) and their
corresponding fraction of the total simulation runtime (black dashed CDF). The figure further indicates the
three most complex types of events. Note the double-logarithmic scales.

1 ms by a factor of up to 1000. Moreover, the runtimes of OMNeT++ increase dras-
tically for short link delays as the event duration increases. This behavior is due to
the time creeping problem of the NMA: If the lookahead does not cover a real simu-
lation event, the NMA needs to send and process (multiple) null-messages to advance
the simulated time, thereby increasing the synchronization overhead. For short link
delays, the lookahead is small while long event durations increase the time between
real simulation events, hence increasing the probability that the lookahead does not
cover an event. PRIME shows a different behavior in this regard: With increasing link
delays and event durations, the composite synchronization scheme is able to limit the
synchronization overhead, resulting in much improved performance.

In contrast to OMNeT++ and PRIME, the performance of HORIZON does not depend
on the link delay, but instead on the extent of the event durations: The longer the event
durations, the more events overlap and can hence be processed in parallel. Moreover,
HORIZON avoids synchronization messages altogether by focusing solely on shared-
memory synchronization on multi-core systems. As a result, the central event sched-
uler has a global view of the FES and can thus immediately advance the simulated
time to the next event. HORIZON hence explicitly trades off distributed simulation
capabilities for a higher efficiency on our target platforms.

Overall, we observe that both approaches, traditional parallel event simulation and
parallel expanded event simulation, outperform each other depending on the prop-
erties of the model. For tightly-coupled systems, characterized by short link delays,
parallel expanded event simulation significantly outperforms the traditional schemes.
Taking into account the typical link delays of wireless systems (in the range of a few
µs at most), HORIZON promises a significant speed-up for these models.

5.3. Case Study: LTE Network Model
In order to underline HORIZON’s applicability to real simulation models, we next
present two case studies based on a complex simulation model of a 3GPP-LTE net-
work as well as one for wireless mesh networks.

Simulation Model. LTE systems constitute the fourth generation of cellular net-
works and are currently deployed around the world. Their further evolution is of high
interest and thus constantly pursued by academia and industry. Hence, this case study
considers a currently very relevant system model.

Simulation models of LTE networks are known to be of high computational com-
plexity. For instance, LTE systems perform involved resource allocation schemes at so
called Transmission Time Intervals (TTIs) with a length of 1 ms. Specifically, at every
downlink TTI each basestation (eNodeB) in the network dynamically assigns trans-
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Fig. 9. Integrating parallel expanded event simulation into a time-slotted LTE model. Based on the specifi-
cation that each TTI lasts 1 ms, we assign pseudo durations that jointly span the entire TTI. Moreover, the
event durations of equal event types overlap to enable parallel execution.

mission resources (mainly power and bandwidth) to its associated mobile terminals
(UEs). As these computations are based on the instantaneous channel state of each
link between an eNodeB and a UE, these states need to be generated every TTI, i. e.,
every millisecond, as well. In this context, particularly the fast fading behavior needs
to be calculated accurately for every transmission channel. Since a typical LTE net-
work utilizes more than 50 channels and comprises hundreds of UEs per eNodeB, the
complexity of the channel generation process is considerable. This is further aggra-
vated by the fact that all eNodeBs operate on the same frequency band. Consequently,
the channels of all interfering eNodeBs need to be considered as well, leading to an
exponential growth in runtime as the number of eNodeBs and UEs increases.

Figure 8 shows a histogram over the distribution of event processing (wall-clock)
times when executing the model with 12 eNodeBs and 50 UEs/eNodeB. In general, the
complexity of events ranges from 2 · 107 s up to 4 s with the majority of events compris-
ing a relatively small complexity. The figure indicates that the events modeling the
resource allocation algorithm and the physical channel are of considerable complexity,
ranging from approx. 400 µs to 4 s. In particular, these events contribute almost exclu-
sively to the total runtime of the simulation model as visualized by the dashed CDF.
The CDF shows the fraction of the total runtime taken up by the sum of runtimes of
all events up to a certain complexity. For example, the figures shows that all events up
to a complexity of 1 ms account for only 2 % of the total simulation runtime.

Time Calibration. The timing of the events in the model is highly regular: All events
belonging to one downlink TTI take place at the beginning of the respective TTI at the
same point in simulated time. A timer event indicates the beginning of a downlink TTI
and triggers a recursive creation of all subsequent events, i. e., a send event creates a
channel event which in turn creates a receive event and so on. Since all events of a
TTI exhibit the same timestamp, we do not require explicit event durations to enable
parallel execution. Instead, we consider discrete events taking place at the same point
in time as expanded events with zero-time duration which overlap. Moreover, the re-
cursive creation of events ensures a correct event ordering. For this reason, we leave
the LTE model unchanged in terms of timing.

Nevertheless, we stress that parallel expanded event simulation is applicable to such
an abstract system model. The general idea is to exploit the fact that TTIs last exactly
1 ms. Specifically, we assign pseudo durations to the events of a TTI such that the
resulting expanded events i) jointly span an entire TTI, and ii) overlap according to
physical processes that occur concurrently, as shown in Figure 9.

Results. At first, we investigate the performance of HORIZON for a variable number
of worker threads over three workload scenarios comprising 10 eNodeB and 100, 200,
and 300 UE, respectively. We execute all three scenarios sequentially and in parallel
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Fig. 11. Speedup of HORIZON using 11 workers over sequential execution for different workloads compris-
ing networks of 5, 10, and 15 cells with a total of 100, 200, and 300 UEs.

using 1 to 11 worker threads. Figure 10 shows the resulting speedups. We observe
that the speedup increases in all scenarios with the number of worker threads and the
number of UE, reaching a speedup of 2.5 for 100 UE, 3.5 for 200 UE, and 4.5 for 300
UE. We interpret these results as follows: A larger number of UE requires more chan-
nel state computations. These computations are independently modeled by individual
events, hence increasing the number of parallelizable events in the model. Moreover,
the complexity of the resource allocation algorithm performed on each eNodeB grows
with an increasing number of UE. Since the algorithms execute in parallel events, the
efficiency of the parallel simulation improves due to larger chunks of parallel work.

We verify this reasoning by varying the workload over a fixed number of 11 CPUs.
Specifically, we vary the number of eNodeB between 5, 10, and 15 and distribute a
total of 100, 200, and 300 UE among those eNodeB. Figure 11 illustrates the results
which in fact confirm the previous reasoning.

5.4. Case Study: Wireless Mesh Network
We further evaluate the applicability of HORIZON by conducting a second case study
using a wireless mesh network model. This case study complements the previous one
by utilizing a network model which comprises a randomized timing behavior while,
again, the simulated entities are tightly coupled. In addition, the event complexities
are now lower when comparing to the LTE model.

System Model. The model is based on the “routing” sample shipped with OMNeT++
and has been extended with an accurate fading and error model. The simulated net-
work consists of 60 nodes, each containing an application layer, routing layer, mac layer
and physical channel layer which are represented as individual HORIZON modules, cf.
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Fig. 12. Overview of the wireless mesh network model using in the case study.

Figure 12(a). All nodes send packets which are routed through the network to one of
three destination nodes via multiple hops. These packets are generated in the applica-
tion layer and propagated through the stack down to the physical layer (PHY)/Channel
layer from which they are broadcast to the PHY/Channel layer of neighboring nodes,
cf. Figure 12(b). In the PHY/Channel module, accurate fading statistics are computed
and depending on the outcome, packets may be dropped by an error model of the re-
ceiving mac layer. The fading and error models are based on work by Wang et. al [Wang
et al. 2007] and Puñal et. al [Punal et al. 2011].

We control the density of the network by means of the PHY reception neighborhood
(RN) of the nodes: A reception neighborhood of 1 means that all directly connected
PHY/Channel modules receive a transmitted packet whereas in a reception neighbor-
hood of 2, the packet is also received by the neighbors’ neighbors, and so on. However,
only the node selected by the routing layer forwards the packet further.

Besides the node structure, Figure 12(a) also shows the random distributions used
to model the event durations, i. e., processing times, and link delays. For example, the
events on the routing layer have durations which are normal distributed with a mean
of 2 ms and a variance of 0.5 ms. As the event durations correspond to the processing
durations in a real network stack, the durations reduce by orders of magnitude down
the network stack. In addition to the event durations, we use an OMNeT++ channel
delay to model the propagation delay on the link between two PHY/Channel modules.
This delay is also randomly distributed to model the varying propagation delays to
neighboring nodes at different distances but respects the tight coupling of the simula-
tion model in general.

Results. We conduct the performance benchmarks of this case study with a recep-
tion neighborhood of 3 and 4, respectively. This parameterization causes a transmitted
packet to be received by a large fraction of the wireless mesh network, yet not by all
nodes, thereby retaining the characteristics of a multi-hop network. As a result, the
model comprises regions of tightly coupled entities due to small propagation delays
while at the same time the model exhibits an irregular timing behavior driven by the
probability distributions on the higher network layers.

Figure 13 illustrates the speedup achieved by HORIZON for 1 to 11 worker threads
and mean packet sending rates ranging from 1 packet/second to 100 packets/second.
The figure shows that for a reception neighborhood of 4 HORIZON achieves a higher
speedup than for a reception neighborhood of 3. Obviously, a larger reception area
causes more network nodes to be involved in the reception of a packet. Due to the
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Fig. 13. Speedup of the wireless mesh network model over a varying numbers of worker threads. The
speedup increases with the size of the reception neighborhood (RN) and the sending rate.

small propagation delay, however, this results in a tight coupling of a larger fraction of
network nodes. Despite this coupling, HORIZON is able to extract a significant amount
of parallelism from the simulation model due to the considerably longer durations of
the receive events in comparison to the link propagation delay.

Similarly, the speedup increases with the mean packet sending rate in the investi-
gated scenarios as there are more overlapping events in the simulation model. Specif-
ically, for up to 4 worker threads, HORIZON achieves a nearly linear speedup which
then diverges to a maximum speedup ranging from 4.8 for a reception neighborhood
of 3 and a mean packet send rate of 1 packet/second up to a speedup of 6.4 for for a
reception neighborhood of 4 and a mean packet send rate of 100 packets/second.

6. DISCUSSION AND LIMITATIONS
Parallel Expanded Event Simulation. Parallel expanded event simulation is back-

wards compatible to traditional discrete event simulation. Yet, porting a discrete event
simulation to expanded events requires additional modeling effort. This effort can be
quite low, e. g., in the case one expanded event replaces two discrete events. However,
expanded event simulation fosters the inclusion of additional time information in sim-
ulation models which did not consider such information before. As a result, expanding
discrete events changes the timing of the model, thus requiring careful adjustments
and (re-)validation of the model. Nevertheless, we have demonstrated in [Stoffers et al.
2014a] that the redesign effort even for highly centralized models with global data
structures like the OMNeT++ INET model is low to moderate.

Based on our experience, simulation modelers are typically experts in their particu-
lar domain of research, e. g., wireless systems, and not necessarily experts in parallel
simulation. Hence, it is important to provide a simple-to-use simulation framework
without the need to apply load balancing and model partitioning algorithms. More-
over, event durations are an inherent property of the simulated system and hence
either known or easily definable by model designers. Hence, the major contribution of
this work is to provide a simulation framework which is simple to use, due to a cen-
tralized architecture, and enables model developers to easily enrich parallel simulation
models with domain specific properties by means of event durations.

Furthermore, modeling physical processes by means of expanded events supports
the development of accurate energy models. Since the energy consumption is often
directly linked to the duration of a process, e. g., the transmission time of a packet, ex-
panded event simulation provides a solid foundation for detailed energy models. More-
over, despite being the primary field of application, parallel expanded event simulation
is not limited to simulating wireless network models. Since parallel expanded event
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simulation still retains the basic properties of discrete event simulation, any existing
discrete event simulation model can be converted to make use of expanded events. Due
to the fact that parallel expanded event simulation extracts its lookaheads from event
durations instead of the traditional notion of link delays, it is particularly suitable for
simulating tightly coupled systems, i. e., systems in which many entities interact on
small timescales. Examples for such systems are parallel hardware platforms such as
multi-core processors and highly integrated circuits.

The event scheduler does not offload expanded events which do not overlap, how-
ever, which are independent. Previous efforts [Liu and Nicol 2002; Meyer and Bagrodia
1998; 1999] showed that larger lookaheads can be derived when analyzing the interac-
tion of simulated entities and combining their respective lookaheads. These combined
lookaheads extend beyond event durations, thereby exposing additional parallelism in
a simulation model. However, the smallest lookahead in a simulation model is typi-
cally the performance limiting factor (cf. time creeping problem). In this context, the
event durations of parallel expanded event simulation aim at increasing the minimum
available lookahead. Nevertheless, we explicitly extend parallel expanded event sim-
ulation with advanced lookahead extraction techniques by developing a probabilistic
event synchronization scheme [Kunz et al. 2012].

Horizon. HORIZON’s centralized master-worker architecture avoids the need for ex-
plicit load balancing mechanisms by exploiting the shared-memory space of multi-core
systems. This approach, however, limits scalability in terms of i) the size of the simula-
tion model and ii) the number of processing units: First, large scale simulation models,
e. g., peer-to-peer networks, exhibit a considerable memory footprint, easily exceeding
the total memory available in one multi-core system [Fujimoto et al. 2003]. Secondly,
high performance multi-core computers will feature tens to hundreds of processing
units. However, increasing the number of workers correspondingly results in extreme
contention on the central FES and a bottleneck at the scheduler that cannot distribute
events fast enough to keep all workers busy. Based on a measured event handling over-
head of 1.5 µs [Kunz et al. 2011] and the observed event complexities in our simulation
models ranging up to multiple (micro)seconds (see Figure 8), we believe that the limit
in scalability is at 50 to 100 processing cores.

Parallel expanded event simulation is orthogonal to existing distributed simula-
tion schemes, enabling a hybrid of both: Each partition of a distributed simulation
model runs HORIZON locally on a multi-core cluster node, while a distributed simu-
lation framework handles synchronization and communication across nodes. Previous
efforts in the research community successfully investigated hybrid synchronization
schemes [Liu and Nicol 2001], while we recently proposed such an extension of HORI-
ZON in [Stoffers et al. 2014b].

Lastly, the event scheduler of HORIZON does not consider caching effects or the phys-
ical memory layout when assigning events to CPUs. Currently, the scheduler offloads
a given event to the next available CPU core. However, this can cause events of the
same event type taking place at the same module to constantly move between differ-
ent CPU cores. Besides inefficient utilization of the CPU cache, processing events at
changing CPU cores can result in prolonged memory access times on the prevalent
Non-Uniform Memory Access (NUMA) architectures due to the need to copy data from
a possibly remote memory location. Future work will focus on optimizing the event-to-
CPU assignment algorithm in order to make more efficient use of NUMA architectures.

7. RELATED WORK
In this section, we review related efforts regarding extended modeling paradigms as
well as multi-threaded parallel simulation frameworks.
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Related Modeling Paradigms. Previous efforts in network simulation research also
extend classic discrete event simulation with additional timing information to enhance
simulation performance and scalability. Lubachevsky [Lubachevsky 1988] defines
opaque periods which are closely related to the idea of expanded events. An opaque
period defines a period in simulated time in which a simulated entity “promises” not
to generate events. Thus, opaque periods are similar to expanded events in the sense
that the starting times ts(e′) of all events e′ generated by an expanded event e must
begin after tc(e) (cf. Definition 2.3) because the results of a physical process are only
visible after its end. Due to the fact that opaque periods are not bound to the concept of
physical processes, they constitute a more abstract concept. As a result, Lubachevsky
needs to manually apply the concept of opaque periods to a given simulation model. In
contrast, we deeply embed our approach of expanded events into an intuitive modeling
paradigm which fosters the inclusion of expanded events by the model developers.

A different approach is taken by Fujimoto [Fujimoto 1999] who basically observes
that real-world events do not occur at pre-determined points in time. Hence, the idea
is to replace the accurate timestamps of discrete events with intervals representing a
period of uncertainty in which an event may occur. Fujimoto furthermore defines an
approximate-time partial-order among events along with corresponding synchroniza-
tion algorithms. However, approximate-time partial-ordering introduces inaccuracies
in the simulation results and limits determinism and the repeatability of simulations.
Loper et al. [Loper and Fujimoto 2000; 2004] extends this concept by drawing dis-
crete timestamps from uncertainty intervals according to a random distribution. Se-
lecting discrete timestamps from uncertainty intervals increases the available looka-
head while allowing to re-use existing discrete timestamp based synchronization algo-
rithms. It hence solves the problem of limited repeatability and determinism inherent
to approximate time partial ordering. In contrast, the respective starting and comple-
tion times of expanded events occur at deterministic points in simulated time, hence
guaranteeing repeatability of the results.

Peschlow et al. [Peschlow et al. 2008] picks up the idea of uncertainty intervals and
investigate the effects of different event orderings resulting from overlapping inter-
vals. To avoid executing one individual simulation run for every possible interleaving
of events, the authors propose interval branching. In this approach, a single simula-
tion run branches for every possible ordering of events due to overlapping intervals,
hence spanning an execution tree representing all possible interleavings. The key per-
formance improvement over executing individual runs for each event interleaving is
that equal event interleavings in the individual runs collapse to a common path in the
tree which is executed only once. From an implementation perspective, the branch-
ing operation relies on logical processes and simulation cloning techniques [Hybinette
and Fujimoto 1997; 2001] developed for distributed simulation. However, the branch-
ing approach suffers from a state explosion problem. Considering accurate simulations
comprising millions of events, creating a branch for each possible event interleaving
can easily exceed the available memory resources. Hence, interval branching is not
generally applicable to complex simulation models.

Related Simulation Frameworks. In the context of the ns-3 project [Henderson et al.
2006], Seguin [Seguin 2009] implemented a multi-threaded extension of the ns-3 sim-
ulation engine. The framework employs both the Null Message Algorithm (NMA) and
a synchronous barrier-based algorithm for conservative event synchronization. Due to
the time-creeping problem inherent to the NMA, Seguin prefers the barrier-based al-
gorithm for synchronization. Both synchronization schemes derive the lookahead from
link delays, however, the framework only supports simple point-to-point links with
static delays, corresponding to wired connections. In terms of partitioning, the frame-
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work handles each network node as a separate partition, thereby eliminating the need
for manual partitioning and simplifying load balancing. The project reports a 20 %
performance increase on the DARPA NMS Campus Network model [Nicol 2003] using
an eight-core computer. The authors blame the limited performance improvement on
the overhead due to locking within the simulation framework. As a result, research on
multi-threaded parallelization is discontinued in the ns-3 project, focusing instead on
traditional distributed simulation over MPI [Barnes et al. 2012].

The multi-threaded simulation framework HiPWiNS [Peschlow et al. 2009] is based
on JiST/SWANS [Barr et al. 2004] aiming for efficient parallel simulation of IEEE
802.11 networks by making two contributions: First, they propose event lookaheads
which are conceptually similar to event durations since they exploit the fact that phys-
ical processes span a period of time in which they cannot influence the surrounding
system. The authors propose using the delay of switching an IEEE 802.11 transceiver
from sending to receiving mode (RxTxTurnaround), since during this switch, the
transceiver can neither transmit nor receive. The second contribution is called event-
bundling and aims at reducing the number of events exchanged between LPs by send-
ing only few meta events which trigger the creation of potentially many local events.
Despite the similarity of event lookahead and event durations, the concepts underly-
ing HORIZON are more general. Specifically, event lookahead is applied only to the
RxTxTurnaround duration which in turn is implemented by means of two events that
are specially treated in the simulation framework. In contrast, expanded event simu-
lation is a generalized modeling paradigm, equally able to utilize the RxTxTurnaround
switching delay. Furthermore, event bundling is only effective when utilizing LPs, yet,
the static assignment of network nodes to LPs as exercised in HiPWiNS severely re-
stricts load balancing in contrast to the dynamic approach of HORIZON.

The latest incarnation of the Scalable Simulation Framework (SSF) [Cowie et al.
1999] is the PRIME simulation framework [Liu et al. 2009]. The primary focus of
PRIME is on achieving real-time simulation as basis for co-simulation, i. e., the inter-
action of real networking systems with a simulated network. In order to harvest the
required processing power needed for large scale networks, it combines multi-threaded
simulation with distributed simulation. To this end, the framework utilizes conserva-
tive composite synchronization [Nicol and Liu 2002] in combination with hierarchical
synchronization [Liu and Nicol 2001] to integrate multi-threaded with distributed sim-
ulation. In contrast to PRIME, HORIZON does not aim for large scale co-simulation,
but instead focuses on speeding up small to medium scale simulations on desktop or
workstation computers. Hence, architecture and event synchronization of HORIZON is
considerably simpler than in PRIME.

In [Jagtap et al. 2012] the authors consider the architectural changes required to
efficiently re-implement a previously distributed simulation engine based on MPI for
multi-core environments. They find that depending on the simulation model and com-
putational environment a speed-up of up to three can be achieved (in comparison to
MPI-based implementations) based on the synthetic benchmark PHOLD. In [D’Angelo
et al. 2012] the authors propose a novel implementation of the Time warp optimistic
synchronization algorithm specifically tailored for multi-core architectures. This im-
plementation is based on Go, a newer programming language that has efficient sup-
port for parallelization on multi-core machines. Based on this reimplementation, the
authors show that for synthetic benchmarks the reimplementation can reach good
speed-ups. However, the novel approach is not benchmarked with comparison schemes.
Similarly, in [Chen et al. 2011] the authors investigate novel load-balancing techniques
for optimistic synchronization algorithms based on multi-core architectures. In partic-
ular the authors add a global scheduler to the optimistic approach which mostly allows
for a more efficient load balancing between the different logical partitions. Based on
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this new approach, the authors show that the rollback rates can be significantly re-
duced while the load balancing becomes more efficient between the LPs. A further
load-balancing approach, optimizing the simulation execution time of optimistic syn-
chronization for multi-core architectures is presented in [Vitali et al. 2012].

In [Yoginath and Perumalla 2013] the authors address the problem of executing
parallel discrete-event simulations over a set of virtual machines. The authors first
show that due to the specific characteristics of PDES, the usage of virtual machines
(and specifically their generic workload scheduler) does not scale well. Subsequently,
the authors propose an optimized scheduler, which improves the performance signif-
icantly. Related to that, in [Li et al. 2014] the authors consider the performance of
large-scale simulations performed on federates of data centers under optimistic syn-
chronization. They first observe load imbalances leading to excessive synchronization
overhead in roll-backs and timer updates. Next, they subsequently develop a hierar-
chical load-balancing approach.

8. CONCLUSIONS
This paper introduced parallel expanded event simulation as a novel modeling
paradigm for efficient parallel simulation of tightly-coupled systems such as wireless
networks. By modeling the duration of physical processes by means of one expanded
event instead of two discrete events, expanded event simulation enables a parallel
event scheduler to derive dependency information about expanded events, eventually
allowing for conservative parallel execution of independent events. We furthermore
presented HORIZON, a parallel simulation framework that puts expanded event simu-
lation into practice by extending the well-known OMNeT++ simulation framework. In
particular, HORIZON exploits the processing power of ubiquitous multi-core systems
available to model developers and networking researchers. It thus employs a simple
multi-threaded master-worker architecture, thereby avoiding explicit partitioning and
load balancing mechanisms. The evaluation of HORIZON by means of synthetic and
real-world models underlines the viability of parallel expanded event simulation es-
pecially in the context of tightly-coupled systems: For synthetic benchmarks HORIZON
outperforms state-of-the-art by up to two orders of magnitude, while for real-world sim-
ulation models of wireless networks a speed-up of up to six can be reached. However,
these performance advantages diminish for models with looser coupling, i. e., larger
lookaheads between model partitions. As future work, we consider two further steps.
On the one hand, the multi-core approach is still limited for very large simulation
models. In this case, the combination of HORIZON with distributed simulation meth-
ods could be employed. Initial steps in this direction have been conducted in [Stoffers
et al. 2014b] but further improvements of the synchronization methods between HORI-
ZON partitions can be achieved. Furthermore, additional speed-up of HORIZON might
be achieved by optimistic synchronization. Again, initial steps have been presented
already [Kunz et al. 2012], but more work is required to compare the scheme to others.
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G. Kunz, O. Landsiedel, J. Gross, S. Götz, F. Naghibi, and K. Wehrle. 2010. Expanding the Event Horizon
in Parallelized Network Simulations. In Proc. of the 18th Inter. IEEE Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems.

G. Kunz, O. Landsiedel, and K. Wehrle. 2009. Poster Abstract: Horizon - Exploiting Timing Information for
Parallel Network Simulation. In Proc. of the 17th Inter. IEEE Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems.

G. Kunz, M. Stoffers, J. Gross, and K. Wehrle. 2011. Runtime Efficient Event Scheduling in Muti-threaded
Network Simulation. In Proc. of the 4th Inter. Workshop on OMNeT++.

G. Kunz, M. Stoffers, J. Gross, and K. Wehrle. 2012. Know Thy Simulation Model: Analyzing Event Interac-
tions for Probabilistic Synchronization in Parallel Simulations. In Proc. of the 5th Inter. ICST Conf. on
Simulation Tools and Techniques.

Z. Li, X. Li, L. Wang, and W. Cai. 2014. Hierarchical Resource Management for Enhancing Performance of
Large-scale Simulations on Data Centers. In Proc. of the 2nd Conf. on Principles of Advanced Discrete
Simulation.

J. Liu. 2009. Parallel Discrete-Event Simulation. John Wiley & Sons.
J. Liu, Y. Li, and Y. He. 2009. A Large-scale Real-time Network Simulation Study Using PRIME. In Proc. of

the 2009 Winter Simulation Conf.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article XX, Publication date: 2015.



Parallel Expanded Event Simulation of Tightly Coupled Systems XX:25

J. Liu and D. M. Nicol. 2001. Learning Not to Share. In Proc. 15th Workshop on Parallel and Distributed
Simulation.

J. Liu and D. M. Nicol. 2002. Lookahead Revisited in Wireless Network Simulations. In Proc. of the 16th
Workshop on Parallel and Distributed Simulation.

M. Loper and R. M. Fujimoto. 2000. Pre-sampling as an Approach for Exploiting Temporal Uncertainty. In
Proc. of the 14th Workshop on Parallel and Distributed Simulation.

M. Loper and R. M. Fujimoto. 2004. A Case Study in Exploiting Temporal Uncertainty in Parallel Simula-
tions. In Proc. of the 2004 Inter. Conf. on Parallel Processing.

B. D. Lubachevsky. 1988. Efficient Distributed Event Driven Simulations of Multiple-loop Networks. In
Proc. of the ACM SIGMETRICS Conf. on Measurement and Modeling of Computer Systems.

A. Markopoulou, F. Tobagi, and M. Karam. 2006. Loss and Delay Measurements of Internet Backbones.
Computer Communications 29, 10 (June 2006), 1590–1604.

R. A. Meyer and R. L. Bagrodia. 1998. Improving Lookahead in Parallel Wireless Network Simulation.
In Proc. of the 6th Inter. IEEE Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems.

R. A. Meyer and R. L. Bagrodia. 1999. Path Lookahead: A Data Flow View of PDES Models. In Proc. of the
13th Workshop on Parallel and Distributed Simulation.

F. Naghibi and J. Gross. 2010. How Bad is Interference in IEEE 802.16e Systems?. In Proc. of the 16th
European Wireless Conf.

D. M. Nicol. 1996. Principles of Conservative Parallel Simulation. In Proc. of the 28th Winter Simulation
Conf.

D. M. Nicol. 2003. Darpa Network Modeling and Simulation (NMS) Baseline Network Topology. online, [last
accessed November 28, 2014]. (2003). http://www.ssfnet.org/Exchange/gallery/baseline/index.html

D. M. Nicol and J. Liu. 2002. Composite Synchronization in Parallel Discrete-Event Simulation. IEEE Trans-
actions on Parallel Distributed Systems 13, 5 (May 2002), 433–446.

K. S. Perumalla. 2006. Parallel and Distributed Simulation: Traditional Techniques and Recent Advances.
In Proc. of the 38th Winter Simulation Conf.

P. Peschlow, T. Honecker, and P. Martini. 2007. A Flexible Dynamic Partitioning Algorithm for Optimistic
Distributed Simulation. In Proc. of the 21st Inter. Workshop on Principles of Advanced and Distributed
Simulation.

P. Peschlow, P. Martini, and J. Liu. 2008. Interval Branching. In Proc. of the 22nd Workshop on Principles of
Advanced and Distributed Simulation.

P. Peschlow, A. Voss, and P. Martini. 2009. Good News for Parallel Wireless Network Simulations. In Proc.
of the 12th Inter. Conf. on Modeling, Analysis and Simulation of Wireless and Mobile Systems.

O. Punal, H. Escudero, and J. Gross. 2011. Performance Comparison of Loading Algorithms for 80 MHz
IEEE 802.11 WLANs. In Proc. of the 73rd IEEE Vehicular Technology Conf.

G. F. Riley. 2003. The Georgia Tech Network Simulator. In Proc. of the ACM SIGCOMM Workshop on Models,
Methods and Tools for Reproducible Network Research.

G. Seguin. 2009. Multi-core Parallelism for ns-3 Simulator. Technical Report. INRIA Sophia-Antipolis.
A. Sekercioglu, A. Varga, and G. Egan. 2003. Parallel Simulation Made Easy with OMNeT++. In Proc. of the

European Simulation Symposium.
M. Stoffers, R. Bettermann, J. Gross, and K. Wehrle. 2014a. Enabling Distributed Simulation of OMNeT++

INET Models. In Proc. of the 1st OMNeT++ Community Summit.
M. Stoffers, S. Schmerling, G. Kunz, J. Gross, and K. Wehrle. 2014b. Large-Scale Network Simulation:

Leveraging the Strengths of Modern SMP-based Compute Clusters. In Proc. of the 7th Inter. ICST Conf.
on Simulation Tools and Techniques (SIMUTools’14).

A. Varga. 2001. The OMNeT++ Discrete Event Simulation System. In Proc. of the 15th European Simulation
Multiconference.

A. Varga. 2014. OMNeT++ Website. Retrieved November 28, 2014 from http://www.omnetpp.org
R. Vitali, A. Pellegrini, and F. Quaglia. 2012. Towards Symmetric Multi-threaded Optimistic Simulation

Kernels. In Proc. of IEEE Workshop on Principles of Advanced and Distributed Simulation (PADS).
C.-X. Wang, M. Pätzold, and Q. Yao. 2007. Stochastic Modeling and Simulation of Frequency-correlated

Wideband Fading Channels. IEEE Transactions on Vehicular Technology 56, 3 (2007).
S. B. Yoginath and K. S. Perumalla. 2013. Optimized Hypervisor Scheduler for Parallel Discrete Event

Simulations on Virtual Machine Platforms. In Proc. of the 6th Inter. ICST Conf. on Simulation Tools
and Techniques.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article XX, Publication date: 2015.


