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Initial research on the analysis and minimization of AoI for different queuing
systems focused on the average AoI statistics. However, several applications of
interest, for example in safety-critical industrial systems, pose stringent require-
ments on the freshness of packets exchanged over a network. This circumstance,
which we further elaborate below, together with related applications, motivates
the research on studying the distribution of AoI.

Safety-critical control systems can be certified in two different ways (Leveson
2011). In the first case, all individual components of the system are subject to a
stringent certification process. However, this requires to quantify failure proba-
bilities of the components under operational conditions, which is not always pos-
sible. An alternative approach is to employ so called safety layers (Voss 2020),
which is especially the case in distributed control systems that are closed over
unreliable networks. Safety layers rest on the black channel principle, i.e., no
internal state of the underlying communication system can be taken into con-
sideration at run-time. Instead, the safety is validated periodically by a simple
message exchange between a pair of safety layers, which are essentially software
entities residing on top of layer 7 of the ISO/OSI stack. Example implemen-
tations comprise PROFIsafe, SafetyNetP as well as SafetyCAN, which operate
according to the above principle (Voss 2020). In more detail, the entities exchange
enumerated safety frames with message integrity codes generated from payload
as well as shared secrets. If within a predefined safety deadline one of the safety
layers involved cannot validate the integrity of the system through receiving a
correctly encoded safety frame, then the corresponding safety layer, (a) raises
a safety exception which can include switching the involved plant to a fail-safe
mode (i.e. stopping the machine), and (b) stops sending safety messages to it’s
peers. As a consequence, safety can be guaranteed over an unreliable network at
the price of (potentially frequent) events that shut down the plant, which do not
reflect an immediate safety breach of the system (i.e. the trigger of a safety light
barrier).

From this description it becomes clear why the freshness of the involved safety
frames, and in particular the statistical distribution of the freshness is of interest.
If we consider the messaging between two safety layers as an update process
over a communication channel with random (unreliable) service and consider
the stochastic process resembled by AoI of this system, then the tail mass of the
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AoI distribution for this system with respect to the given deadline is a direct
measure of the availability of the control system. The lower the tail mass, the
higher will be the availability of the system. Thus, in a second step one might
consider the optimization (minimization) of the tail mass, for instance, by tuning
the frequency of safety messages. This emphasizes the relevance and potential
applicability of AoI analysis with respect to its distribution.

This chapter concerns with fundamental analysis, closed-form expressions, and
bounds on the distribution of AoI. We first provide a general formula for the
distribution of AoI for a single-source single-server system, and focus primarily
on two non-preemptive service systems: 1) GI/GI/1/1 which has no queue, and
2) GI/GI/1/2* which has a unit capacity queue and a new arrival always replaces
a packet in the queue. The relevance of these systems in the context of AoI is due
to the fact that, in both systems every packet served is an information update
packet, i.e., every packet received at the destination has latest generation time.
Furthermore, these systems potentially result in lower AoI statistics compared to
that of the systems with larger capacity queue, because storing and transmitting
old packets from the queue does not reduce AoI (Costa, Codreanu & Ephremides
2016, Kosta, Pappas, Ephremides & Angelakis 2019).

Most of the results of this chapter are from (Champati, Al-Zubaidy & Gross
2019a). A general formula for the distribution of AoI was also derived in (Inoue,
Masuyama, Takine & Tanaka 2019), where the violation probability is character-
ized in terms of the distribution of peak AoI, and the distribution of system delay.
The distribution of peak AoI for M/M/1/1, M/M/1/2, and M/M/1/2* systems
was derived in (Costa et al. 2016) and that of PH/PH/1/1 and M/PH/1/2 sys-
tems1 was derived in (Akar, Dogan & Atay 2020). The authors in (Kesidis, Kon-
stantopoulos & Zazanis 2020) characterized the distribution of AoI for bufferless
systems with arrival/service distributions with dependencies. The characteriza-
tion of the distribution of AoI was used to compute average statistics of non-linear
function of AoI for discrete-time queuing systems in (Kosta, Pappas, Ephremides
& Angelakis 2020). Distribution of AoI in a tandem network with single source
was studied in (Yates 2020), where moment generating function and station-
ary distribution were derived for Poisson arrivals and exponential service times
under preemptive last-come-first-served policy, and in (Champati, Al-Zubaidy
& Gross 2020), where periodic sampling rate is optimized to minimize the AoI
violation probability.

Next, we present some notation that is used for the analysis in the sequel.

1.1 Notation, Definitions, and System Model

Consider a single source generating status updates or packets which are immedi-
ately dispatched to a single-server queueing system as shown in Figure 1.1. The

1 PH stands for phase-type distribution.
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Figure 1.1 A single-source single-server system.

Figure 1.2 A sample path of AoI process.

inter-arrival time between the packets is denoted by the random variable Z with
mean-arrival rate λ = 1

E[Z] . The arriving packets may be stored in a queue and
are served by a server using some scheduling policy. We use the random variable
X to denote the service time with mean-service rate µ = 1

E[X] . We use packet n
to refer to a packet that is nth in the sequence of departures at the server. Let
TD(n) denote the time instant of nth packet departure and TA(n) denote the
corresponding arrival instant.

The AoI metric, denoted by ∆(t), is defined as:

∆(t) , t−max{TA(n) : TD(n) ≤ t}. (1.1)

For a given age limit d ≥ 0, we are interested in computing the steady-state
violation probability or simply violation probability given by

P(∆ > d) = lim
t→∞

P(∆(t) > d).

The AoI process increases linearly in time with slope one until the departure
of information an update packet at the server and it drops to a value equal to the
system delay of that packet. Let {Apeak(k), k ≥ 1} denote the peak AoI process,
where Apeak(k) denotes the kth peak of ∆(t) as shown in Figure 1.2. Let M(t)
denote the number of peaks in the interval (0, t]. Also, in Figure 1.2 we plot g(k),
which is defined as the time duration for which AoI is greater than an age limit
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d in the interval between (k− 1)th peak and kth peak. As mentioned before, the
characterization of the violation probability and the bounds presented in this
chapter are obtained in terms of g(k). Finally, we define Y (k) = ∆(TD(k)), i.e.
Y (k) is the system delay of an update that departed at time TD(k).

Note that the AoI peaks occur only at the departure instants of packets, but
the converse might not be true as some packet departures might not result in
a drop in the AoI. This may happen, for instance, in a GI/GI/1 queue under
LCFS scheduling. If there is no new arrival during the service of a packet, the
next packet from the queue does not reduce AoI upon its departure as its arrival
time would be older than that of the previous departure. As noted before, we refer
to packets that reduce AoI upon their departure as information update packets,
and use k to index them as it uniquely identifies an information update packet
that departs at kth AoI peak. We note that packet n and packet k may not refer
to the same packet for k = n. We assume that the time average departure rate of
information update packets, denoted by ν, is positive and finite. For stationary
and ergodic AoI process, we have, almost surely, ν = 1/E[TD(k)− TD(k − 1)].

We study the GI/GI/1/1 and GI/GI/1/2* systems under non-preemptive
scheduling. In both systems the inter-arrival times and the service times are
i.i.d. As mentioned before, a packet being served always has arrival time later
than that of the previous departure. Thus, AoI is reduced at each departure in-
stant and all departures are information update packets. In these systems, packet
n and packet k refer to the same packet for n = k, TD(k)− TD(k− 1) represents
the inter-departure time, M(t) is the number of departures till time t, and ν is
simply the expected departure rate.

We use ω to denote a sample path of AoI, and Ω to denote the set of all sample
paths. Let γ(k) and Γ(k) denote sample-path-wise lower and upper bounds for
g(k), i.e.,

γ(ω, k) ≤ g(ω, k) ≤ Γ(ω, k), ∀k and ∀ω ∈ Ω. (1.2)

In the rest of the chapter, we explicitly drop ω if it is clear from the context.
The list of symbols used in this chapter are summarized in Table 1.1. We use

(x)+ for max(0, x), and 1{·} for the indicator function, where 1{E} equals one
if event E is true, and is zero, otherwise.

1.2 General Formula for the Distribution of AoI

Recall that AoI process increases linearly with slope one until the next informa-
tion packet departure. Therefore, Apeak(k) can be determined from ∆(t) at de-
parture of packet (k−1), and the inter-departure time between kth and (k−1)th
packets.

Apeak(k) = TD(k)− TA(k − 1)
= Y (k − 1) + TD(k)− TD(k − 1). (1.3)
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Table 1.1 List of Symbols

k Index of an information update packet

TA(k) Arrival time of packet k

TD(k) Departure time of packet k

Žk Inter-arrival time between packet k and its previous arrival

Ẑk Inter-arrival time between packet k and its next arrival

Xk Service time of packet k

Yk System delay of packet k

ν Expected departure rate of information update packets

Ik Idle time of the server before starting service for packet k

Wk Waiting time of packet k

M(t) Number of AoI peaks in the interval (0, t]

Analysing g(k) is central to the results presented in this chapter. In the follow-
ing lemma, we express g(k) in terms of kth AoI peak and inter-departure time
between kth and (k − 1)th packet.

lemma 1.1 Given d ≥ 0, for any sample path of ∆(t),

g(k) = min{(Apeak(k)− d)+, TD(k)− TD(k − 1)}, ∀k. (1.4)

Proof Consider the case where Apeak(k) ≤ d. For this case g(k) is zero, by
definition, which is satisfied by (1.4) as TD(k) ≥ TD(k− 1). For Apeak(k) > d we
further consider the following cases.

Case 1: Apeak(k) > d and Apeak(k) − d > TD(k) − TD(k − 1). Using this
in (1.3), we obtain Y (k − 1) > d. This implies that ∆(t) > d during the entire
interval [TD(k−1), TD(k)). Therefore, g(k) = TD(k)−TD(k−1). This is the case
for g(2) in Figure 1.2.

Case 2: Apeak(k) > d and Apeak(k)−d ≤ TD(k)−TD(k−1). Using this in (1.3),
we obtain Y (k− 1) ≤ d. In this case the horizontal line, with y coordinate equal
to d, intersects ∆(t) at some time t′ ∈ [TD(k − 1), TD(k)). Since ∆(t) increases
linearly with slope one, by geometry we obtain g(k) = TD(k)− t′ = Apeak(k)−d.

From the above analysis, we conclude that g(k) takes the minimum value of
(Apeak(k)− d)+ and TD(k)− TD(k − 1), and the lemma follows.

Next, we characterize the violation probability in terms of g(k) in the following
theorem.
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theorem 1.2 If the AoI process is stationary and ergodic, the AoI violation
probability, if exists, is given by

P(∆ > d) = lim
T→∞

1
T

M(T )∑
k=1

g(k), a.s., (1.5)

where g(k) is given in (1.4).

Proof Since ∆(t) is stationary and ergodic, by Birkhoff’s ergodic theorem, we
have

P(∆ > d) = lim
T→∞

1
T

∫ T

0
1{∆(τ) > d}dτ, a.s. (1.6)

The RHS above is the fraction of time ∆(t) is greater than d in a given sample
path.

Consider a sample path of ∆(t) presented in Figure 1.2. Let δ(T ) denote the
duration for which ∆(t) is greater than d after the M(T )th peak and before time
T . It is easy to see that ∫ T

0
1{∆(τ) > d}dτ =

M(T )∑
k=1

g(k) + δ(T )

⇒ lim
T→∞

1
T

∫ T

0
1{∆(τ) > d}dτ = lim

T→∞

1
T

M(T )∑
k=1

g(k). (1.7)

In the last step above, we use δ(T )
T goes to zero as T goes to infinity owing to

the assumption that the departure rate is positive and finite. The result follows
by substituting (1.7) in (1.6).

Theorem 1.2 is quite general in the sense that it holds for any scheduling
policy (e.g., FCFS/LCFS, preemptive/non-premptive etc.), general service times
(possibly correlated), and general inter-arrival times (possibly correlated), as long
as it is ensured that the resulting AoI process is stationary and ergodic. Note that
even if the AoI process is stationary and ergodic, the violation probability may
not exist. For example, for a D/G/1 system using FCFS the violation probability
does not exist if d < 1

λ (Champati, Al-Zubaidy & Gross 2018).
The challenge in evaluating the infinite summation in the RHS of (1.5) is that

the sequence {g(k), k ≥ 1} is not i.i.d., and we cannot directly use the Strong Law
of Large Numbers (SLLN). However, we will later show that quantities involving
g(k) have structural independence property, defined below, which enables us to
use SLLN.

definition 1.3 An infinite sequence of random variables {Θn, n ≥ 1} is struc-
turally independent and identically distributed (s.i.i.d.) iff Θn are identically dis-
tributed and have the following structural independence: for 1 ≤ m <∞, Θi+jm
is independent of Θi+km, for all 1 ≤ i ≤ m, j ≥ 0, k ≥ 0, and j 6= k.
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In the results that follow we make use of the following lemma, which extends
SLLN for s.i.i.d. random variables.

lemma 1.4 For any sequence {Θn, n ≥ 1} that is s.i.i.d. according to Definition
1, we have

lim
N→∞

1
N

N∑
n=0

Θn = E[Θ], a.s.,

where E[Θ] = E[Θn] for all n.

Proof The proof is based on partitioning the sum into multiple terms which
themselves are infinite sums of i.i.d. random variables and then apply SLLN for
these summations.

lim
N→∞

1
N

N∑
n=0

Θn = lim
N→∞

1
N

m∑
i=1

bN−i+mm c∑
j=1

Θi+(j−1)m

= 1
m

m∑
i=1

lim
N→∞

bN−i+mm c
N/m

bN−i+mm c∑
j=1

Θi+(j−1)m

bN−i+mm c

= 1
m

m∑
i=1

E[Θ] = E[Θ], a.s.

In the third step above, we have used SLLN as {Θi+(j−1)m, j ≥ 1} are i.i.d.
(Definition 1.3), and bN−i+mm c differs from N

m by utmost 1.

theorem 1.5 Given age limit d ≥ 0, λ > 0, 0 < E[X] = 1
µ <∞, {g(k), k ≥ 1}

are s.i.i.d., and {TD(k)− TD(k − 1), k ≥ 1} are s.i.i.d., then

lim
T→∞

1
T

M(T )∑
k=1

g(k) = νE[g(k)], a.s.

Proof We have

lim
T→∞

1
T

M(T )∑
k=1

g(k) = lim
T→∞

M(T )
T
·
∑M(T )
k=1 g(k)
M(T ) . (1.8)

Since λ > 0 and E[X] < ∞, M(T ) approaches infinity, almost surely, as T
approaches infinity, and we obtain,

lim
T→∞

T

M(T ) = lim
T→∞

M(T )∑
k=1

(TD(k)− TD(k − 1))/M(T ).

Since {TD(k)− TD(k − 1), k ≥ 1} are s.i.i.d., from Lemma 1.4 we have

lim
T→∞

T

M(T ) = E[TD(k)− TD(k − 1)], a.s. (1.9)
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Similarly, we invoke Lemma 1.4 for {g(k), k ≥ 1} and obtain

lim
M(T )→∞

∑M(T )
k=1 g(k)
M(T ) = E[g(k)], a.s. (1.10)

The result follows by substituting (1.9) and (1.10) in (1.8).

Theorem 1.5 can be seen as an extension of renewal reward theorem for s.i.i.d.
renewals and rewards. Later, we use the theorem to derive exact expressions for
the violation probability for the D/GI/1/1 and M/GI/1/1 systems.

1.2.1 An Alternative Formula

In this section, we derive an alternative general formula (due to (Inoue et al.
2019)). It characterizes the distribution of AoI in terms of the distribution of
the system delay and the distribution of the peak AoI and is presented in the
following theorem.

theorem 1.6 For ν ∈ (0,∞), assume that limt→∞M(t)/t = ν, then for
stationary and ergodic AoI process, the distribution of AoI, if exists, is given by

P(∆ ≤ d) = ν

∫ d

0
(P(Y ≤ u)− P(Apeak ≤ u))du,

P(Y ≤ u) and P(Apeak ≤ u) are the steady-state distributions of the system delay
and peak AoI processes, respectively.

Proof Let h(k) denote the time duration for which AoI is smaller than the
age limit d in the interval between (k − 1)th peak and kth peak. Following the
analysis in the proof of Theorem 1.2, we obtain

P(∆ ≤ d) = lim
T→∞

1
T

M(T )∑
k=1

h(k), a.s.

= lim
K→∞

ν

K

K∑
k=1

h(k), a.s. (1.11)

We obtain the last equality above by using M(T ) goes to infinity as T goes to
infinity (since ν is positive and finite), limt→∞M(t)/t = ν, and replacing M(T )
with K. Also, from Birkhoff’s ergodic theorem, we obtain

P(Y ≤ u) = lim
K→∞

1
K

K∑
k=1

1{Y (k) ≤ u}, a.s. (1.12)

P(Apeak ≤ u) = lim
K→∞

1
K

K∑
k=1

1{Apeak(k) ≤ u}, a.s. (1.13)
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By the definition of h(k), we have

h(k) =
∫ TD(k)

TD(k−1)
1{∆(t) ≤ d}dt

=
∫ TD(k)

TD(k−1)
1{Y (k − 1) + t− TD(k − 1) ≤ d}dt

=
∫ Apeak(k)

Y (k−1)
1{u ≤ d}du

=
∫ ∞

0
1{u ≤ d}1{Y (k − 1) ≤ u}1{Apeak(k) > u}du

=
∫ d

0
1{Y (k − 1) ≤ u}(1− 1{Apeak(k) ≤ u})du

=
∫ d

0
(1{Y (k − 1) ≤ u} − 1{Apeak(k) ≤ u})du. (1.14)

In the third step above, we have used change of variable and in the last step
we have used 1{Apeak(k) ≤ u} = 1{Y (k − 1) ≤ u}1{Apeak(k) ≤ u}. We sub-
stitute (1.14) in (1.11), use bounded convergence theorem, and obtain the final
result using (1.12) and (1.13).

Using the above result, the authors in (Inoue et al. 2019) derived Laplace-
Stieltjes transform of the distribution of AoI and thereby the moments of AoI
for several systems including FCFS GI/GI/1, non-preemptive LCFS, preemptive
LCFS, and the -/-/1/2* system with either exponential service or exponential
inter-arrival times (cf. Table II (Inoue et al. 2019)).

In the rest of the chapter, we primarily use the formula in Theorem 1.5. This
formula does not necessarily provide computational ease in deriving exact ex-
pressions when compared with that of the formula presented in Theorem 1.6.
Nevertheless, as we will see later, it does provide an approach to derive worst-case
performance guarantees for the upper bounds for the AoI violation probability.
Deriving these performance guarantees using the formula in Theorem 1.6 is not
known to us.

1.3 GI/GI/1/1

In a GI/GI/1/1 system, packet k is served upon its arrival, which implies TD(k) =
TA(k) +Xk. Further, the inter-departure time is given by TD(k)− TD(k − 1) =
Xk + Ik. We note that this relation is equally valid for the GI/GI/1/2* system.
Therefore, for both systems

ν = 1/(E[Xk] + E[Ik]). (1.15)
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In the following we compute Apeak(k) for a GI/GI/1/1 system.

Apeak(k) = TD(k)− TA(k − 1)
= TD(k)−TA(k)+TA(k)−TD(k−1)+TD(k−1)−TA(k−1)
= Xk + Ik +Xk−1. (1.16)

The following lemma immediately follows from the above analysis and Lemma 1.1.

lemma 1.7 In a GI/GI/1/1 system, given age limit d, for any sample path of
∆(t) the corresponding g(k) is given by

g(k) = min
{

(Xk−1 + Ik +Xk − d)+, Xk + Ik
}
,∀k (1.17)

We now provide a general expression for the violation probability in the fol-
lowing theorem.

theorem 1.8 Consider a GI/GI/1/1 system, assuming the AoI process is
stationary and ergodic, then for all d ≥ 0, λ > 0, and 0 < E[X] = 1

µ < ∞, the
violation probability, if exists, is given by:

P(∆ > d) = νE[g(k)], a.s.,

where g(k) is given by (1.17) and ν is given by (1.15).

Proof We note that the inter-arrival times {TA(k) − TA(k − 1), k ≥ 1} in a
GI/GI/1/1 system are i.i.d. To see this, the duration TA(k) − TA(k − 1) equals
the sum of inter-arrival times of all dropped packets and the packet k starting
from packet k−1, and only depends on the inter-arrival time and the service time
of packet k − 1. Therefore, the start of service of a packet is a renewal instant.
This implies Ik are i.i.d. which further implies that TD(k)− TD(k − 1) are i.i.d.
From (1.17) we infer that g(k) are identically distributed random variables, and
g(k + 2) is independent of the random variables {g(n), 1 ≤ n ≤ k} for all k.
Therefore, the sequence {g(k), k ≥ 1} is s.i.i.d. The result then follows from
Theorems 1.2 and 1.5.

Note that to compute the violation probability, we must compute E[g(k)]. In
the derivations that follow, we first compute the distribution of g(k) toward this
purpose. The following lemma presents a simplified expression for the distribu-
tion of g(k).

lemma 1.9 For a GI/GI/1/1 system,

P(g(k) > y) =
∫ d

0
P(Xk + Ik > y − x+ d)fX(x)dx

+
∫ ∞
d

P(Xk + Ik > y)fX(x)dx

Proof From (1.17), we have

P(g(k) > y) = P
(
min{(Xk−1 +Xk + Ik − d)+, Xk + Ik} > y

)
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= P (max{0, Xk−1 +Xk + Ik − d} > y,Xk + Ik > y)
= P ((y < 0, Xk + Ik > y) ∪ (Xk−1 +Xk + Ik − d > y,Xk + Ik > y))
= P (Xk−1 +Xk + Ik − d > y,Xk + Ik > y)

=
∫ ∞

0
P (Xk + Ik > y + d− x,Xk + Ik > y) fX(x)dx

=
∫ d

0
P (Xk + Ik > y − x+ d) fX(x)dx

+
∫ ∞
d

P(Xk + Ik > y)fX(x)dx.

Zero-wait policy
In a single-source-single-server queueing system using zero-wait policy, the source
generates a packet only when there is a departure. It is easy to see that the statis-
tics of the AoI process for this system will be same as that of GI/GI/1/1 when
the input rate approaches infinity. Therefore, the following theorem immediately
follows from Theorem 1.8, by substituting Ik = 0 as input rate is infinity.

theorem 1.10 For the system using zero-wait policy, the violation probability
is given by νE[g(k)], almost surely, where g(k) = min{(Xk−1 + Xk − d)+, Xk}
and ν = µ.

Since the AoI process is non-negative, the expected AoI for zero-wait policy is
given by

E[∆(t)] =
∫ ∞

0
νE[min{(Xk−1 +Xk − y)+, Xk}]dy.

Next, we derive exact expressions for AoI violation probability for the D/GI/1/1
and M/GI/1/1 systems.

1.3.1 D/GI/1/1: Exact Expressions

In a D/GI/1/1 system, the inter-arrival time is deterministic and is equal to
1
λ . Intuitively, in a D/GI/1/1 system, we only need to consider the rate region
λ ≥ 1

d as AoI cannot be less than 1
λ when the samples are generated at rate λ.

The following lemma asserts this intuition.

lemma 1.11 For the D/GI/1/1 system, given d ≥ 0 and λ > 0, the AoI
violation probability only exists for d ≥ 1

λ .

Proof We prove that P(∆ > d) does not exist when d < 1
λ . Consider the event

{∆(t) > d} at time t. If d < 1
λ , there will be time instances, say t̂, for which

there is no arrival in the interval [t̂ − d, t̂). This implies that at t̂ the receiver
cannot have a packet with arrival time greater than t̂ − d. Therefore, the event
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{∆(t̂) > d} is true for all such t̂. Let t̄ denote any time instance t 6= t̂, i.e., at t̄
there exists an arrival in the interval [t̄ − d, t̄). Since d < 1

λ , there can be only
one arrival in this interval. Therefore, for this case the event {∆(t̂) > d} is true
if either the server is busy, in which case the packet is dropped, or the departure
time of this packet exceeds t̄.

From the above analysis, we conclude that P(∆(t) > d) depends on the value
of t. Specifically, we infer that lim supt→∞ P(∆(t) > d) = 1, because the event
{∆(t̂) > d} is true for all t̂, which occur infinitely often as t goes to infinity.
Similarly, we infer that lim inft→∞ P(∆(t) > d) < 1, because the time instances
t̄ also occur infinitely often and at these time instances the occurrence of the
event {∆(t̄) > d} is uncertain. Since the limit supremum and limit infimum are
not equal P(∆ > d) = limt→∞ P(∆(t) > d) does not exist for d < 1

λ .

We now present a closed form expression for the violation probability in the
following theorem.

theorem 1.12 For a D/GI/1/1 system, given d ≥ 1
λ , λ > 0, and 0 < E[X] =

1
µ <∞, the violation probability is given by νE[g(k)], almost surely, where g(k)
is given by (1.17), ν = λ/E[dλXke] and Ik = dλXk−1e/λ−Xk−1.

Proof Using the results from Lemma 1.7 and Theorem 1.8, it is sufficient to
show that Ik = dλXk−1e

λ −Xk−1, which we argue to be true in the following. The
time difference between the arrival of packet k and packet (k − 1) is given by
dλXk−1e

λ . To see this, the service of packet k − 1 starts upon its arrival, i.e., at
TA(k − 1). During the service of packet k − 1 the packets that arrived would be
dropped and the packet that arrived immediately after TA(k−1)+Xk−1 is served.
The number of arrivals since TA(k−1) is given by dλXk−1e, and the time elapsed
is dλXk−1e

λ . This implies that the idle time Ik is given by dλXk−1e
λ −Xk−1.

In the following we compute the expression provided in Theorem 1.12 for
exponential-service-time distribution.

theorem 1.13 For a D/M/1/1 queue, given d ≥ 1
λ , λ > 0, and 0 < E[X] =

1
µ < ∞, the violation probability is given by νE[g(k)], almost surely, where ν =
λ(1− e−µ/λ) and

E[g(k)] = e−µ
dλde
λ

λ(1− e−µλ )
+ e−µ

bλdc
λ

[
dλde
λ
− d+ 1

µ

]
+ e−µd

µ

(
(e

µ
λ − 1)bλdc − 1

)
.
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Proof In the following we first derive E[dλXe].

E[dλXe] =
∫ ∞

0
dλxeµe−µxdx

=
∞∑
m=1

m

∫ m
λ

m−1
λ

µe−µxdx

= (eµ/λ − 1)
∞∑
m=1

m(e−µ/λ)m

= (eµ/λ − 1)e−µ/λ/(1− e−µ/λ)2 = 1/(1− e−µ/λ).

In the following we compute P(g(k) > y). Recall that Ik = dλXk−1e
λ − Xk−1

(Theorem 1.8). Using this and Lemma 1.9 we obtain

P(g(k) > y) =
∫ d

0
P
(
Xk + dλde

λ
− x > y + d− x

)
fX(x)dx

+
∫ ∞
d

P
(
Xk + dλde

λ
− x > y

)
fX(x)dx

=
∫ d

0
P
(
Xk > y + d− dλde

λ

)
fX(x)dx

+
∫ ∞
d

P
(
Xk > y + x− dλde

λ

)
fX(x)dx

= A+B

We compute the terms A and B2, and use E[g(k)] =
∫∞

0 P(g(k) > y)dy to obtain
the result.

1.3.2 M/GI/1/1: Exact Expressions

For M/GI/1/1 system, the authors in (Najm, Yates & Soljanin 2017) derived
expressions for the expected AoI and the expected peak AoI. For this system we
provide an expression for the violation probability of AoI.

theorem 1.14 For an M/GI/1/1 system, λ > 0, and 0 < E[X] = 1
µ <∞, the

violation probability, if exists, is given by νE[g(k)], almost surely, where g(k) is
given in (1.17), 1

ν = 1
λ + 1

µ , and Ik ∼ Exp(λ).

Proof The result follows from Theorem 1.8 and using the fact that in an
M/G/1/1 system Ik and the inter-arrival times are identically distributed.

For the special case of M/M/1/1, we have the following theorem.

theorem 1.15 For the M/M/1/1 system, λ > 0, and 0 < E[X] = 1
µ < ∞,

2 The computation of A and B is not shown here as it involves lengthy expressions and can
be referred from (Champati, Al-Zubaidy & Gross 2019b).



16 On the Distribution of AoI

the violation probability, if exists, is given by νE[g(k)], almost surely, where 1
ν =

1
λ + 1

µ , and

E[g(k)]=


µ2(e−λd−e−µd)

λ(µ−λ)2 + e−µd
(

1
λ + 1

µ −
λd
µ−λ

)
λ 6= µ,

µe−µd

2

(
d+ 2

µ

)2
λ = µ.

Proof Since Xk ∼ Exp(µ) and Ik ∼ Exp(λ), we have

P(Xk + Ik > y)=
{

µe−λ(y−x+d)−λe−µ(y−x+d)

µ−λ λ 6= µ,

(1 + µy)e−µy λ = µ.
(1.18)

In the following we compute the distribution of g(k) by substituting (1.18) in
P(g(k) > y) given in Lemma 1.9.

Case 1: µ 6= λ. For this case, we have

P(g(k) > y) =
∫ d

0

µe−λ(y−x+d) − λe−µ(y−x+d)

µ− λ
fX(x)dx

+ µe−λy − λe−µy

µ− λ

∫ ∞
d

fX(x)dx

= µe−µ(y+d)

µ− λ

[
µ(ed(λ−µ) − 1)

λ− µ
− λd

]
+ (µe−λy − λe−µy)e−µd

µ− λ
.

Integrating the above expression over y, we obtain the desired result.
Case 2: µ = λ. For this case, we have

P(g(k) > y) =
∫ d

0
(1 + µ(y − x+ d))e−µ(y−x+d)fX(x)dx

+
∫ ∞
d

(1 + µy)e−µyfX(x)dx

= µe−µ(y+d)
∫ d

0
(1 + µ(y − x+ d))dx+ (1 + µy)e−µ(y+d)

= µe−µ(y+d)
[
(1 + µ(y + d))d− µd2

2

]
+ (1 + µy)e−µ(y+d)

= µde−µ(y+d)
[
1 + µ

(
y + d

2

)]
+ (1 + µy)e−µ(y+d)

= (µd+ 1)(1 + µy)e−µ(y+d) + µ2d2

2 e−µ(y+d).

Therefore, integrating the above expression over y, we obtain

E[g(x)] = e−µd
[
(µd+ 1) 2

µ
+ µd2

2

]
= µe−µd

2

(
d+ 2

µ

)2
.
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In the following, we illustrate the computation of the distribution for the case
λ = µ using of the formula in Theorem 1.6. For this case, we have ν = µ

2 . The
system delay of packet k is equal to Xk, and therefore Yk = Xk for all k, and Y
has the same distribution as the service time. Recall that,Apeak

k = Xk−1+Ik+Xk.
Since Ik ∼ Exp(λ) and λ = µ, peak AoI has Erlang distribution with scale
parameter 3 and rate parameter µ. We have

P(∆ ≤ d) = ν

∫ d

0
(P(Y ≤ x)− P(Apeak ≤ x))dx

= µ

2

∫ d

0

(
1− e−µx − (1− e−µx − xe−µx − x2e−µx

2 )
)
dx

= µ

2

∫ d

0

(
xe−µx + x2e−µx

2

)
dx

= 1− µ2e−µd

4

(
d+ 2

µ

)2
.

In this case, the number of steps are less for computing the expression using the
above formula because the distribution of peak AoI is readily available. However,
in general, computing the distribution of peak AoI presents an additional step.

In the following theorem, we derive the violation probability for the system
with zero-wait policy and exponentially distributed service times.

theorem 1.16 For the system with zero-wait policy and exponentially dis-
tributed service times, the violation probability is given by

P(∆ > d) = (1 + µd)e−µd, a.s. (1.19)

Proof The result can be obtained from Theorem 1.15 by utilizing the fact that
the statistics of this system will be same as that for M/M/1/1 when λ approaches
infinity.

Interestingly, the distribution in (1.19) is gamma distribution with shape pa-
rameter 2 and scale parameter 1

µ . Further, the expected AoI in this case is 2
µ , a

result reported in (Kaul, Yates & Gruteser 2012, Costa et al. 2016).

1.4 Upper Bounds

As one can expect g(k) and TD(k) − TD(k − 1) depend on the idle time Ik and
waiting time Wk in the queuing system. Therefore, computing E[g(k)] and ν is
hard, in general, as the distributions of Ik and Wk become intractable for general
inter-arrival time and service-time distributions. To this end, in the following
theorem we present a result that is useful in deriving upper bounds for the
violation probability and only requires the AoI process to be stationary.
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theorem 1.17 If the AoI process is stationary, then

Eω

 lim
T→∞

1
T

M(T )∑
k=1

γ(ω,k)

≤P(∆>d)≤Eω

 lim
T→∞

1
T

M(T )∑
k=1

Γ(ω,k)

.
Proof Since ∆(t) is stationary, we have

P(∆(t) > d) = Eω[1{∆(ω, t) > d}], ∀t.

Therefore, for any t,

P(∆(t) > d) = lim
T→∞

1
T

∫ T

0
Eω[1{∆(ω, t) > d}]dt

= Eω

[
lim
T→∞

1
T

∫ T

0
1{∆(ω, t) > d}dt

]

= Eω

 lim
T→∞

1
T

M(T )∑
k=1

g(ω, k)

 . (1.20)

Second step above is due to the fact that indicator function is non-negative.
The third step is due to the fact that (1.7) is true for any ω. The result follows
from (1.20) and (1.2).

In terms of applicability, Theorem 1.17 is more general than Theorem 1.2 as
it does not require ergodicity of the AoI process. Following Theorem 1.17, we
strive to obtain upper bounds for the violation probability for GI/GI/1/1 and
GI/GI/1/2* systems by finding bounds for g(k).

In the following we establish a lower bound for g(k) that is applicable to any
single-source-single-server queueing system.

lemma 1.18 For a single-source-single-server queuing system, it is true that
g(k) ≥ γ∗(k), for all k, where

γ∗(k) = min{(Xk +Xk−1 + Ik − d)+, Xk + Ik}.

Proof For a single-server system it is easy to see that the inter-departure time
between information update packets is at least the service time of a packet and
idle time before its service started, i.e.,

TD(k)− TD(k − 1) ≥ Xk + Ik. (1.21)

From (1.3) we have

Apeak(k) = TD(k)− TA(k − 1)
≥ TD(k)− (TD(k − 1)−Xk−1)
≥ Xk + Ik +Xk−1

The second step is due to the fact that a packet departure time is at least equal
to its arrival time plus its service time. The last step is due to (1.21).
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We use the lower bound in Lemma 1.18 to analyse the performance of the upper
bounds derived for the AoI violation probability for GI/GI/1/1 and GI/GI/1/2*
systems. Nevertheless, this method is quite general and can be applied to other
queueing systems.

1.4.1 Upper Bound for the GI/GI/1/1 system

In this section, we provide an upper bound for the violation probability for the
GI/GI/1/1 system, and also analyse its performance. To this end, we first provide
an upper bound for g(k) in the following lemma.

lemma 1.19 For a GI/GI/1/1 system, g(k) ≤ Γ1(k) for all k, where

Γ1(k) = min
{

(Xk−1 + Žk +Xk − d)+, Xk + Žk

}
. (1.22)

Proof Recall that Žk is the inter-arrival time between packet k and its previous
arrival. Therefore, we have Ik ≤ Žk. The result follows from using this in (1.17).

Remark 1: In an M/G/1/1 system E[Γ1(k)] = E[g(k)], since for this system
both Ik and Žk have the same distribution Exp(λ). Thus, E[Γ1(k)] is a tight
upper bound for E[g(k)] for the GI/GI/1/1 system.

The following theorem presents an upper bound Φ1 for the violation probabil-
ity.

theorem 1.20 For a GI/GI/1/1 system, given d > 0, assuming that the AoI
process is stationary, the violation probability is bounded as follows:

P(∆ > d) = νE[γ∗(k)] ≤ Φ1,

where γ∗ is given by Lemma 1.18, and Φ1 = ν̂E[Γ1(k)], for some ν̂ ≥ ν, where
ν is given in (1.15).

Proof The equality follows from the fact that γ∗(k) is equal to g(k) given
in (1.17) for the GI/GI/1/1 system. It is easy to see that Γ1(k) are s.i.i.d.,
and as noted in the proof of Theorem 1.8, TD(k)−TD(k−1) are i.i.d. Therefore,
from Theorem 1.5 we infer that

lim
T→∞

1
T

K(T )∑
k=1

Γ1(k) = νE[Γ1(k)], a.s.

Using the above equation in Theorem 1.17, we obtain P(∆ > d) ≤ νE[Γ1(k)].
The result follows as ν̂ ≥ ν.

We define η below that will be used in describing the worst-case performance
of Φ1.

η ,
1
λ

+ 1
µ
− 1
ν
. (1.23)

In the following theorem we present a worst-case-performance guarantee for Φ1.
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theorem 1.21 For a GI/GI/1/1 system, for a given ν̂ ≥ ν, Φ1 has the fol-
lowing worst-case-performance guarantee .

Φ1 ≤
ν̂

ν
· P(∆ > d) + ν̂η.

Proof Noting that Ik ≤ Žk, we have

Γ1(k) = min
{

(Xk−1 + Žk +Xk − d)+, Xk + Žk

}
≤min

{
(Xk−1+Ik+Xk − d)+, Xk+Ik

}
+ (Žk−Ik)

≤ g(k) + (Žk − Ik).

Therefore, using Theorem 1.20, we obtain

Φ1 ≤ ν̂(E[g(k)] + E[Žk]− E[Ik])

= ν̂

ν
· P(∆(t) > d) + ν̂

(
1
λ

+ 1
µ
− 1
ν

)
.

In the last step above we have used Theorem 1.8 and (1.15).

From Theorem 1.21, we infer that if ν̂ = ν, i.e., the departure rate is given,
then Φ1 overestimates the violation probability by at most η. We note that
1
λ+ 1

µ ≥
1
ν , and the relation holds with equality for an M/GI/1/1 system. Further,

ν increases sub-linearly with λ in a GI/GI/1/1 system, in general. For example,
ν = λ(1−e−µ/λ) for the D/M/1/1 system (Theorem 1.13). Therefore, for a fixed
µ, η decreases with λ, in general. In other words, the derived upper bound is
tighter at higher utilization. Finally, the worst-case guarantee in Theorem 1.21
is provided for any d ≥ 0. Therefore, we expect that Φ1 may not be tight for
larger d values for which the violation probability takes smaller values.

We require to compute the value of expected idle time to obtain ν. When ν

is not tractable, we propose to use ν̂ = min{λ, µ}, a trivial upper bound on
the departure rate. We note however that the conclusion about tightness of the
upper bound at higher utilization may no longer be valid in this case.

Note that, by replacing Ik using an appropriate quantity one can obtain upper
bounds using the formula in Theorem 1.6, but obtaining performance guarantees
for those bounds is not straightforward and requires further study.

1.5 The GI/GI/1/2* System

The analysis of a GI/GI/1/2* system follows similar steps to the analysis we
have presented for the GI/GI/1/1 system. We first obtain expressions for Ik and
Apeak(k), and use them to obtain g(k).

In Figure 1.3, we present a possible sequence of arrivals (in blue) and depar-
tures (in red) in a GI/GI/1/2* system. Note that there are no arrivals during
the service of packet (k− 1). This happens only when Ẑk−1 > Wk−1 +Xk−1 and
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Figure 1.3 An example illustration of arrivals and departures in a GI/GI/1/2* system.

in this case, Ik = Ẑk−1 −Wk−1 −Xk−1. If Ẑk−1 ≤ Wk−1 + Xk−1, then Ik = 0.
Therefore, we have

Ik = (Ẑk−1 −Xk−1 −Wk−1)+. (1.24)

Recall that Apeak(k) = TD(k) − TA(k − 1). From Figure 1.3, it is easy to infer
that Apeak(k) = Xk+Xk−1 +Ik+Wk. The following lemma immediately follows
from the above analysis and Lemma 1.1.

lemma 1.22 Given d ≥ 0, for any sample path of ∆(t) in a GI/GI/1/2*
system, we have for all k,

g(k)=min
{

(Xk+Xk−1+Ik+Wk−1− d)+, Xk+Ik
}
. (1.25)

Unlike the case of the GI/GI/1/1 system, for the GI/GI/1/2* system it is hard
to derive a closed-form expression for the violation probability in terms of Xk,
Xk−1, Ik and Wk−1, because g(k), given in (1.25), does not satisfy the s.i.i.d.
property. Further, computing the violation probability requires the distributions
of both Ik and Wk−1. While these quantities can be computed for exponential
service or exponential inter-arrival times (cf. (Inoue et al. 2019)), they become
intractable for general inter-arrival and service-time distributions. To this end
we present upper bounds in the next section.

1.5.1 Upper Bound for the GI/GI/1/2* system

In this subsection we propose an upper bound for the violation probability and
analyse its worst-case performance.

lemma 1.23 For a GI/GI/1/2* system, g(k) ≤ Γ2(k) for all k, where

Γ2(k)=min{(Xk+Xk−1+Ẑk−1− d)+,Xk+(Ẑk−1−Xk−1)+}.

Proof Noting the expression for g(k) given in (1.25), it is sufficient to show
that Ik +Wk−1 ≤ Ẑk−1, and Ik ≤ (Ẑk−1−Xk−1)+. The latter inequality follows
from (1.24). The former inequality is obviously true if there are no arrivals during
the service of packet (k−1); see Figure 1.3. If there is an arrival during the service
of packet (k − 1), then Ik = 0. In this case Ik +Wk−1 = Wk−1 < Ẑk−1, since by
definition there should be no arrival after packet (k − 1) arrived and before its
service started.
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In the following theorem we present an upper bound Φ2 for the violation
probability.

theorem 1.24 For a GI/GI/1/2* system, assuming that the AoI process is
stationary, the violation probability is bounded by,

νE[γ∗(k)] ≤ P(∆ > d) ≤ Φ2,

where Φ2 = ν̂E[Γ2(k)], for some ν̂ ≥ ν.

Proof The proof follows similar steps to the proof of Theorem 1.20 and is omit-
ted.

A worst-case-performance guarantee for Φ2 is presented in the following the-
orem.

theorem 1.25 For the GI/GI/1/2* system, for a given ν̂ ≥ ν, Φ2 has the
following worst-case-performance guarantee.

Φ2 ≤
ν̂

ν
· P(∆ > d) + ν̂η.

Proof It is easy to show that Γ2(k) ≤ γ∗(k) + Ẑk−1 − Ik. The rest of the proof
follows similar steps as in the proof of Theorem 1.21 and is omitted.

Thus, Φ2 also overestimates the violation probability by at most η, if ν is
given. Therefore, given ν and for a fixed average service, Φ2 is tighter at higher
utilization. Since it is hard to compute ν, in general, in the numerical section we
compute Φ2 using ν̂ = min{λ, µ}.

Remark 2: For both GI/GI/1/1 and GI/GI/1/2* systems ν = 1/(E[Xk] +
E[Ik]), and g(k) for GI/GI/1/1 given by (1.17) seems to be closely related to
g(k) for GI/GI/1/2* given by (1.25). Also, one can expect that the idle time in
GI/GI/1/2* will be lower compared to that of GI/GI/1/1. However, for a given
d, a comparison between the violation probabilities in these systems is non-trivial
because of the waiting time in GI/GI/1/2* and higher idle time in GI/GI/1/1.

Remark 3: When the input rate approaches infinity, the inter-arrival time,
waiting time, and idle time approach zero. Therefore, the upper bounds Φ1,
Φ2, and the respective violation probabilities in GI/GI/1/1 and GI/GI/1/2*, all
converge to the violation probability in the system using zero-wait policy. Thus,
both Φ1 and Φ2 are asymptotically tight.

1.6 Numerical Results

In this section, we validate the proposed upper bounds against the violation prob-
ability obtained through simulation for selected service-time and inter-arrival-
time distributions. For all simulations we set µ = 1 and thus the utilization
increases with λ. We use λ = .45 and d = 5 as default values.

We first study the performance of Φ1 in comparison with overestimation factor
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Figure 1.4 Performance of Φ1 with varying λ, when ν is given, and µ = 1
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Figure 1.5 Performance of upper bounds with varying λ, d = 5, µ = 1, and shift equal
to 0.11 .

η, when ν is given. To this end we consider the D/M/1/1 system and compute
Φ1 by setting ν̂ = ν = λ(1 − e−µ/λ). In Figure 1.4, we plot Φ1 against the
exact value for the violation probability given in Theorem 1.13. Observe that the
gap between Φ1 and violation probability reduces as the arrival rate increases
confirming our initial conclusion that the bound is tighter at higher utilization.
Furthermore, Φ1 approaches the simulated violation probability asymptotically.
For d = 5 and λ = 0.4, we compute η to be 0.28, while the actual gap is 0.08.
For the same setting, but for d = 10, η remains the same while the actual gap
is 0.0012. This suggests that the proposed upper bound is much lower than the
worst-case-performance guarantee.

Next, we consider two example systems where exact expressions for the distri-
bution of AoI are hard to compute. For both systems, we use ν̂ = min(λ, µ) to
compute Φ1 and Φ2. In the first example system, we choose deterministic arrivals
and Shifted-Exponential (SE) service times, i.e., D/SE/1/1 and D/SE/1/2*. We
set values of d and λ such that d ≥ 1

λ , µ = 1 and shift parameter equal to
0.11. In Figures 1.5 and 1.6, we study the performance of the upper bounds,
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Figure 1.6 Performance of upper bounds with varying d, λ = .45, µ = 1, and shift
equal to 0.11.
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Figure 1.7 Performance of upper bounds with varying λ, Erlang shape parameter
equal to 2, d = 5, and µ = 1.

presented in Theorems 1.20 and 1.24, for varying arrival rate λ and varying age
limit d, respectively. From Figure 1.5, we again observe that the upper bounds
are tighter at higher utilization. For λ > 1 both upper bounds and the violation
probabilities converge to 0.029. Interestingly, in contrast to D/SE/1/1 where
the violation probability decreases with λ, D/SE/1/2* has minimum violation
probability of 0.026 at around λ = 0.6. From Figure 1.6, we observe that both
bounds are tighter at smaller d values. While the decay rate of Φ1 matches with
that of the simulated violation probability, Φ2 becomes loose as d increases. We
conjecture that this is due to the inequality Ik + Wk−1 ≤ Ẑk−1 that we use to
obtain this bound.

In Figures 1.7 and 1.8, we present a comparison for deterministic service and
Erlang distributed inter-arrival times, i.e., Er/D/1/1 and Er/D/1/2*. We first
note that for the parameter values chosen, Φ1 and Φ2 are equal in this case. From
Figure 1.7, we observe that the bounds are not tight at larger arrival rate. This
can be attributed to the use of ν̂ = min(λ, µ). From Figure 1.8, we observe that
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Figure 1.8 Performance of upper bounds with varying d, λ = .45, Erlang shape
parameter equal to 2, and µ = 1.

the decay rate of the bounds matches the decay rate of the violation probabilities.
Finally, it is worth noting that, the violation probability in -/-/1/2* is lower than
that in -/-/1/1 for the above example systems.

In conclusion, for the considered systems, the upper bounds are well within
an order of magnitude from the violation probability. For most cases the decay
rate of the proposed bounds follow the decay rate of the simulated violation
probability as d increases. Also, the performance of these upper bounds can
be improved further by finding non-trivial upper bounds for ν. Thus, we believe
that the proposed upper bounds can be useful as first-hand metrics for measuring
freshness of status updates in these systems.
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