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Abstract—Age of Information (AoI) has proven to be a useful
metric in networked systems where timely information updates
are of importance. Recently, minimizing the “average age” has
received considerable attention. However, various applications
pose stricter age requirements on the updates which demand
knowledge of the AoI distribution. In this work, we study the
distribution of the AoI and devise a problem of minimizing
the tail of the AoI distribution function with respect to the
frequency of generating information updates, i.e., the sampling
rate of monitoring a process, for the D/G/1 queue model under
FCFS queuing discipline. We argue that computing an exact
expression for the AoI distribution may not always be feasible.
Therefore, we opt for computing a bound on the tail of the
AoI distribution and use it to formulate a tractable α-relaxed
Upper Bound Minimization Problem (α-UBMP), where α > 1

is an approximation factor. This approximation can be used to
obtain “good” heuristic solutions. We demonstrate the efficacy
of our approach by solving α-UBMP for the D/M/1 queue. We
show, using simulation, that the rate solutions obtained are near
optimal for minimizing the tail of the AoI distribution.

I. INTRODUCTION

Providing real-time status updates is a key requirement for

many networked systems which support emerging time-critical

applications such as autonomous vehicle systems, automation

of manufacturing processes, sending phasor data updates to

a power grid system etc. In contrast to human-related data

applications, the freshness of the status updates is critical for

optimal control in these networked systems. In this respect, the

traditional goal of maximizing throughput becomes irrelevant

as the freshness of the status updates not only depends on

queueing and transmission delays in the network, but also on

the frequency of generating updates at the source. Recently,

the Age of Information (AoI), proposed in [1], has emerged

as a relevant metric in quantifying the freshness of the status

updates. It is defined as the time elapsed since the generation

of the latest status update received at the destination.

Since timely updates of status information is essential

for optimal control in the above systems, providing QoS

guarantees for AoI is of prime importance. Interestingly, in

contrast to delay which increases with update sampling rate,

AoI has the property that it increases at both high and low

sampling rates [2]. This property of AoI inspired several

theoretical works focusing on minimizing some function of

AoI for simple yet important system models. Following this

line of research, we consider a source-destination pair, where

the source samples a process of interest, and generates status

updates (packets) at a constant rate R. These packets are

queued in an infinite buffer and are served in a First-Come-

First-Serve (FCFS) fashion. We model this system using a

D/G/1 queuing system and study the problem of finding

an optimal sampling rate that minimizes the AoI violation

probability for a given age limit d.

In [2], the authors have addressed the minimization of

the time-average age for M/M/1, M/D/1 and D/M/1 queuing

systems. In [3], the authors optimized AoI for the M/M/1

queueing system with multiple sources. Optimal generation

rate was also studied in [4], [5] for a source that is constrained

by a time-varying energy process. In [6], the authors have

studied the problem of computing optimal arrival rate for

minimizing average peak age, proposed in [7], for a multi-

class M/G/1 system and proposed an approximate solution. In

contrast to previous works, the authors in [8], [9] considered

a general class of non-decreasing functions of AoI. While

optimal updating policies are studied in [8], optimal scheduling

policies in multi-hop networks are studied in [9]. In contrast

to the previous works, the authors in [10] have studied the

relation between the distributions of AoI, peak AoI and the

sojourn time, under FCFS discipline. However, they have not

presented a standalone expression for the distribution of AoI

and did not study the optimization of the sampling rate.

To the best of our knowledge, existing theoretical results

on optimizing AoI have focused mainly on some form of

“average age” function. In contrast, here we consider the AoI

distribution, more precisely, we evaluate the probability that

a given age limit d is violated. This metric represents for

instance a stochastic guarantee on the timeliness of the state

information regarding the process under observation. It can

thus be offered by a network as a QoS requirement to the

application. However, computing an exact expression for the

AoI violation probability is not straightforward. Therefore, we

resort to working with tractable upper bounds which facilitate

the computation of heuristic solutions.

The main contributions of this work are summarized below:

• We characterize, for the first time, the AoI distribution

for the D/G/1 queue. More precisely, we compute the

probability that a given age limit d is violated.

• We formulate the AoI violation probability minimization

problem P , and show that it is equivalent to minimizing

the violation probability of the departure instant of a

certain packet over the rate region [ 1d , µ), where µ is

the service rate. This in turn enables us to propose an



Upper Bound Minimization Problem (UBMP) which can

be used in finding a “good” heuristic solution for P .

• Noting that solving UBMP involves computation of a sum

of infinite terms which can be intractable, we propose

α-relaxed UBMP (α-UBMP) the solution of which has

α > 1 approximation ratio with respect to UBMP.

• We demonstrate the usefulness of α-UBMP by solving it

for the D/M/1 queue and show using simulation that the

rate solutions obtained are near optimal for P .

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a D/G/1 queuing system under FCFS schedul-

ing. A source generates packets (status updates) at a constant

rate R. Thus, R models the sampling rate of a process under

observation. Let T = 1
R denote the inter-arrival time between

any two packets. We index the packets by n ∈ {0, 1, 2 . . .}.

Let TA(n,R) = n
R denote the arrival instant of packet n

and TD(n,R) the corresponding departure instant. The service

time for packet n is given by a random variable Xn, where

{Xn, n ≥ 0} are i.i.d. with mean service rate µ = 1
E[Xn]

.

At the destination, we are interested in maintaining timely

state information of the process. We are thus interested in the

AoI metric, denoted by ∆(t, R), and is defined as:

∆(t, R) , t−max{TA(n,R) : TD(n,R) ≤ t}. (1)

For a given age limit requirement d > 0, in the following

we study the distribution of AoI by characterizing its violation

probability, i.e., P(∆(t, R) > d), both in the transient and

the steady state of the D/G/1 queue. Given the stochastic

characterization, we are furthermore interested in finding the

sampling rate R that minimizes the AoI violation probability.

Given d, we are thus interested in solving the following

problem P :
min
R

V (d,R),

where V (d,R) , limt→∞ P(∆(t, R) > d) is the steady state

AoI violation probability. Let R∗(d) and V (d,R∗) denote the

optimal rate and the optimal value, respectively, for P .

Henceforth, we drop R from the notation when it is obvious

from the context, for the sake of notation simplicity.

III. AOI VIOLATION PROBABILITY ANALYSIS

In this section, we study the distribution of the AoI for the

model described above. We start by investigating structural

characteristics of the stochastic behavior of AoI. In the fol-

lowing, we rehearse the max-plus representation of Reich’s

equation to model the evolution of the considered D/G/1

system. For any realization of the service times, the relation

between TD(n,R), TA(n,R) and {Xn}, is given by [11]:

TD(n,R) = max
0≤v≤n

{TA(n− v,R) +

v∑

i=0

Xn−i}. (2)

Consider the definition in (1), for ∆(t, R) not to exceed the

age limit d, the latest departure at t ≥ 0 must have arrived no

earlier than [t− d]+, since in our model, no arrival is allowed

before t = 0. Therefore, to study the distribution of ∆(t, R),
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Fig. 1: Time-line of events for Case 2 in Lemma 1 proof.

we tag the packet arriving on or immediately after t− d and

use it to characterize this process. Given rate R, let n̂R denote

the first arrival on or immediately after time t− d, given by

n̂R , ⌈R(t− d)⌉. (3)

In the following lemma we present a key insight regarding

the transient characterization of the AoI violation probability.

Lemma 1. Given a D/G/1 queuing system with arrival rate

R, age limit d, and t < ∞, if there exists n such that t− d ≤
n
R < t, then P{∆(t, R) > d} = P{TD(n̂R) > t}, otherwise,

P{∆(t, R) > d} = 1.

Proof. Let n∗
R is the latest packet departure at t, i.e., n∗

R =
argmaxn{TD(n,R) ≤ t}. Thus, ∆(t, R) = t− TA(n

∗
R).

Case 1: If an n such that t − d ≤ n
R < t does not exist,

i.e., there is no arrival during the time interval [t− d, t), then

the arrival time of n∗
R must be strictly less than t − d, i.e.,

TA(n
∗
R) < t− d. Therefore,

P (∆(t, R) > d) = P (t− TA(n
∗
R) > d) = 1.

Case 2: If there exists n such that t− d ≤ n
R < t, then t−

d ≤ n̂R

R < t, since n̂R is the first arrival on or after time t−d,

see Figure 1. In this case, we show that the event {∆(t, R) ≤
d} is equivalent to the event {TD(n̂R) ≤ t}. Suppose that

the event {∆(t, R) ≤ d} occurred, then TA(n
∗
R) ≥ t− d. By

definition of n̂R, we should have TA(n̂R) ≤ TA(n
∗
R) which

implies TD(n̂R) ≤ TD(n
∗
R) ≤ t, due to FCFS assumption.

Therefore, {∆(t, R) ≤ d} ⊆ {TD(n̂R) ≤ t}.

To prove equivalence of the two events, we show that the

relation above also holds the other way around. Suppose that

the event {TD(n̂R) ≤ t} occurred. Again, it should be true

that TA(n
∗
R) ≥ TA(n̂R). Otherwise, TD(n

∗
R) < TD(n̂R) ≤ t

which contradicts the definition of n∗
R. Therefore,

∆(t, R) = t− TA(n
∗
R) ≤ t− TA(n̂R) ≤ t− (t− d) = d.

This implies that {TD(n̂R) ≤ t} ⊆ {∆(t, R) ≤ d}. Therefore,

the equivalence holds and the result is proven.

Note that Case 1 in the above proof essentially represents

an undersampling of the process under observation, i.e., with

respect to the choice of d at the current point t the sampling

rate R is simply too low to maintain the target age limit.

We next present the steady state results for the D/G/1 system

based on the results obtained in Lemma 1.

Theorem 1. Given age limit d, the steady state distribution

of AoI for the D/G/1 queue is characterized as follows:



1) If R ≥ 1
d , then

lim
t→∞

P{∆(t, R) > d} = lim
t→∞

P{TD(n̂R) > t}. (4)

2) Else if R < 1
d , then

lim sup
t→∞

P{∆(t, R) > d} = 1,

lim inf
t→∞

P{∆(t, R) > d} = lim
t→∞

P{TD(n̂R) > t}.

Proof. For the two cases above consider the following:

Case 1 (R ≥ 1

d
): Since the samples are generated at a

constant rate, for R ≥ 1
d we claim that there exist an n such

that t − d ≤ n
R < t, for all t. We first prove this claim for

R > 1
d . We have

TA(n̂R) =
⌈R(t− d)⌉

R
≤

R(t− d) + 1

R
< t .

Furthermore, since t − d ≤ TA(n̂R) for any t by definition,

the claim holds at least for n̂R, for R > 1
d . To prove the claim

for R = 1
d , we consider

t− d ≤
n

R
< t ⇔

n

R
< t ≤ d+

n

R
⇔ n < Rt ≤ n+ 1.

Note that for any R and t there always exists an n such that

the last inequality above holds. Therefore, the claim is true

and Case 1 follows from Lemma 1 by letting t go to infinity.

Case 2 (R < 1

d
): In this case, the existence of n such that

t − d ≤ n
R < t depends on t. Again, using Lemma 1, for

all t where this condition is satisfied we have P{∆(t, R) >
d} = P{TD(n̂R) > t}. For all other values of t, we have

P{∆(t, R) > d} = 1. This implies that as t goes to infinity the

violation probability oscillates between P{TD(n̂R) > t} and

1. Thus, we obtain the limit supremum and the limit infimum.

Intuitively, given R, the support of the steady state AoI

distribution should be [ 1R ,∞), because AoI cannot be less than
1
R when the samples are generated at rate R. Not only The-

orem 1 asserts this intuitive reasoning, but also characterizes

the limit infimum and limit supremum for the region d < 1
R ,

where the AoI violation probability does not exist. Therefore,

to ensure the existence of the AoI violation probability we

consider the feasible rate region [ 1d , µ), where R < µ ensures

queue stability. In light of this, and using (4) from Theorem 1,

we formulate an equivalent problem P̃ as follows:

min
R

lim
t→∞

P(TD(n̂R) > t),

s.t.
1

d
≤ R < µ.

(5)

We next present the upper bound minimization problems.

IV. UPPER BOUND MINIMIZATION

In order to find a solution for P̃ , we must first evaluate

the probability P{TD(n̂R) > t}, where TD(n) is given by

(2). Note that TD(n) is random, since the service process

{Xn, n ≥ 0} is random, and is given in terms of the

maximum of n+1 random variables. Hence, obtaining an exact

expression is tedious. Therefore, we opt for a more tractable

approach by using probabilistic inequalities to obtain bounds

on the distribution of TD(n̂R). Consequently, we propose the

Upper Bound Minimization Problem (UBMP) and its more

computationally efficient counterpart α-relaxed UBMP (α-

UBMP) to obtain a near optimal solution for P̃ , where the

solution of α-UBMP has α-approximation ratio with respect

to UBMP.

A. A Bound for the Distribution of TD

As mentioned earlier, the evaluation of the distribution

function of TD(n) requires the computation of the distribution

of the maximum of random variables. Fortunately, there are

several approaches that have been used in the literature to

estimate this probability. One such approach approximates the

probability of the maximum by the maximum probability,

i.e., P{maxi Yi > y} ≈ max P{Yi > y}. However, this

approximation is not always accurate and in some cases may

result in very large deviation from the actual distribution.

Hence, it cannot be used when reliability of the solution must

be well defined as it is the case here. An alternative approach is

to use extreme value theorem. However, the obtained extreme

value distributions are not always tractable. A more promising

approach is to use Boole’s inequality, commonly known as the

“union bound,” where the probability of a union of events is

bounded by the sum of their probabilities. The bound obtained

in our case is not only tractable, but is also arguably tight.

In the following lemma, we present this upper bound for the

distribution function limt→∞ P{TD(n̂R) > t}.

Lemma 2. Given d and the corresponding n̂R as defined in

(3), then

lim
t→∞

P(TD(n̂R) > t) ≤

∞∑

v=0

Φ(v,R),

where

Φ(v,R) , P

{
v∑

i=0

Xn̂R−i > d+
v − 1

R

}

. (6)

Proof. Using (2), we have

P{TD(n̂R)>t} = P

{

max
0≤v≤n̂R

(

TA(n̂R − v)+

v∑

i=0

Xn̂R−i

)

>t

}

≤

n̂R∑

v=0

P

{
v∑

i=0

Xn̂R−i > t−
n̂R − v

R

}

≤

n̂R∑

v=0

P

{
v∑

i=0

Xn̂R−i > t−
R(t− d) + 1− v

R

}

=

n̂R∑

v=0

P

{
v∑

i=0

Xn̂R−i > d+
v − 1

R

}

︸ ︷︷ ︸

,Φ(v,R)

.

Above we first applied the union bound (step 2) and then used

n̂R = ⌈R(t− d)⌉ ≤ R(t− d) + 1 (step 3). The result follows

by noting that n̂R goes to infinity as t goes to infinity.



B. UBMP Formulation

Using (5) and Lemma 2 we propose the following UBMP

problem.

min
R

∞∑

v=0

Φ(v,R)

s.t.
1

d
≤ R < µ .

(7)

It is worth noting that the function Φ(0, R) is non-increasing

in R while the functions {Φ(v,R) : v > 1} are non-decreasing

in R. This indicates that, for any service time distribution, the

objective function of UBMP will have a global minimum for

R in the interval [ 1d , µ).
A shortcoming of UBMP is that its objective function

involves computation of sum of infinite terms and each term

requires computation of the distribution of sum of service

times. We will see later, even for the D/M/1 queue computing

these terms quickly become intractable as v increases. To this

end, we resort to solving α-UBMP which is described next.

C. α-UBMP Formulation

For any α > 1, α-UBMP computes only the first Kα terms

of
∑∞

v=0 Φ(v,R), where Kα is chosen such that the resulting

sum is at most α times
∑∞

v=0 Φ(v,R). Given R, d, µ and α,

parameter Kα is defined as the minimum K that satisfies

∞∑

v=0

Φ(v,R) ≤ α

K−1∑

v=0

Φ(v,R). (8)

Then, α-UBMP is defined as follows:

min
R

Kα−1∑

v=0

Φ(v,R)

s.t.
1

d
≤ R < µ .

(9)

We refer to
∑Kα−1

v=0 Φ(v,R) as the α-relaxed upper bound.

Let R̂α(d) denote an optimal solution for α-UBMP.

To compute such Kα we first find an upper bound for
∑∞

v=K Φ(v,R) which is accomplished by using Chernoff’s

bound. We demonstrate this by solving α-UBMP for the

D/M/1 queue in the following section.

V. RATE OPTIMIZATION FOR THE D/M/1 QUEUE

In this section, we consider a system with exponentially

distributed service time with rate µ, i.e., Xn ∼ exp(µ). This

results in the D/M/1 queuing model. In this special case,

Φ(v,R) is the distribution function of a sum of v + 1 i.i.d.

exponential random variables, which is given by a gamma

distribution with scale parameter v + 1 and rate parameter µ.

Therefore,

Φ(v,R) =
Γ(v + 1, µ(d+ (v − 1)/R))

v!
, (10)

where Γ(x, a) is the upper incomplete gamma function:

Γ(x, a) =

∫ ∞

a

yx−1e−ydy.

Interestingly, UBMP is a convex optimization problem for

the D/M/1 queue which is stated in the following theorem.

Theorem 2. For the D/M/1 queue, the UBMP is a convex

optimization problem with respect to 1
R .

Note that Φ(1, R) is insensitive to R. For all other v 6= 1,

we prove that Φ(v,R) given in (10) is strictly convex with

respect to 1
R . The complete proof is given in Appendix A.

Despite proving the convexity of UBMP, we face the

following issues in solving it. We are unable to compute the

optimal R using the KKT conditions as it involves solving a set

of complex equations containing sums of infinite terms. We

may use efficient convex optimization algorithms. However,

this requires computing Φ(v,R) for all v values, and both the

upper incomplete gamma function and v! become computa-

tionally prohibitive as v becomes large. Thus, we resort to

solving α-UBMP approximation that was formulated in (9).

As noted before, α-UBMP requires computing the param-

eter Kα. To do that, we need to find the minimum K that

satisfies (8). To this end, we first present an upper bound for
∑∞

v=K Φ(v,R) which is stated in the following lemma:

Lemma 3. For K ≥ 0, we have

∞∑

v=K

Φ(v,R) ≤ min
0<s<µ

e−s(d+(K−1)/R)

(1− s/µ)K(1− s/µ− e−s/R)
. (11)

The proof is given in Appendix B.

The following corollary characterizes Kα for the D/M/1

system using the bound given by Lemma 3.

Corollary 1. Given R, d, µ, and α, Kα is the minimum K
value that satisfies

K−1∑

v=0

Φ(v,R) ≥ min
0<s<µ

1

α− 1
.

e−s(d+(K−1)/R)

(1 − s/µ)K(1 − s/µ− e−s/R)
.

(12)

The proof of the corollary is given in Appendix C.

Given α, we compute Kα numerically using the condition

in Corollary 1. Since Kα varies with R, d and µ, we simply

choose the maximum Kα that satisfies (12) for the given set of

R, d and µ. From Theorem 2, we infer that α-UBMP is also

a convex optimization problem with respect to 1
R . Therefore,

we use Newton’s method to compute the optimal R̂α(d).

VI. NUMERICAL EVALUATION

In this section, we evaluate the performance of α-UBMP so-

lutions for the D/M/1 queue. We first study the tightness

of the α-relaxed upper bound in comparison to the AoI

violation probability V (d,R) obtained from simulations. We

then evaluate the quality of numerically computed solution

R̂α(d) by comparing the simulation-based estimates V (d, R̂α)
against V (d,R∗). The numerics are done by MATLAB while

the simulations are implemented in C. We use the following

default parameters: µ = 1.5, R = 1, d = 10 and α = 1.01.
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1) Tightness of the α-Relaxed Upper Bound: In Figure 2,

we present different α-relaxed upper bounds in comparison

with the AoI violation probability by varying age limit d. We

observe that the bounds are within an order of magnitude

and become tighter as α approaches 1. Another important

observation is that the decay rates of the upper bounds are

equal and follow the decay rate of V (d,R). We note that the

corresponding Kα values are chosen such that condition (12)

is satisfied for all d ∈ {2, 4, 6, 8, 10}, R = 1 and µ = 1.5.

In Figure 3, we compare the 5-relaxed upper bound with

V (d,R) by varying R. Clearly, both the upper bound and

V (d,R) have convex nature and a global minimum in the

interval [ 1d , µ). Observe that the upper bound follows the

trend of V (d,R) and only deviates at high sampling rates.

This is an interesting property as it suggests that a rate that

minimizes the upper bound also minimizes V (d,R). Here

K5 = 170, which is again the value that satisfies (12) for

all R ∈ {.2, .3, . . . , 1.3}, d = 10 and µ = 1.5. We couldn’t

present results for α < 5, because this requires the use of

larger Kα values and MATLAB couldn’t compute the α-

relaxed upper bound. The Kα values here are large due to

the R value 1.3 which is close to µ. Fortunately, below we

show that computing R̂α(d) does not require large Kα values

as it turns out the value of R̂α(d) is typically not close to µ.

2) Quality of Heuristic Solution R̂α(d): In Figure 4, we

compare V (d, R̂α) with V (d,R∗) for different α values and

varying age limit d. Note that the difference between V (d, R̂α)
and V (d,R∗) is negligible. This suggests that the solutions of

α-UBMP are near optimal for P . Also, we note that solving

α-UBMP for α = 1.01 and α = 1.25 results in exact same

solution. This can be attributed to the equal decay rate of α-

relaxed upper bounds for different α as observed in Figure 2.

This further suggests that we do not need to solve α-UBMP

for α close to 1 in order to find a good heuristic solution.

Also note that the values K1.01 = 28 and K1.25 = 15 are

smaller compared to K5 value for Figure 3, because these are
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Fig. 3: Tightness of the α-relaxed upper bound with varying

R. µ = 1.5 packets/ms, K5 = 170 and d = 10 ms.
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Fig. 4: Quality of α-UBMP solutions for varying d. µ = 1.5
packets/ms, K1.01 = 28 and K1.25 = 15.

evaluated at R̂α(d) which does not fall near µ.

Finally, in Figure 5, we compare V (d, R̂α) with V (d,R∗)
for different age limits and varying service rate µ. Again, we

notice negligible difference between the two. Therefore, we

conclude that solutions to α-UBMP are near optimal for P
for the D/M/1 queue.

We note that unlike the time-average age objective, which is

minimized at .515 utilization factor for the D/M/1 queue [2],

R∗(d) and in turn the utilization factor that minimizes AoI

violation probability depends on age limit d. For a com-

parison, in Figure 4 the optimal rates are found to be

{.7, .6, .567, .525, .5, .267} and the corresponding utilization

factors are {.46, .4, .378, .35, .33, .178}.

VII. CONCLUSION AND FUTURE WORK

We characterize the distribution of the age of informa-

tion (AoI) for the D/G/1 queue and discovered some of its

important structural properties. We then use this knowledge

to formulate an optimization problem P to find the optimal
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Fig. 5: Quality of α-UBMP solutions for varying µ. d = 10
ms and K1.25 = 15.

information update rate which minimizes the probability that

AoI violates a given age limit d. Furthermore, we show that

P is equivalent to the problem of minimizing the violation

probability of the departure time of a tagged arrival n̂R over

the rate region [ 1d , µ). Noting that finding an exact expression

for the distribution of the departure time process may not be

possible, we propose an upper bound minimization problem,

UBMP, and its more computationally tractable version α-

UBMP, which results in heuristic solutions. We solve α-

UBMP for the D/M/1 queue and the numerical results suggest

that the rate solutions of α-UBMP are near optimal for P .

For future work, we are investigating the extension of our

results to stochastic arrivals. We are also studying the com-

putational complexity for solving α-UBMP and investigating

more efficient solution methods, i.e., by identifying the range

of α for which a good heuristic solution for P can be obtained.
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APPENDIX

A. Proof of Theorem 2

Recall that T = 1
R . We prove that

∂2Φ(v,T )
∂T 2 > 0 for v 6= 1.

Let z = d+ T (v − 1). We have

∂Φ(v, T )

∂T
= −µv+1(v − 1)zve−µz/v!

⇒
∂2Φ(v, T )

∂T 2
= −µv+1(v − 1)2zv−1e−µz(v − µz)/v!.

To prove the result it is sufficient to prove that v − µz < 0.

Since µ
R = µT > 1 and d > 1

R = T , we have

v − µz = v(1 − µT )− µ(d− T ) < 0.

B. Proof of Lemma 3

From (6), we have

Φ(v,R) ≤ P

{
v∑

i=0

Xn−i > d+
v − 1

R

}

≤ min
s>0

e−s(d+(v−1)/R)
E[es(

∑v
i=0

Xn−i)]

≤ min
s>0

e−s(d+(v−1)/R)(E[esXn ])v+1

≤ min
0<s<µ

e−s(d+(v−1)/R)

(1− s/µ)v+1
. (13)

In the second step we used Chernoff bound and the fact that
1
R ≤ d. In step three we used that the {Xn} are i.i.d. while

step four uses the characteristic function of exponential service

with rate µ. Using (13) in the summation we obtain

∞∑

v=K

Φ(v,R) ≤

∞∑

v=K

min
0<s<µ

e−s(d+(v−1)/R)

(1 − s/µ)v+1

≤ min
0<s<µ

e−s(d−1/R)

1− s/µ

∞∑

v=K

(
e−s/R

1− s/µ

)v

= min
0<s<µ

e−s(d+(K−1)/R)

(1− s/µ)K(1− s/µ− e−s/R)
.

In the above step we have used the fact that, for R < µ there

exists an s such that e−s/R

1−s/µ < 1. This can be quickly verified

by showing that there exists an s such that logarithm of the

fraction, given by −s/R − log(1 − s/µ) is negative. To see

this, note that for small s, log(1 − s/µ) can be accurately

approximated by −s
µ . Therefore, for R < µ, we can always

find s close to 0 such that −s/R− log(1− s/µ) is negative.

C. Proof of Corollary 1

We show that if Kα satisfies (12), then it satisfies (8).

∞∑

v=0

Φ(v,R) ≤

Kα−1∑

v=0

Φ(v,R) +

∞∑

v=Kα

Φ(v,R)

≤

Kα−1∑

v=0

Φ(v,R) + min
0<s<µ

e−s(d+(Kα−1)/R)

(1− s/µ)Kα (1− s/µ− e−s/R)

≤ α

Kα−1∑

v=0

Φ(v,R).

In the second step above we have used Lemma 3.


