Causality-driven RL-based Scheduling Policies for
Diverse Delay Constraints

Dibbendu Roy
Department of Electrical Engineering
Indian Institute of Technology
Indore, India
droy @iiti.ac.in

Abstract—We investigate the role of causal models in the
context of obtaining scheduling policies that minimize delay
violations. We consider multi-user queuing systems with random
delay constraints, packet sizes and arrivals in Gilbert-Elliot
wireless channels. Owing to Judea Pearl’s landmark work on
causality to achieve a higher level of cognitive ability, we
demonstrate the role of counterfactual reasoning, leading to
the well-investigated optimal EDF policy for wired channels.
Due to the randomness associated with the wireless channels,
finding an optimal policy is not straightforward, leading to RL-
based approaches. We present CPPO (counterfactual-PPO) and
CA2C (counterfactual-A2C) algorithms that use counterfactual
examples generated using causal models during the training
process. We argue how stochastic gradient based policy gradient
RL algorithms benefit during training due to incorporation of
counterfactuals. We show that these algorithms provably lead to
lower variance indicating a robust learning performance. Qur
results demonstrate a ~ 60% increase in the number of cases
where CA2C and CPPO outperform their non-counterfactual
counterparts with reduced variance and negligible computation
overhead.

Index Terms—Counterfactuals, Causality, Reinforcement
Learning, Diverse delay constraints, Scheduling policies

I. INTRODUCTION

The rapid evolution of networks heralds a new era in
telecommunications, marked by unprecedented diversity in
application requirements and network conditions [1]. These
networks are expected to support a wide array of services, from
high-definition video streaming and augmented reality to criti-
cal applications such as autonomous driving and telemedicine.
Consequently, network schedulers must manage packets with
varying sizes and deadlines, ensuring efficient and timely data
delivery in an automated fashion. This requires development
of advanced scheduling policies capable of meeting stringent
and diverse delay constraints that adapt to fluctuating network
conditions [2].

Scheduling policies with delay deadlines have been ex-
tensively studied in the context of wired networks. Earliest
Deadline First (EDF) is a well-established optimal schedul-
ing policy for such systems under certain conditions, as it
minimizes maximum lateness and is theoretically proven to
be optimal for preemptive tasks with dynamic arrival times
[3]. However, extending these concepts to general wireless
settings introduces significant challenges due to the inherent

James Gross
ISE Division
KTH Royal Institute of Technology
Stockholm, Sweden
jamesgr @kth.se

randomness in arrivals and variability of wireless channels [2],
[4]. Evidently, finding an optimal scheduling policy with delay
deadlines involves solving a Markov Decision Process (MDP)
or employing Reinforcement Learning (RL) techniques, both
of which are computationally complex [4], [5].

Recent advances in artificial intelligence (Al), particularly in
the realm of causal reasoning, offer promising avenues for ad-
dressing these challenges. Pearl’s causal hierarchy [6] formal-
izes reasoning about causality into three levels—association
(observing correlations as performed by current ML/DL
models), intervention (understanding effects of actions), and
counterfactuals (imagining alternative realities)—providing a
structured framework to infer causation from data and guide
decision-making. Leveraging these insights, we explore the
potential of causal models in developing effective scheduling
policies for wireless queueing systems.

Our investigation focuses on the application of causal in-
ference to obtain scheduling policies to minimize expected
delay violations in wireless channels. We show that arguments
from causal inference that rely on counterfactuals lead us
to the optimal EDF policy in wired networks, providing
a solid foundation for extending this approach to wireless
environments. However, the stochastic nature of wireless chan-
nels necessitates the adoption of reinforcement learning (RL)
techniques to discover optimal policies. To use causal settings,
we resort to the widely popular Gilbert-Elliot [7] channel
modeling for wireless channels. We briefly present the relevant
works in the areas of delay deadline-based scheduling and use
of the causal techniques in reinforcement learning.

A. Related Works

Although the problem of scheduling with delay constraints
is a widely investigated topic, recent approaches resort to
formulating MDPs that suits the RL framework for obtaining
automated policies [2], [4], [8], [9]. However, these works are
not devoid of assumptions which defeats the goal of agnostic
automated decision making. Ref. [8] assumes the cumulative
distribution function (CDF) of channels for users are known
constructs a CDF based scheduling policy for hard-deadline
and soft-deadline cases. [4] considers a multi-hop network
and formulates an MDP with the objective of maximizing
the throughput of packets that do not violate their deadlines



(termed timely throughput) to find routing, scheduling and
power allocation policy. They show that under peak average
power constraints, several dependencies in the model are
relaxed leading to an LP based optimal policy while such
guarantees are not available for other cases. [9] considers a
WirelessHart based network control system and formulates an
MDP to optimize delay violation probability using throughput
as an upper bound. The authors in [2] propose a new Deep
RL architecture to optimize the throughput subject to average
resource constraints. The model considers each user to have
homogeneous delay.

Incorporating causality in RL paradigms has gained recent
popularity, specifically in terms of theoretical possibilities.
Recent approaches [10]-[12] extend multi-armed bandit al-
gorithms to their causal counterparts. However, these works
are limited to interventions (level 2 in causal hierarchy). [13]
developed the concept of counterfactual (level 3 in causal
hierarchy) reasoning in RL and proposes offline counterfactual
policy evaluation strategies for improved performance. Al-
though these works have promising theoretical underpinnings,
they fall short on extending the causal framework to the online
RL settings such as actor-critic (A2C) and proximal-policy
optimization (PPO) [14] algorithms.

B. Contributions

In this paper, we present how a queuing system can be
modeled as a causal graph without presumptions on arrival and
service processes, with random delay deadlines. We formulate
our scheduling problem with the objective of minimizing delay
violations and construct a corresponding MDP for the same.
Further, we show how counterfactual arguments are relevant
in justifying the optimality of EDF policies in wired systems.
We then extend our model to wireless settings with help
of Gilbert-Elliot model and indicate why a simple policy
such as EDF is not optimal. Motivated by this, we introduce
novel causality-driven RL algorithms based on policy gradi-
ent techniques: Counterfactual Proximal Policy Optimization
(CPPO) and (CA2C). We introduce an advantage term in
the optimization update, computed using counterfactuals from
the causal model. We show that the advantage term does
not introduce bias in the gradient estimates. At the same
time, under certain assumptions, it should lead to reduction
in variance, thereby exploiting the utility of the causal model.
The results demonstrate a significant gain in the percentage of
successful packet transmissions without violating their delay
constraints compared to the existing state of the art techniques,
at the cost of minor computation overhead.

II. MODEL DESCRIPTION

We consider a simple single-server queuing system where
packets arrive following a random arrival process. Each packet
has a random delay deadline and the server must try to serve
as many packets without violating the deadlines. Whenever
the server is empty and the queue is non-empty, it faces a
decision regarding which packet to serve from the queue at that

moment in time. Such sequential decision making problems
are typically solved in an RL framework.

A. System Model and MDP formulation

1) States: Let us denote the state of the queuing system at
tj by Qy,, that contains packets P;. The number of packets
in the queue at t; is given by the cardinality |Q;,|. Each
packet is characterized by its arrival time T}, its size S,
and its delay constraint Df. These can be treated as random
variables generated from random processes A(t), S(t) and
De<(t) denoting the arrival process, service process and a
deadline generating process respectively. These processes are
assumed to be independent and stationary. ¢, can then be
described as a collection of tuples Q;, = {P; = (T}, S, D5) |
i=1,2,...,|Q4l}

2) Decisions/Actions: Given a state, the server decides
which packet to serve, denoted by the action variable a;; =14
if the packet P; € Q¢ is chosen to be served. We consider
a non-preemptive server here i.e. once an action is taken, the
next action is not taken until the completion of service of the
chosen packet.

3) State Transition: Given a current state and action, the
next state will not contain the packet chosen by the current
action while new packets will be included that arrived by fol-
lowing A(t) during the service time of the chosen action. Thus,
we can compute the state Q¢ , from Qy,, a;; with stochastic-
ities due to A(t),S(t) and D°(t). As computing Q;,,, does
not require the information of states or actions previous to (),
the environment is therefore completely described just by the
single step transition probabilities P(Q,,,|Q:,,a:,). Hence,
the system follows the Markov property, justifying an MDP
formulation.

4) Reward: After every action, the system evolves to a
new state and a reward is computed for reaching this state.
Since we want to maximize the number of packets that do
not violate their delay bounds, we define the reward as 1 if
delay of the leaving packet is within its deadline, else zero.
To realize this mathematically we compute the delay for a
packet P; € Qy,,, N Qy,, D; =t; +S;/C — T;*, where C is
the serving speed (fixed for wired scenarios). If 1 denotes an
indicator function, the reward is:

Ri,(a,) = 1(D;, > D) (1)

5) Policy: A policy 7 = {ay;, j = 1,2,...K} is a
sequence of actions corresponding to its states where K
denotes the horizon of an episode. Thus, it can be defined as
a function of state that generates an action i.e. 7(Q¢;) = ay,.
This is the case if the policy is deterministic. For a more
general definition, it is defined as a probability distribution of
possible actions given a state i.e. 7(- | Qy;).

6) Value Function and Optimal Policy: The value function
of a state in a MDP is defined as the cumulative reward that
may be achieved in an episode by starting from the concerned



state and following a policy 7. Thus, the value function may
be defined as:

tj+K
| Y Ri|Qu, | =Ry, +PTVL() (@
tj|jeEN
where the term  PTV.(.) represents the sum
Z,-,P(Qtj,’c)tj,mcztj)) Va(Qu,). An optimal policy

7" maps every state to an optimal action a;, that maximizes
the value function for every state.

B. Causal Model for Queuing Systems

As described in [6], a structural causal model (SCM) is
represented with help of a graph whose vertices depict random
variables and edges represent the dependencies among them.
If X — Y, it implies that Y is a direct cause of X and
hence is a parent of Y. The dependency between them can
be modeled as a function Y = f(X) + Uy. The variable Uy
can be conceived as source noise, also termed as exogenous
(out of the system) variables while the observed variables (
X, Y in this context) are endogenous. When SCM for a system
is known, [6] shows that one can compute interventions and
counterfactuals (alternate realities) by following abduction,
action and prediction steps on the SCM. The SCM for a
queuing system can be construed as follows:

1) Wired Systems: Fig.l1 shows the causal model of a
queuing system that works at constant rate (representing wired
link). Since packets are generated as discussed in Section
II-A1, the queue is always governed by the random processes
A(t),S(t) and D°(t) as shown in Fig.1(a). The dotted lines
indicate that they are exogenous variables since the system is
oblivious of the generating processes while the queues, actions
and rewards are endogenous as they are observable. The next
queue states ()¢, , directly depends on the current action ay,
and state Q)y;, and the new arrivals which are generated by
the random processes. Each action leads to the departure of a
packet which generates a delay based on its size and serving
rate, say C bits/sec. Once an action is decided, the reward can
be computed using (1).

2) Wireless Systems: We extend the model for a wireless
system with multiple users. The controller maintains separate
buffers for each user having different channel conditions
and can decide on which packet to serve given the channel
condition and other QoS requirements. Fig.1(b) shows the
resulting causal model with aggregated queue and action states
for all users. Time is assumed to be slotted (¢; is replaced by
slot 7). We employ the classical 2-state Gilbert-Elliot Model,
[7] where the channel is either in a good state or a bad one,
based on which the service rates change for each user.

III. COUNTERFACTUAL POLICY DESIGN

A. Policy design for Wired Systems

Given the system model, we present the following theorem
using counterfactual arguments.

Theorem 1. The optimal policy for the formulated MDP is
given by:

If Df — D; > 0 for some P; € (¢, then

1*(Qt,) = argmin (D + T;") (Earliest Deadline First)
i|DE=D;>0

Otherwise,
ﬂ*(Qtj) == (Z)

Proof. Given an action ag;, for policy m, the first term of the
value function is deterministic (since Q¢; is also given). The
rest of the terms depend on the random nature of new arrivals,
their sizes/service times, and their delay constraints.

a1 = (DC > ‘Dat +1)

125 = D)

= P(D, S Dat +1)

Ry

[J+1:

Thus, the terms of expected reward are probabilities that the
packets at future queue states do not violate the delay bounds
and it is our objective to maximize this. To prove that the
mentioned policy is optimal, we consider the following cases.

Case 1: If Df — D; > 0 for some P; € Q¢,. This implies
there are some packets that can be served without violating the
delay bound. Consider two policies, one of which follows EDF
denoted by 7* and let 7*(Q;,) = 4 (packet index). The other
policy 7 also follows EDF except at t;, where m(Qt,;) = k.
Since R7r =1, R” = R{ . If we followed =, then P; €
Qtj 1 The intuition here is that had we not scheduled P, it
is always more likely that its delay will be violated at any
later schedule (counterfactual argument) and hence there is
a higher probability of delay violation at @y, ,,! € N ie.,
Pr(D§ < D;) > P (Dj, < Di) = Eri[Ry,,,] > Ex[Ry,,,]
where j + [ represents a future time index by which both ¢
and k are served following either policy.

To show this, by our choice of 7*, we should have

DS+ T8 < DS + T

= P, (tj S’“; >DC+T“>
> Pr- (tj+5i+3’“>Dz+T,?> 3)

= PW(DZ‘ > D;) > P« (Dk > D;) for t > tj

Since, for all other time indices, EDF is followed and
the distributions A(t), S(t), D¢(t) are identical, the expected
rewards should not differ. As & was chosen arbitrarily, we
have that E.-[R;,,,] > E[R;,,,] and we can also run an
induction on this for subsequent time steps whenever EDF is
not followed. As this is true for any time step following ¢;,
adding the reward terms can only increase the value function
and not reduce it. Thus, V- < V.

Case 2: In this case, none of the packets can satisfy the
delay bounds and the reward R;; cannot improve by selecting
any packet. Therefore, serving any of the packets in the buffer



G}/ Gilbert-Elliot Model
J

Ajy1, Sj, D;‘+1
|
A4

Qj+1

GIHY

(b)

Fig. 1: (a) The figure on the left is the causal graph for a queuing system with fixed serving speed. (b) A possible causal graph
for a wireless scenario. C' denotes the channel state. The subscript j corresponds to a time slot. The scheduling decision a;
at time slot j depends on both the queue state and the channel state. The transition process of the channel between C; and

Cj+1 is a 2-state Gilbert-Elliot Markov Model [7].

will increase the probability of violation of packets arriving in
the future which leads to lower future rewards. |

It is also important to note the importance of the constant
service rate C. If the service rate C' changes for the packets
with time, a fixed term will not be added to ¢; to account for
the service times under the two policies and hence (3) cannot
be guaranteed. Therefore, we try to employ RL techniques for
scheduling in wireless channels.

B. RL Algorithms using Counterfactuals

Recent advancements in RL have demonstrated considerable
performance improvements by employing policy gradient tech-
niques [15]. The policy 7(a|s), is parameterized as m(als, 0),
where 0 represents the parameter (maybe implemented as a
neural network), a represents the action and s represents the
state. If Q, (s, a) represents the g-value and V,, (s) represent
the value of a state as defined in (2) (considering now that the
policy is parameterized with the parameter 6, [16] (Chapter
13) presents the policy update equation as:

01 =0+ Z R, [Vinm(als;, 0;)] “)
t

where s; is the state at time ¢ and a; is the corresponding
action sampled at time ¢. The hat represents a learned ap-
proximation to the actual g-value. This method (known as
REINFORCE) forms the basis of most modern RL algorithms
such as proximal policy optimization (PPO) and advantage
actor-critic (A2C) models [17].

Even though we have an understanding of the causal model
as described in Section II-B2, and we may compute counter-
factuals given a policy’s outcomes, it is not evident how to
use the same for training purposes. This is more so because
the counterfactuals do not give entire trajectories as following
a policy would. Each counterfactual is a possible deviation
branch for the observed policy. Let A; = a; denote the action
implemented due to policy 7y while af denote an action which
was not implemented. We compute the counterfactual reward
R¢ = R(af) using steps in [6]: Given that R(a;) is known, we
should go back to compute the exogenous variables that affect
the parents of the variable we wish to change (abduction).
Then using the values of the exogenous variables, we perform

an intervention on action A4; = af by disconnecting it from
its parents (Q and C) (action) which yields the desired value
(prediction). We have the following lemma due to the causal
graph Fig.1(b).

Lemma 1. If the random variables S j>o, DS ;- and Cj j>0
are independent and identically distributed, then so are ; and
R;.

Proof. Due to the channel condition at C;, the service rate
can be represented as a deterministic function of C; = L(C}).
Rj = 1(Dg, > Dao;) = (D3, > tj + Sa;/L(Ca;)). When
R; is given, it implies that ¢; time has already been spent
and is known. Hence, RS = ]l(Dg? 2 Dge) = 1(Dge 2
tj 4 Sac/L(Cas)|t;). Since each term in R is independeljn to

¢
7

the corresponding term of R;, we have the lemma. |

While the independence assumption can be understood
(each user is independently generating its packets), they might
not be identical as they are being generated from different
users. However, across the packets of the same user, the
assumption should hold.

Let us consider a modified version of the algorithm
8%

N 1 ~
5 Zt:[Rt — W;Rﬂ [VIn7(als:, 0)] (5)

gt

01 =06, +

We show that due to the lemma, we may be able to reduce
the variance of the gradient estimate in (5). Usually, this
is termed as baseline b(s;) which is subtracted from R; to
reduce variance (chapter 13 [16]). However, we consider the
counterfactual term along with the existing baseline used for
policy gradients. In PPO and A2C, the baselines are the
estimated values of a state obtained by using a value network
called the critic V() while the policy network (7 (als, 8)) is
called the actor. In these methods both the actor and critic are
learnt during the training process.

Proposition 1. Introducing the counterfactual rewards in the
gradient yields an unbiased gradient estimate with reduced
variance.

Proof. We have, E,, {% >, [Rt — AT Lae I%f} gt}



LY 2R - iy S, B2 gl

Do LRt - ﬁ Yo Rf} gt} , where a € A represents
any action from the set of all actions. Note that we can
invariably set R; = 0 for actions which are invalid. Since
the sum is over all possible actions, the term is indepen-
dent of action a. We need bother only about E., > Rfg:
as the rest of the terms are same as the original gradient
in (4). Thus, E,, {Za Rf’gt} =Y. Rg Yow (a5, 0)g;.
Since, Y, m(a'lst,0)g: = 0 (. g+ is a score function
(161, (18], have that Ex, |15, [Re — g S | 0] =

Er, [Et Rtgt} .

As shown in , computing the variance reduces

[18]
. A\ 2 ~
to computing E {(Rt — AT Lae Rg) } = E[R?Y] +

WE[(ZM R¢)?| = ﬁE {(]%02] The cross terms vanish
due to independence from Lemma 1. The second equality is
due to independence (cross terms of the sum for counterfac-
tuals vanish) and imposing Lemma 1. |

Algorithm 1: Collect Rollouts for CA2C and CPPO

Input: Environment env, Policy g
Output: Rollout buffer R

Initialize rollout buffer R;

Observe state s;;

Sample action a; ~ my(als);

Execute action a; in the environment;

Observe reward R; and next state s;41;

Store (sg, at, Ry, $¢+1) in R;

for each counterfactual action af € A\ {a;} do
Compute a; to obtain counterfactual reward Ry;
Store (s¢,af, Rf) in R;

end

return R;

Based on the developed gradient update, we present the
algorithm for training in case of policy gradient based algo-
rithms. Two popular algorithms are A2C and PPO. We state
the changes to be performed on the existing implementation
available using stable_baselines3 [14] to obtain their coun-
terfactual versions (CA2C and CPPO). As shown in 1, we
compute and collect the counterfactual states and rewards in
the rollout buffer by the abduction, action and predicton steps
as entailed in [6]. As shown in Algorithm 2, the adjustment
in the temporal difference error is presented in the advantage
computation step which is then used in the training process for
the stochastic gradient update. The advantage has the intuitive
interpretation that it computes the importance of the current
action with respect to the average counterfactual return. If the
average counterfactual reward is greater than the reward from
the current action, the direction of the gradient switches from
positive to negative. The following section presents our results
on employing the developed algorithm.

Algorithm 2: Compute Advantages for CA2C and
CPPO
Input: Rollout buffer R, Value function V
Output: Updated rollout buffer with advantages

for each step t in R do
Compute TD error:

0r = Ry + vV (se11) — Vis(se)

Compute averaged counterfactual reward:
_ 1
Rf = — Rf
t | .A| %; t
Compute adjusted advantage:

Ay =0 — R

Store A; in R;
end

IV. RESULTS AND DISCUSSIONS

We illustrate the performance of the proposed algo-
rithms CPPO and CA2C and compare them with their non-
counterfactual versions.

A. Setup

We use simpy [19] which is a python-based discrete event
simulator to simulate the queuing system. As discussed in
Section III-B, we customize our environment to use sta-
ble_baselines3 implementations of PPO and A2C. The param-
eters for the setup are provided in Table I. The parameters
ensure that the queue sizes do not blow up, thereby ensuring
stability. Both the action and state spaces are bounded by the
buffer sizes. For each packet in the buffer, we define the state
as a 4-tuple containing 1) the remaining time to bound 2)
number of slots required to serve the packet at current time 3)
current time slot 4) channel condition. It is important to note
that the channel condition for each user is different but the
packets of the same user will have identical conditions.

Since the action space is discrete, only few of the stable
baseline algorithms support out of the box namely DQN,
A2C and PPO, wherein, DQN is an off-policy algorithm
which learns the optimal policy (target) from a different policy
(behavorial policy) used for collecting the experiences. On
the contrary, A2C and PPO are on-policy algorithms that
scouts the optimal policy using stochastic gradient ascent
while collecting experiences.!

B. Learning Performance of CPPO and CA2C

Fig.2 shows the first 100 and 400 epochs or episodes of
the different RL algorithms, where each episode consists of
1000 action steps (packet departures). We define a successful
packet transmission, if it departs without violating its delay
constraint. The mean % of successful packets is plotted in

Implementation is available at https://github.com/dibbend8/CausalRL.git



TABLE I: Values of chosen parameters for the simulation setup

Parameter | Value || Parameter [ Value
Queuing Parameters
x Buffer
# Users 2 Size/User 10
Mean Packet 1500 Min Packet
. . 0.25u
Size p bytes Size
Max packet ) Minimum 1 ms
size H Delay bound
Maximum .
Delay Bound 5 ms Slot duration 1 ms
.. . 120
Minimum 30 pack- Maximum ack-
arrival rate ets/sec arrival rate p
ets/sec
Service rate 100 Service rate
(Good) Mbps (Bad) >0 Mbps
Po1 0.5 P10 0.5
Learning Parameters
Learning rate 0.001 Discount factor 0.99
o ¥
Number of 10 Rolloqt buffer 2048
epochs size
Minibatch size 64 Policy network | ¢\ ¢
architecture
Value.network 64 x 64 Optimizer Adam
architecture

* Unless otherwise specified

bold while the shaded areas represent the deviations around
the mean generated by repeating the experiments with five
different seeds. Fig.2 (a) shows that CA2C and A2C have a
similar convergence rate of almost 20 episodes while CPPO
converges faster than PPO with higher % success. Both per-
form significantly better than an off-policy like DQN. Further,
2 (b) exhibits a long-run improvement of CA2C over A2C as
the blue lines peak over the green ones.

TABLE II: Variance of Rewards and Computation Times for
Different RL Techniques

Variance of | Time/Episode Success
Method % Success (s) (X >Y)
CA2C 5.279 0.94
A2C 10.416 0.79 57.45%
CPPO 1.174 1.61
PPO 6.299 0.65 62.95%
DOQN 3.937 0.49

To investigate this further, Table II shows the variance
for the employed methods, the average training time per
episode and the percentage of episodes where the success of
an algorithm is higher than other. As expected, the variance
reduces which shows the robustness of the developed coun-
terfactual algorithms. The variance reduction is significantly
higher in case of CPPO possibly due to the fact that PPO
uses a minibatch training process compared to A2C and the

100 -

95 1

90 -

85

80

%Success

751
—— CA2C Mean %Success

CPPO Mean %Success
—— A2C Mean %Success
—— PPO Mean %Success
—— DQN Mean %Success

70+

65 1

60 1

o 20 40 60 80 100 120
Episode

(a)

100 -

95 1

90 1

T ey i
H|
i

.{."‘A “W " Jd
\ u‘mdlnw?l‘
o | \ / t,i‘,w ﬂwylv

80

%Success

75 1
—— CA2C Mean %Success

CPPO Mean %Success
—— A2C Mean %Success
—— PPO Mean %Success
—— DQN Mean %Success

70+

65

60 1

[ 100 200 300 400
Episode

(b)

Fig. 2: Performance of training with various RL methods using
Stable Baselines3 for (a) 100 episodes and (b) 400 episodes

same might be the reason for an increased training time per
episode required for counterfactual computations in CPPO
compared to CA2C. The last column shows that there is
~ 60% gain in terms of number of episodes where CA2C
and CPPO outperforms A2C and PPO respectively. Although
the 1s additional computation time for CPPO might appear as
a significant overhead, considering the number of episodes for
it to converge (~ 80), the computation time for convergence
(128s) is similar to that of PPO (130s for ~ 180 episodes)
with significantly reduced variance.

C. Performance comparison of policies

Table III shows the comparison w.r.t percentage of packets
served without delay violations. Evidently, the counterfactual
versions marginally outperform their counterparts while EDF
fails drastically as it does not adapt to channel conditions.

TABLE III: Average Success Rates on testing different policies

CA2C | A2C | CPPO | PPO | DQN | EDF
% Success 97 95 93 90 85 51

D. Performance with varying number of users

Fig.3 shows the training performance when the number of
users is increased in multiples of two while the service rates
are increased proportionately (else, queues will be unstable).



100 4
95 4
90 4
8 85
o
a 80 - Method and User Count
N 754 —— CA2C User 2
—— CPPO User 2
70 —— CA2C User 4
—— CPPO User 4
65 - —— CA2C User 8
—— CPPO User 8
60, : ; - T T
1] 20 40 60 80 100

Episode

Fig. 3: Training performance with varying number of users

Method and Channel Condition
—— CA2C (0.2, 0.9)

70 - { CPPO (0.2, 0.9)

i CA2C (0.5, 0.5)

CPPO (0.5, 0.5)

CAZC (6.9, 6.2)

CPPO (0.9, 0.2)

% Success

60 -

T T T T T T T
o 50 100 150 200 250 300 350
Episode

Fig. 4: Training performance with varying channel conditions

Clearly, CA2C outperforms CPPO in all scenarios. However, a
decrement in the success percentage is observed with increase
in the number of users. This shows an inability of the policy
to scale with number of users. It is important to note that each
user brings in more heterogeneity in the traffic since the arrival
rates for the users are randomly allocated in the model which
is pragmatic if all users have different service requirements.
Since the traffic pattern is not a part of our state, this might
cause the model to fail with scale in users.

E. Performance with varying channel conditions

Fig.4 shows the training performance under different chan-
nel conditions. The tuple represents (pg1, p1o) values. We take
high low combinations to understand if the model adapts to
varying channel conditions. As expected, when the transition
probability from bad to good channel is high compared to
good to bad transitions, the success probability is initially high
since the service rate is high and vice-versa. However, with
episodes, they converge appropriately.

V. CONCLUSIONS

This paper explores the importance of causal models in
scheduling for wireless networks. We demonstrate how these
models can assist in deriving scheduling policies aimed at

minimizing delay violations in wired networks. Using coun-
terfactuals, we establish that EDF is the optimal policy, which
leads us to explore the potential of causal models for wireless
channels. We develop a causal model for wireless channels and
propose counterfactual-based policy gradient algorithms with
proven performance improvement guarantees. Our findings
indicate a substantial reduction in training time and variance,
offering a robust learning framework. However, we also note
that the learned policies do not scale well with an increasing
number of users, necessitating further investigation.

REFERENCES

[1] H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjoland, and
F. Tufvesson, “6g wireless systems: Vision, requirements, challenges,
insights, and opportunities,” Proceedings of the IEEE, vol. 109, no. 7,
pp- 1166-1199, 2021.

[2] P. Hu, Y. Chen, L. Pan, Z. Fang, F. Xiao, and L. Huang, “Multi-

user delay-constrained scheduling with deep recurrent reinforcement

learning,” IEEE/ACM Transactions on Networking, vol. 32, no. 3,

pp. 2344-2359, 2024.

S. Shakkottai and R. Srikant, “Scheduling real-time traffic with deadlines

over a wireless channel,” in Proceedings of the 2nd ACM international

workshop on Wireless mobile multimedia, pp. 3542, 1999.

R. Singh and P. Kumar, “Throughput optimal decentralized scheduling

of multihop networks with end-to-end deadline constraints: Unreliable

links,” IEEE Transactions on Automatic Control, vol. 64, no. 1, pp. 127-

142, 2018.

P. Nuggehalli, V. Srinivasan, and R. Rao, “Energy efficient transmission

scheduling for delay constrained wireless networks,” IEEE Transactions

on Wireless Communications, vol. 5, no. 3, pp. 531-539, 2006.

[6] J. Pearl, “Causal inference in statistics: An overview,” Statistics Surveys,
vol. 3, no. none, pp. 96 — 146, 2009.

[7]1 E. N. Gilbert, “Capacity of a burst-noise channel,” Bell system technical
Journal, vol. 39, no. 5, pp. 1253-1265, 1960.

[8] P. C. Nguyen and B. D. Rao, “Delay control for cdf scheduling with
deadlines,” in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 3103-3107, IEEE, 2015.

[91 S. Zoppi, J. P. Champati, J. Gross, and W. Kellerer, “Dynamic schedul-
ing for delay-critical packets in a networked control system using
wirelesshart,” in ICC 2020-2020 IEEE International Conference on
Communications (ICC), pp. 1-7, IEEE, 2020.

[10] E. Bareinboim, A. Forney, and J. Pearl, “Bandits with unobserved
confounders: A causal approach,” Advances in Neural Information
Processing Systems, vol. 28, 2015.

[11] F. Lattimore, T. Lattimore, and M. D. Reid, “Causal bandits: Learning
good interventions via causal inference,” Advances in neural information
processing systems, vol. 29, 2016.

[12] Y. Lu, A. Meisami, and A. Tewari, “Causal markov decision
processes: Learning good interventions efficiently,” arXiv preprint
arXiv:2102.07663, 2021.

[13] L. Buesing, T. Weber, Y. Zwols, S. Racaniere, A. Guez, J.-B. Lespiau,
and N. Heess, “Woulda, coulda, shoulda: Counterfactually-guided policy
search,” arXiv preprint arXiv:1811.06272, 2018.

3

=

[4

=

[5

=

[14] “Welcome to stable baselines docs! - rl Dbaselines made
easy — stable Dbaselines 2.10.3a0 documentation.”  https:
//stable-baselines.readthedocs.io/en/master/. (Accessed on 07/25/2024).

[15] “Vanilla policy gradient — spinning up documentation.” https://
spinningup.openai.com/en/latest/algorithms/vpg.html.  (Accessed on
07/25/2024).

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘“Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[18] “Going deeper into reinforcement learning: Fundamentals of pol-
icy gradients.” https://danieltakeshi.github.io/2017/03/28/going-deeper-
into-reinforcement-learning- fundamentals-of-policy-gradients/.  (Ac-
cessed on 07/18/2024).

[19] “Overview — simpy 4.1.1 documentation.” https://simpy.readthedocs.io/
en/latest/. (Accessed on 07/26/2024).



