
CLEAVE: Scalable and Edge-Native Benchmarking of
Networked Control Systems

Manuel Olguín Muñoz
molguin@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Neelabhro Roy
nroy@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

James Gross
jamesgr@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

ABSTRACT
As the number of cyber-physical systems rises, it becomes increas-
ingly crucial to study Networked Control Systems (NCSs) com-
bining control communication co-design. This nature of NCSs has
led to task-specific approaches to research, creating a dearth of
generalizable, repeatable, and scalable experimentation. Further,
with the advent of edge computing solutions, it is of paramount
importance to explore its relevance in such applications. In this
work, we present CLEAVE, a novel, completely software-based
framework for repeatable and scalable experimentation in edge
native NCSs. Our approach is based on the emulation of physical
plants communicating over a real network with software-based con-
trollers. CLEAVE is designed and built for the edge, using Python3
and with full compatibility with industry-standard containeriza-
tion solutions. Although designed for single-loop emulations, the
flexibility afforded by the aforementioned characteristics allow our
framework to be adapted to a multitude of complex scenarios.

We validate CLEAVE using an initial implementation of an in-
verted pendulumNCS. Our results showcase the utility of the tool as
a repeatable, extensible, and scalable solution to NCS performance
evaluation and benchmarking on the Edge.

CCS CONCEPTS
• Networks → Network experimentation; Network performance
analysis; • General and reference→ Empirical studies; Measure-
ment; Experimentation; Evaluation; Performance; • Computer
systems organization → Sensors and actuators; Robotic con-
trol; Cloud computing; Client-server architectures.

ACM Reference Format:
Manuel Olguín Muñoz, Neelabhro Roy, and James Gross. 2022. CLEAVE:
Scalable and Edge-Native Benchmarking of Networked Control Systems.
In 5th International Workshop on Edge Systems, Analytics and Networking
(EdgeSys’22), April 5–8, 2022, RENNES, France. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3517206.3526272

1 INTRODUCTION
The number and applications of Cyber-Physical Systems (CPSs) [1]
— i.e. systems in which a real, physical mechanism is controlled by
a computer — have exploded in recent years. However, this rapid

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EdgeSys’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9253-2/22/04.
https://doi.org/10.1145/3517206.3526272

increase in adoption has mostly been limited to industrial contexts.
Although CPSs present huge opportunities for all facets of soci-
ety, they have yet to reach our daily lives in any relevant scale
due to their stringent operational requirements. This is about to
change, however, as with the advent of novel wireless communica-
tion technologies as well as networking paradigms, such as cellular
5G and edge computing [2], consumer-grade CPSs will be made
possible. These technologies meet two key requirements of CPSs:
real-time capabilities (through extremely low end-to-end latencies),
and context- and locality-awareness, and will most likely become
the backbone of CPS in the future.

Networked Control Systems (NCSs) [3], a type of CPS wherein
multiple networked actuators and sensors form a part of the same
automatic control system will benefit from the adoption of these
technologies. Depending on the physical system being controlled,
NCSs can have stringent timing and reliability requirements for
communication that conventional cloud paradigms and cellular
networks cannot meet [4]. This necessitates sophisticated tools for
the performance evaluation of future system architectures, as well
as novel NCS design paradigm.

One the one hand, related literature in NCSs leverages to a large
extent theoretical models, at the price of being able to capture net-
worked systems effects only on a coarse level. On the other, there
exist several approaches when considering experimental method-
ologies. One such approach uses setups in which the complete
system is built on top of real hardware. This approach is employed
in the works of Baumann et al. [5] and Cuenca et al. [6]; in both of
these, the authors implement their approach on physical testbeds.
Conversely, other studies choose to instead use completely simu-
lated NCS setups. The authors in [7] have opted for such an ap-
proach. These studies often employ combinations of physical and
network simulation tools trying to capture the complex dynamics
of NCSs. Finally, some experimental studies instead employ vir-
tualized approaches, in which either (1) a real network interacts
with a simulated or emulated control system [8]; or (2) a simulated
network interacts with a real control system [9].

As evidenced above, experimental research in NCSs includes var-
ied heterogeneous hardware and software platforms, methodologies
and key performance indicators. This, in turn, leads to hardware,
software, and methodology fragmentation, as different studies tend
to prefer approaches more favored in their respective communities.
Furthermore, existing studies tend to focus on individual aspects
and components of a system, thus producing results which do not
provide a complete image of the NCS. This has caused a gap in
knowledge pertaining to the reproducibility and comparison of
experimental studies on these systems.

https://doi.org/10.1145/3517206.3526272
https://doi.org/10.1145/3517206.3526272


EdgeSys’22, April 5–8, 2022, RENNES, France Olguín Muñoz et al.

State

Raw actuation values

ControllerUsed to
update

Actuated
Variables

Raw sampled
valuesSensed Variables

Processed actuation
values

(e.g. noisy).
Actuators

Processed sampled values
(e.g. noisy)
Sensors

Sent over
network

Figure 1: Structure of an emulated Networked Control System in CLEAVE.

Zoppi et al. [10] made the first (and to the best of our knowledge,
the only) attempt at tackling this challenge in their work. In their
work, they proposed a platform called NCSBench, to be used for
reproducible benchmarking in NCS. Their methodology utilizes
joint knowledge of control, computation, and communication. In
their work various architectural elements and the corresponding
delays associated with the NCS are modelled. Multiple experimen-
tal parameters and certain observable key performance indicators
are defined and utilized in the implementation. This work however
utilizes a physical LEGO® Mindstorms EV3 Core Set™ based plant
for the implementation, preventing instantaneous changes in plant
characteristics and component parametrizations. Furthermore, rely-
ing on physical objects like an inverted pendulum limits scalability
of the experimentation in practice.

We overcome this issue by proposing a completely virtual plant
allowing for unparalleled flexibility in changing the plant model
and characteristic features of the experiments. In this paper, we
present the first fully-software-based framework for scalable and
repeatable benchmarking of edge-native NCS. As edge computing
begins being adopted by industry, more and more variations have
begun to appear in literature. “Near”, “far”, “core”, and “telco” edge
describe variations of the original concept and are becoming ubiq-
uitous in new research. While the core idea of edge computing
is widely accepted as fundamental for pervasive NCSs in general,
understanding the strengths and weaknesses of such different edge
concepts is of paramount importance.

Our framework, ControL bEnchmArking serVice on the Edge
(CLEAVE), aims to simplify the repeatable and scalable benchmark-
ing of such systems. It is fully virtualized, inspired by our previous
work on benchmarking human-in-the-loop applications on the
edge [11]. The tool consists of a benchmarking framework and
software development kit for the development of emulated physical
systems and softwarized controllers. These virtual NCSs can then
be deployed on real networks for reparametrizable, repeatable, and
reproducible benchmarking of the complete system.

CLEAVE is built using Python 3.8, making it highly extensible
and able to harness the multitude of already existing user libraries.
It is furthermore compatible with container technologies such as
Docker1, making it suitable for automated deployment, scaling, and
benchmarking on industry-standard edge setups using container
orchestration solutions.

The rest of this paper is structured as follows. Section 2 presents
the design principles and implementation of the framework. In
Section 3, we present a use case scenario which validates the utility,

1Docker Engine: https://www.docker.com/

flexibility, and repeatability of CLEAVE. Finally, in Section 4 we
conclude this work.

2 THE CLEAVE FRAMEWORK
In this section, we detail our CLEAVE framework for the perfor-
mance evaluation of Networked Control Systems, with an emphasis
on edge deployments. Our design follows a virtualized emulation ap-
proach; providing a framework for the real-time emulation of phys-
ical control systems and the easy implementation of softwarized
controllers interacting with real networks. CLEAVE is thus a plat-
form with an easy-to-use Application Programming Interface (API)
on which a multitude of NCS types can be emulated. This allows for
great flexibility, as the core components of the NCS can be switched
out while maintaining the realism of the network, the most complex
and limiting component of edge NCSs.

The framework is distributed as free and open-source software
through the GitHub organization of the KTH ExPECA research
group2. We also plan to provide a library of NCS implementations,
making the tool even more accessible.

2.1 Design and Implementation
The design of CLEAVE attempts to target a broad a set of different
control systems as possible, and tries to minimize the number of
assumptions made about the systems implemented on top of the
framework. These are:

(1) Controllers can be stateful or stateless, but they exclusively
control a single plant.

(2) Plants and controllers interact in a “request-response” man-
ner. We currently don’t support setups in which the con-
troller generates an actuation command without there first
being a request from the plant.

(3) Controller and plant communicate over a TCP/IP network.
(4) The physical state behavior of the plant can be implemented

in a discrete-time manner.
(5) Values associated to sensors and actuators can be represented

as integers, floating point numbers, booleans, or sequences
of bytes.

(6) A plant has zero or more sensors attached to it, with poten-
tially different sampling rates.

(7) A plant has zero or more actuators attached to it.
Figure 1 shows an overview of the conceptual structure and

operation of CLEAVE. The State implements the discrete-time be-
havior of the Plant. At the beginning of each time-step, actuated

2https://github.com/KTH-EXPECA/CLEAVE

https://www.docker.com/
https://github.com/KTH-EXPECA/CLEAVE


CLEAVE EdgeSys’22, April 5–8, 2022, RENNES, France

variables in the State are updated with values obtained from the
Actuator objects. Conversely, at the end of each time-step, sensed
variables are sampled and used to update values associated with
Sensor objects. These values are processed at the Sensors (e.g. to add
noise) before being sent over the network to the Controller. The
Controller calculates actuation values and updates the Actuators
over the network. Finally, theActuators process the actuation values
and hold the results until they are read at the next time-step.

Implementation-wise, CLEAVE is built on top of thewell-established
and stable Twisted3 asynchronous programming and networking
framework. The aforementioned core components (State, Controller,
Sensors, andActuators) are provided as Abstract Base Classes (ABCs)
with core functionality that users must extend for their specific use
cases and NCSs. The framework makes no assumptions about the
inner workings of the user implementations of these classes other
than the interfaces they expose. Users are therefore free to imple-
ment arbitrarily complex functionality in these components. On
the other hand, CLEAVE handles network communication and met-
ric collection autonomously; users only need to select the desired
transport protocol (we do however provide an API for extending
the available transports).

Below we present a brief overview of the design and implemen-
tation of the core components.

State Base Class: ABC with an abstract method advance()
which must be extended with the implementation of discrete-time
emulation of the plant. The advance() method is called by the
framework periodically according to the configured emulation up-
date rate, and should perform a single time-step of the discrete-time
emulation. Two optionally extensible methods, initialize() and
shutdown() are provided to implement single-fire set-up and tear-
down procedures.

Controller BaseClass: Defines a single abstractmethod process(),
taking a mapping of names to values corresponding to the sensed
variables of the State, and returning a similar mapping correspond-
ing to the actuated variables. This method is called by CLEAVE in
an event-based manner whenever samples are received from the
plant side; however, we intend to extend this to time-interval-based
approaches.

Sensor Base Class: Implements processing of monitored stated
variables before sending them over the network to the Controller.
This base class must be initialized with a property name (corre-
sponding to the monitored State attribute) and a sampling rate in
Hz, and provides an abstract method process_sample() which
must be extended with an implementation of the processing per-
formed on each sample.

Actuator Base Class: Performs the processing of actuation val-
ues obtained over the network from the Controller. It is initialized
with a property name corresponding to the name of the actuated
State attribute, and provides two abstract methods which must be
implemented by extending classes: (1) set_value(), called by the
framework whenever a new value for the corresponding actuated
attribute is received; and (2) get_actuation(), called on every
time-step and must return a value to apply to the actuated attribute.

3https://twistedmatrix.com

Figure 2: The 2D inverted pendulum system.

2.2 Configuring and Executing an NCS
Once the core components for the emulation have been defined and
implemented, they need to be registered with the framework. This
is done through Python scripts which define a number of required
(and some optional) top-level variables, corresponding to emula-
tion parameters such as the State, Controller, Sensor, and Actuator
subclasses to use; the emulation update rate; the controller-side
host and address; data output directories; et cetera. These Python
configuration files are then provided as arguments to the cleave
command line provided by the framework. CLEAVE imports and
parses them, and then sets up and executes the emulation.

Although the core design of CLEAVE follows a single-loop ap-
proach, multi-loop scenarios can be easily implemented through
the combination of multiple CLEAVE instances. The framework
does not make any assumptions about the individual components
other than the signatures of methods on the ABCs that must be
extended and implemented. Combined with the Python emulation
configuration scripts, this makes development of more complex
scenarios merely a matter of implementing the desired functionality
within the framework itself.

2.3 Current Implementations
For the purpose of this work, we have used CLEAVE to implement
an emulated inverted pendulum control loop (see Figure 2), the goal
of which is to balance the vertically free-swinging pendulum by
applying horizontal forces on the cart. We have chosen this system
as an initial benchmark for its relative simplicity as well as preva-
lence in the field of automatic control as one of the fundamental
examples of linear control.

The inverted pendulum plant State is implemented as a real-time
discrete-time physical emulation using CLEAVE’s API and a 2D
physics library4, updated at a constant 120Hz (this value is config-
urable; in this case it corresponds to the maximum achievable stable
rate on our available hardware). Sensors for the angle, position, an-
gular velocity, and velocity of the State, and an Actuator for the
horizontal force applied to the cart are implemented as “perfect”, i.e.
values are returned as-is, without any added noise. For the controller
side, a proportional-differential strategy is implemented using the
framework Controller API and the NumPy numeric computation
library5. Plant and controller are then packaged into containers,
for ease of orchestration and reparametrization, and to mimic real-
world deployment.

4Pymunk: http://www.pymunk.org/en/latest/
5NumPy: https://numpy.org/

https://twistedmatrix.com
http://www.pymunk.org/en/latest/
https://numpy.org/


EdgeSys’22, April 5–8, 2022, RENNES, France Olguín Muñoz et al.

A previously mentioned, we eventually plan to build an open
library of emulated control loops.6 The inverted pendulum plant
is merely a proof-of-concept, and CLEAVE could be used to im-
plement much more complex physical systems with even more
stringent latency requirements. For instance, the flexibility afforded
by the choice of programming language and the abstractions de-
tailed in Section 2.1, allow for relatively straightforward emulation
of autonomous drone dynamics. Propeller dynamics could be imple-
mented byActuator objects, gyroscopes by Sensors, and the physical
behavior of the plant could be modeled using a general purpose 3D
physics engine (e.g. the Panda3D7 engine).

3 USE CASE VALIDATION
In this section, we demonstrate the utility of CLEAVE by walk-
ing readers through an example use case. With this, we aim to
showcase the ability of our framework to provide accurate and
repeatable measurements of the performance of NCSs deployed on
edge computing infrastructure.

We present the following use case scenario. A simple NCS con-
sisting of an inverted pendulum plant controlled by a proportional-
differential controller is to be deployed on an Edge server. The
connection between plant and server is over a WiFi (IEEE 802.11n)
link. Moreover, there are a number of video-streaming applications
running concurrently on the Edge setup.

We believe this to be an interesting and representative use-case
scenario for a number of reasons. Firstly, the inverted pendulum is
broadly used as a benchmark in control-system literature, see for
instance [5] and [9]. A key reason for this is that such a relatively
simplistic system allows for straightforward reparametrization to
obtain varied system dynamics, which in turn makes a broader
range of experiments possible. Secondly, similar, albeit non-Edge-
enabled, setups have been a reality in industry for almost two
decades, as evidenced by [3]. Thirdly, although real deployments
would most assuredly employ mobile technologies due to the added
benefits of mobility and range, the Round-Trip Times (RTTs) offered
by these technologies are higher, or at best equal, those offered by
WiFi. 4G, for instance, has average RTTs of around a few hundred
milliseconds, which is orders of magnitude greater than the val-
ues measured in our scenario, and current 5G deployments offer
RTT values barely matching the sub-10ms values we obtain for
WiFi. Thus, we argue that using WiFi allows for more experimen-
tal freedom, as the system can be tweaked to obtain worse RTTs
more akin to those of mobile technologies while still having the
option to study best-case scenarios with very low-latencies. Finally,
video analytics is one of the main proposed use cases for edge com-
puting [12–14], and thus we foresee edge NCS deployments being
deployed in parallel with such applications in the future. However,
before deployment can become a reality, key questions such as:
“what are the baseline requirements of the NCS?”; “what are the
achievable best-case end-to-end latencies in the system?”; and “how
does the concurrent video-streaming traffic affect NCS stability?”
need to be answered.

6At the moment of writing, we are in the process of implementing model-predictive as
well as deep neural network controllers for the inverted pendula plants.
7https://docs.panda3d.org/1.10/python/programming/physics/builtin/
indexhttps://docs.panda3d.org/1.10/python/programming/physics/builtin/index

Figure 3: The setup used for our experimentation.

We attempt to study these questions using the experimental
setup in Figure 3. CLEAVE is deployed on a testbed consisting
of 10 Raspberry Pi 4B clients connected wirelessly to an IEEE
802.11n Access Point (AP). Connected to the Ethernet backbone of
this AP is a general-purpose x86_64 desktop computer acting as a
Cloudlet/Edge server.

The first step in our case study is to evaluate the baseline per-
formance of the control system, both locally and over the network.
We configure CLEAVE to run a single loop with both plant and
controller co-located on the Edge server, and we also configure a
separate setup with an identical loop executed over the wireless
link. For both of these setups, we execute a series of scenarios vary-
ing: (1) the sampling rate of the Plant state, setting it to 5, 10, 20,
40, or 60Hz; and (2) the responsiveness of the Controller, adding
fixed delays of 0, 25, or 50ms after the processing of each sample.

We run repeated executions of each combination of these pa-
rameters at least 10 times, for both the networked and “local-only”
setups. Each execution lasts for 5min, during which we collect de-
tailed data on both the state of the controlled system as well as on
the data sent over the network. After the initial 10 runs, we identify
that setups with sampling rates of 5 and 10Hz were consistently
too unstable to consider, and disregard them in further analyses.
We further note that setups with 0ms additional delay are always
stable and thus also disregard them. Remaining setups, i.e. sam-
pling rates ≥ 20Hz and artificial delays ≥ 25ms, are repeated an
additional 20 times for better statistical significance.

This repeated experimentation and data collection while “zoom-
ing in” on particular setups is facilitated by CLEAVE’s design. Sce-
narios are executed automatically in batches using a simple Python
script which interacts with Docker through the widely adopted
docker-py8 library. This is CLEAVE’s first advantage over exist-
ing frameworks; it is designed with cloud and edge technology
and paradigms in mind, making integration with existing systems
convenient.

Figure 4 shows a summary of the results relating to the single-
loop scenarios: Figure 4a shows the fraction of plants that toppled
in each scenario, and Figure 4b shows the average Root Mean
Square (RMS) for the absolute pendula angles. Figure 4c shows
8Docker SDK for Python: https://docker-py.readthedocs.io/en/stable/

https://docs.panda3d.org/1.10/python/programming/physics/builtin/index
https://docs.panda3d.org/1.10/python/programming/physics/builtin/index
https://docker-py.readthedocs.io/en/stable/


CLEAVE EdgeSys’22, April 5–8, 2022, RENNES, France

(a) Fraction of toppled plants.

(b) Mean angle RMS; red line indicates 𝑦 = 180.

(c) Mean RTTs.

Figure 4: Baseline results. Error bars indicate 95% Confi-
dence Intervals (CIs).

average latency due to network and processing (excluding synthetic
delays) for both single-loop scenarios. Packet losses were below
0.2 % for all parametrizations of the single-loop scenario over the
network, and 0% for all parametrizations of the local-only setup.

As expected, higher sampling rates tend to correlate with better
quality of control; at higher sampling rates the system was able
to reach stability at higher RTTs. These initial results already hint
at interesting consequences for such an edge-bound NCS deploy-
ment. For instance, it is clear from Figures 4a and 4b that network
delays can, to a certain extent, be compensated for by increasing
the sampling rate of the system. A corollary of this is, conversely,
that at lower network latencies NCSs are able to stabilize at lower
sampling rates. Adaptive sampling might thus be a viable method
for optimizing resource utilization.

Once baselines for single loops in the use case scenario have
been established, we can proceed to studying the interaction be-
tween the NCSs and the video-streaming applications. We deploy
6 control loops on the experimental setup depicted in Figure 3. On
the remaining 4 clients we run the iperf39 traffic load generator,
each generating 6.5Mbit/s of uplink User Datagram Protocol (UDP)
9iperf3: https://iperf.fr/

(a) Toppled plants. (b) Angle RMS.

(c) Packet losses. (d) RTTs.

Figure 5: Multi-loop, resource-constrained setup results. Er-
ror bars indicate 95% CIs in all plots.

traffic. This emulates the load generated on the network by 1080 p
Full-HD video streaming, originating from the clients and termi-
nating in the cloudlet. Based on the baseline results, we execute
setups with NCS plant sampling rates of 20, 40 and 60Hz. Each
sampling rate configuration is run for 5min, and then repeated 30
times to obtain statistical significance. Once again, repetitions of
this scenario are executed automatically in batches using a simple
Python script and docker-py.

Figure 5 shows a summary of the results obtained. Figure 5a
shows the fraction of repetitions of each setup in which at least one
plant failed to maintain stability and toppled. Figure 5b shows the
RMS for the pendulum angles for each setup, only considering data
from plants that did not topple. Figure 5c shows the fraction of UDP
datagrams dropped, averaged over all plants and repetitions per
setup. Figure 5d shows the measured end-to-end plant-side RTT,
averaged over all plants and repetitions per setup.

These results are interesting in their counter-intuitiveness com-
pared to the single-loop baseline results. While the baselines might
lead us to think that higher sampling rates are always better for the
stability of control systems, Figures 5a and 5b show this not to be
the case for NCS in resource-constrained scenarios. 60Hz was the
least stable configuration, with at least one pendulum toppling in
around 16 % of the repetitions, and mean pendulum angle RMS circa
3 times that of the 40Hz scenario. 40Hz was in turn the second
worst configuration — although it presented no toppled pendula,
average angle RMS doubled that of the 20Hz setup.

Figures 5c and 5d explains these behaviors. Whereas both the
20 and 40Hz setups show losses well below 5%, the 60Hz scenario
shows an average of around 13 % of datagrams lost. The differences
in RTTs results are equally telling; RTTs for the 60Hz setup were

https://iperf.fr/


EdgeSys’22, April 5–8, 2022, RENNES, France Olguín Muñoz et al.

on average approx. 3 times those for the 20 and 40Hz setups. These
results stem from the contention for network resources, and hint
at important trade-offs system designers will have to take into
considerationwhen designing and developing NCSs for deployment
on the Edge. The Edge will bemulti-tenant andmulti-instance. NCS
deployments will have to be designed with shared resources in
mind, and given the complexity of these systems, experimental
tools like CLEAVE will be key for their succesful adoption and
massification.

4 CONCLUSION
The issue of repeatable and scalable benchmarks has been largely
glossed over in NCS literature, as existing experimental research
studies tend to implement ad-hoc solutions.

In this work, we aimed to tackle this issue through a fully software-
based framework for repeatable, reproducible, and easily scalable
NCS benchmarking with a particular focus on edge deployment.
We argue our approach, CLEAVE, embodies a better solution than
previous work for a number of reasons:

(1) Compared to fully physical approaches, such as those used
in [5] and [6], our approach allows for greater flexibility and
scalability. The aforementioned approaches rely on special-
ized and sometimes entirely custom-built physical platforms,
and although flexible and cheap approaches such as Zoppi et
al.’s —which uses a LEGO-based physical plant — exist, these
still do not reach the level of flexibility afforded by a fully
software-based framework. Experimenters still need copies
of the hardware, making anything other than small-scale
setups unfeasible. In contrast, our approach requires only
general-purpose computing platforms, and can be employed
by basically anyone with access to a computer. Scalable de-
ployments can in turn easily and cheaply be set up using
single-board computers and/or virtual cloud instances.

(2) When compared to simulated approaches such as [7], CLEAVE
provides a higher level of realism, in particular with regards
to the network segment of the system.

(3) Finally, although it shares much in common with previ-
ous emulated approaches such as the one employed in [8],
CLEAVE has an advantage by specifically targeting a general-
purpose approach using industry-standard, cloud- and edge-
native tools and software. The tool can easily be deployed
and scaled using widely-used frameworks such as Docker
Swarm and Kubernetes.

We validate the utility of this tool through an example use case
approximating a proposed edge deployment of inverted pendula
control loops co-located with video analytics services. We argue
such a use case represents a realistic scenario and appropriate
benchmark for the tool, since (1) the inverted pendulum plant is
ubiquitous in NCS research; (2) similar setups exist in real-world
industrial use; and (3) video analytics has long been proposed as a
“killer app” for edge computing. Our results showcase the ability of
the framework to extract relevant metrics relating to the stability of
the control system, as well as on the performance of the underlying
network link. We believe CLEAVE represents an important step
towards enabling inexpensive and low-complexity scalable research
for real-world deployment of edge-bound NCSs.

There is still, however, work to be done. We are extending the
number of plant and controller implementations on the frame-
work, with the goal of creating an open library of NCSs to share
with the community. At the moment, the interactions of CLEAVE
and tools such as Docker are still quite superficial. Our goal is to
achieve a much tighter integration, e.g. by providing the toolkit as
pre-packaged container images. Finally, the validity of the results
obtained by the framework will have to be verified through more
thorough, realistic scenarios than what we have been able to show
in this work. In particular, we intend to perform large-scale experi-
mentation targetting 5G cellular deployments, as this technology
is set to become the backbone of edge networks in the near future.

ACKNOWLEDGEMENTS
This research has been partially funded by (1) the VINNOVA Com-
petence Center for Trustworthy Edge Computing Systems and
Applications (TECoSA) at KTH Royal Institute of Technology; and
(2) the Swedish Foundation for Strategic Research (SSF), through
grant number ITM17–0246.

We also wish to thank S. S. Mostafavi, V. N. Moothedath, M. Al-
sakati, O. Ferm, S. Vojcic, and A. Bhattacharya for their support
and valuable contributions to this work.

Finally, we would like to thank the reviewers for their insightful
comments and suggestions, which greatly helped us improve this
work.

REFERENCES
[1] Ragunathan Rajkumar et al. “Cyber-physical systems: The next computing revo-

lution”. In: Proceedings of the Design Automation Conference. 2010, pp. 731–736.
[2] Mahadev Satyanarayanan. “The Emergence of Edge Computing”. In: Computer

50.1 (2017), pp. 30–39.
[3] Rachana Ashok Gupta and Mo-Yuen Chow. “Networked Control System:

Overview and Research Trends”. In: IEEE Transactions on Industrial Electron-
ics 57.7 (2010), pp. 2527–2535.

[4] Shaohua Wan et al. “Efficient computation offloading for Internet of Vehicles in
edge computing-assisted 5G networks”. In: The Journal of Supercomputing 76.4
(2020), pp. 2518–2547.

[5] Dominik Baumann et al. “Evaluating Low-Power Wireless Cyber-Physical Sys-
tems”. In: Proceedings of the First IEEE Workshop on Benchmarking Cyber-Physical
Networks and Systems (CPSBench’18). 2018, pp. 13–18.

[6] Ángel Cuenca et al. “Periodic Event-Triggered Sampling and Dual-Rate Control
for a Wireless Networked Control System With Applications to UAVs”. In: IEEE
Transactions on Industrial Electronics 66.4 (2019), pp. 3157–3166.

[7] Yehan Ma et al. “Optimal Dynamic Scheduling of Wireless Networked Control
Systems”. In: Proceedings of the 10th ACM/IEEE International Conference on Cyber-
Physical Systems. Association for Computing Machinery, 2019, 77–86.

[8] Yu Wang et al. “Inverter-Based Voltage Control of Distribution Networks: A
Three-Level Coordinated Method and Power Hardware-in-the-Loop Validation”.
In: IEEE Transactions on Sustainable Energy 11.4 (2020), pp. 2380–2391.

[9] O.R. Natale et al. “Inverted pendulum stabilization through the Ethernet network,
performance analysis”. In: Proceedings of the 2004 American Control Conference.
Vol. 6. 2004, 4909–4914 vol.6.

[10] Samuele Zoppi et al. “NCSbench: Reproducible Benchmarking Platform for Net-
worked Control Systems”. In: Proceedings of the 17th IEEE Annual Consumer
Communications Networking Conference (CCNC’20). 2020, pp. 1–9.

[11] Manuel Osvaldo J. Olguín Muñoz et al. “EdgeDroid: An Experimental Approach
to Benchmarking Human-in-the-Loop Applications”. In: Proceedings of the 20th
International Workshop on Mobile Computing Systems and Applications. ACM,
2019, pp. 93–98.

[12] Ganesh Ananthanarayanan et al. “Real-Time Video Analytics: The Killer App for
Edge Computing”. In: Computer 50.10 (2017), pp. 58–67.

[13] Shanhe Yi et al. “LAVEA: Latency-Aware Video Analytics on Edge Computing
Platform”. In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing.
Association for Computing Machinery, 2017.

[14] Junjue Wang et al. “Bandwidth-Efficient Live Video Analytics for Drones Via
Edge Computing”. In: Proceedings of the Third IEEE/ACM Symposium on Edge
Computing (SEC). Association for Computing Machinery, 2018, pp. 159–173.


	Abstract
	1 Introduction
	2 The CLEAVE framework
	2.1 Design and Implementation
	2.2 Configuring and Executing NCS
	2.3 Current Implementations

	3 Use case validation
	4 Conclusion

