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Abstract—Future cellular networks are expected to have re-
sources for data processing at the edge of the network, providing
the benefits of cloud computing without long routing delays.
Such computing resources may for example be used in a control
scenario, where wireless sensors upload data to a controller
running at the edge of the mobile network. The controller
computes an actuation command that is then sent back on the
downlink to a wireless device. The delay in such a system not
only depends on the processing time of the controller, but also
on the uplink and downlink channels where fading and packet
losses can result in a queuing delay. In this work, we present a
probabilistic upper bound on the total delay of such systems when
the channels are subject to Nakagami-m fading. Our method
takes the effect of channel coding at finite blocklength in the
uplink and downlink channels into account. Using several series
expansions, the probabilistic delay bounds can be computed
analytically, providing guidelines for resource allocation without
the need for extensive simulations.

Index Terms—Finite blocklength regime, rate adaptation,
quasi-static fading, queueing analysis, edge computing, network
calculus

I. INTRODUCTION

Cloud computing is now employed by a wide variety of
users, as cloud services can quickly provide large amounts
of computational resources when necessary. Users thus pay
only for the resources they need, instead of paying for private
server farms that are not always fully utilized. Recently, a
related concept called Edge Computing or Fog Computing
has emerged, where the computational resources are located
at the edge of the network [1], which eliminates delays
due to the transmission of tasks over the Internet to remote
cloud servers. The computational resources therefore become
available to applications that require low latency, such as
connected vehicles, the smart grid, and factory automation
with wireless sensors and actuators. In such applications,
data is sent wirelessly to a computing node, which processes
the data and sends time-critical information, e.g. collision
warnings or actuation commands, back to a wireless device [1].
Compared to traditional control logic chips located directly at
the devices, such edge computing resources can provide high
processing power right on demand, aggregate information from
a large number of devices, and extract information for further
analysis and optimization.

While the edge computing principle avoids delays due to
routing in the network, delays can still occur due to the time-
varying nature of wireless channels with fading and packet
losses, which necessitate transmit buffers for the uplink and
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downlink. Furthermore, as the data rate in the uplink is time-
varying, data may arrive in a bursty fashion at the edge
computing node and may need to be buffered before it can
be processed. An analysis of the end-to-end delay in edge
computing scenarios must therefore examine the combined
random queueing delay in the three buffers at the uplink, the
edge computing node, and the downlink. As the end-to-end
delay depends on the quality of the wireless links, the data
rates and error probabilities in those links must be accurately
modeled. Specifically, due to the typically small packet sizes
and data rates in applications such as factory automation,
channel models must take the effects of channel coding at
finite blocklength [2] into account.

Previous works analyzed the probability distribution of
queueing delays in wireless networks in different ways, most
notably by applying the frameworks of effective capacity
[3] and stochastic network calculus [4]. While the effective
capacity approach offers an asymptotic evaluation for the
tail of the delay distribution, i.e. for large delays, stochastic
network calculus can provide non-asymptotic upper bounds
on the distribution for any delay. Stochastic network calculus
can also be extended to multi-hop systems with non-identical
links [5]. The impact of channel coding at finite blocklength on
the queueing delay was first investigated by Gursoy [6] using
effective capacity. In our previous work [7], we developed
closed-form approximations that allow fast computation of sta-
tistical delay bounds using stochastic network calculus. In that
work, we considered a single-hop, single-antenna Rayleigh
fading channel and provided closed-form approximations for
computing probabilistic delay bounds. Recently, Li et al. [§]
used effective capacity to analyze the delay in a two-hop
wireless network at finite blocklength. However, their method
requires that the first link has lower average data rate than the
second link, which is not always the case. With regards to in-
network processing, Al-Zubaidy et al. [10] studied a scenario
with video processing in a computing node inside a wireless
network. In that work, it was assumed that the processing node
must wait for an entire video frame before processing can
start, which can possibly lead to a large delay. However, finite
blocklength effects in the wireless links were not considered.

In this work, we use stochastic network calculus in a
transform domain [4] to analyze the queueing delay, which
includes the queueing delay of the edge computing node.
In contrast to our previous work [7], which only considered
single-hop wireless links and was restricted to Rayleigh fading
channels, we employ the Nakagami-m fading model, which
can be used to model multi-antenna configurations. Moreover,
we analyze systems with flow transformation, i.e. where the
output data rate of the computing node is different from the
input rate. We provide closed-form approximations of the



relevant integrals, allowing fast computations of the delay
bounds. An extensive simulation study was conducted to verify
our computed bounds. The simulation results show that the
analytically obtained bounds can accurately predict the optimal
parameter regions for minimizing the delay. Specifically, the
delay depends on the blocklengths of the channel codes in the
uplink and downlink, and the choice of blocklengths which
minimizes the analytical delay bounds also minimizes the
actual delays that occur in the simulations.

II. SYSTEM MODEL

We consider a scenario where data generated at a source
is uploaded wirelessly to the cellular network. An edge
computing node (ECN) processes the data and sends the
result over the downlink to a different wireless node. For
the wireless communication, we consider a time-slotted half-
duplex system, where each time slot is split into an uplink and
a downlink phase. In each time slot, the uplink and downlink
can transmit codewords of length ny. and npp, respectively.
The total number of symbols in each time slot is denoted
by N = ny + np.. We use a block-fading model, where
the signal-to-noise ratio (SNR) is assumed to be constant
within one time slot but varies independently from slot to slot.
Furthermore, we assume independence between the uplink
and downlink channels. We employ the Nakagami-m fading
model, where the SNR follows a gamma distribution with PDF
[9, p. 849]
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where 7 denotes the average SNR. The corresponding cu-
mulative density function is denoted by F(v). For m = 1,
Nakagami-m fading describes a single-antenna Rayleigh fad-
ing channel. Nakagami-m fading with m > 1 can also be
used to describe single-input multiple-output (SIMO) Rayleigh
fading channels with m receive antennas, average SNR 7/m
and maximum-ratio combining at the receiver [9, p. 859].
The transmitters operate with fixed power. In each uplink
or downlink phase, the corresponding transmitter has perfect
channel state information (CSI), and adapts the rate of the
channel code according to this channel state. The data packets
and slot lengths in this scenario are assumed to be short. There-
fore, modeling the communication as error-free and at a code
rate equal to the channel capacity would be highly inaccurate.
At finite blocklength of the channel code, transmission errors
cannot be completely avoided. It was shown by Polyanskiy
et al. [2] that for a given error probability €, the achievable
coding rate in bits per channel use can be approximated by:

r(n,e,7) ~logy(1+7) =/ — Lo 1) ogse, @
where the channel dispersion V' is given as'
1
V=1- —— . 3
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Unlike the authors in [2], we always measure the dispersion in natural
units and place a seperate factor log, e in (2), which is measured in bits.
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Fig. 1. The edge computing scenario from a queueing perspective.

We assume that (2) holds with equality, that decoding errors
are always detected, and that the transmitter will get feedback
whether the last packet was decoded successfully. We refer to
this model as the finite blocklength (FBL) model. For compar-
ison, we will also show results for a model where the effects
of finite blocklength coding are ignored and, consequently,
communication at rate r = log,(1+y) is assumed to be error-
free. For brevity, we will refer to this as the Shannon capacity
model.

Due to packet losses and due to time-varying data rates, the
data generated at the source and at the ECN may not imme-
diately reach the destination. Furthermore, the data arriving
at the ECN cannot always be processed all at once due to
limited processing power. Thus, data must be stored in buffers
while waiting to be successfully transmitted or processed.
This buffering or queueing leads to a random delay of the
data. As illustrated by Fig. 1, the queueing system consists
of a sequence of three hops, with queues at the uplink, the
edge computing node, and the downlink. Queueing systems
are characterized by random arrival, service, and departure
processes. The arrival process A(t) describes the number of
bits entering the queue of the first link (the uplink) in time
slot ¢. The service processes S;(t), | € {UL, ECN,DL}, describe
how many bits can be potentially transmitted or processed in
each time slot by uplink, ECN, or downlink, respectively, and
only depend on the channel conditions or processing speeds.
The departure process D(t) describes the number of bits that
are leaving the last queue (the downlink). In all three queues,
the amount of data leaving queue [ is upper-bounded by the
amount of data waiting in that queue or by the service process
S;(t), whichever is smaller. For the queueing analysis, define
the cumulative arrival, service, and departure processes as

)2 Z_:A(i), S(r,t) 2 Z_:S(i), D(r,t) 2 z_:D(i)
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First, we consider the case where the ECN outputs c bits
for every c bits that are processed as input. In that case, the
queueing system is flow-conserving, and the total queueing
delay of the multi-hop system at time ¢ is defined as [4]:

W(t) =inf{u>0:A(0,¢t) <D(0,t+u)} 5)

In a time-critical system, long queueing delays must be
avoided. However, due to the random nature of the service
processes with fading and packet losses, it cannot be guar-
anteed that the delay never exceeds a certain target delay w.
Instead, a probabilistic delay bound is considered. We define



the delay violation probability for a target delay w at time ¢
as
A
py(w,t) =P{W(t) > w}. (6)

Time-critical systems may still perform fine as long as the
probability of exceeding the target delay w is very small,
e.g. pv(w,t) < 1075 In addition to queueing delays, there
will be further delays for the actual transmissions, for the
encoding and decoding of the channel codes, and between
the arrival of data packets and the beginning of the next time
slot. However, such delays are generally smaller than one
time slot and therefore negligible compared to the probabilistic
queueing delays, which can occasionally be many time slots
long.

For the edge computing node (ECN), we assume a constant
processing rate and that processing starts immediately after
data reception. When the output data rate of the ECN is
different from the input rate, but scaled by a constant factor
¢, i.e. that for any c input bits processed by the ECN
only ¢/¢ output bits are generated, then the system is not
flow-conserving. Although queueing systems which are not
flow-conserving are generally difficult to analyze, our system
model with constant scaling of input and output rates can be
transformed into an equivalent flow-conserving system model.
In the equivalent model, the input and output data rates of the
ECN are treated as equal, but the service of the following hop
(the downlink) is multiplied by the scaling factor ¢ [10].

III. QUEUEING ANALYSIS

An upper bound for the delay violation probability p, (w, t)
can be obtained through stochastic network calculus in a
transform domain [4]. In this section, we review the key steps
for obtaining this bound. We start with the single-hop case,
where the description is based on our previous works [7], [11].
Then, we extend the analysis to multi-hop queueing systems
by utilizing results from [5].

A. Stochastic Network Calculus in the SNR domain

The delay in (5) is defined in terms of the arrival and de-
parture processes. However, it is difficult to obtain a statistical
characterization of the departure process, as it depends on
the arrival and service processes in previous time slots. The
transmitters and the computing node are assumed to handle
all incoming data without additional delay. Then, we can
analyze the delay through characterizations of the random
arrival and service processes. By taking the exponential of the
arrival and service process, the authors in [4] characterized
these processes in the exponential domain, also referred to
as SNR domain. The main advantage of this approach is
that it eliminates the logarithm in the channel capacity and
allows analysis directly in terms of the channel gain. The
arrival and service process in the SNR domain are denoted
by calligraphic letters: A(#) 2 ¢AM and S(t) 2 ¢5®), Fur-
thermore, the corresponding cumulative processes are denoted
as A(7,t) = A" and S(7,t) = S(T1),

It was shown in [4] that an upper bound on the delay
violation probability p,(w,t) in (6) can be evaluated in terms

of the Mellin transforms of A(7,t) and S(7,t). The Mellin
transform M (s) of a nonnegative random variable X is
defined as [4]

May(s) 2E [x5] 7

for a parameter s € R. Thus, the Mellin transform of the ser-
vice process in the SNR domain is essentially the same (except
for the shift of —1) as the moment-generating function of the
service process in the bit domain, which is also used in the de-
lay analysis through effective capacity. The service processes
Si(t) for the uplink and downlink depend on the statistics of
the fading channels and are considered mutually independent
and identically distributed (i.i.d.) between time slots due to
the block-fading assumption. We assume throughout this paper
that both the service process at the ECN Sgey(¢) and the arrival
process A(t) are constant, although an analysis with random
arrivals and random service at the processor is generally
possible. The Mellin transforms of the cumulative arrival and
all service processes in the SNR domain A(7,t) and S;(7,t)
can then simply be written as M 4(s)!~7" and Mg, (s)!77, i.e.
in terms of the Mellin transforms of the incremental arrival and
service processes, where we dropped the subscript ¢ because
these processes are i.i.d. by assumption. In the single-hop case,
the delay violation probability can be bounded as follows: start
by choosing any s > 0 and first check whether the stability
condition M 4(1 + s)Ms(1 — s) < 1 holds. If it holds, define
the steady-state kernel [4], [7]

K (s,w)

t—o0

t
lim Y " Mu(1+ )" " Ms(1 = s)"7" (8)
u=0

_ Mgs(1—s)¥
1 — M1+ 8)Ms(1 —5s)°

For any s > 0, this kernel is an upper bound for the delay
violation probability p,(w) in steady state, i.e. in the limit
t — oo. Optimizing over s yields the best possible bound for
single-hop systems:

pu(w) < inf {KC (s,0)}

©))

(10)

For a multi-hop queueing system with a path of independent,
strictly non-identical links described as IL, where we label the
first hop of the path as K and the last hop as L, a delay bound
can be found by recursively computing the kernel [5]:

o MSK(l - 5)
Ky (5,w) = Mo (1 s) — Ms, (I_ S)K]L\{L} (s, w)
MSL(]' - S)

]C]L\{K} (87 ’LU) )
(11)

where L\{L} describes the path where the server L and queue
L are removed. When the path consists only of a single link,
the kernel is given by the single-hop kernel (9). In our model,
the kernel for the path with the three links I = {UL, ECN, DL}
can thus be computed from the kernels for L = {UL,ECN}
and L = {ECN,DL}. These can in turn be computed from the
kernels for L = {UL}, L = {ECN} and L. = {DL}, which are
the single-link kernels given by (9).

T Me, (1= 5) — Mg, (1—5)



IV. DELAY BOUNDS AT FINITE BLOCKLENGTH

An upper bound on the delay violation probability can be
computed through the kernel (11), which requires computation
of M 4(s) and Mg, (s), i.e. of the Mellin transforms of the
arrival process and the service processes in the SNR domain.
For the wireless links (! € {UL,DL}), we assume that the
rate adaptation scheme operates at a fixed error probability e
at all values of the SNR . The service process is given as
the number of successfully transmitted bits in each time slot,
i.e. the service is either n-r(n, €, v), with probability (1—¢), or
equal to zero, with probability €. In case the ECN transforms
the flow by a factor ¢, i.e. outputs only ¢/¢ bits for every ¢
input bits, we simply multiply the service in the downlink by
¢ in order to obtain an equivalent flow-conserving queueing
model. For consistent notation, define (15 =1 in the uplink and
® = ¢ in the downlink and multiply the service by ¢. After
converting to the SNR domain, the Mellin transform of &,
[ € {UL,DL} is given as [7]:

Ms,(s) = (1 —¢)E, [(e&"'r(”’m))s_l} +e (12)

dn(s—1)

= (1 - E)E’Y l(er(n7€77) an) "

+e  (13)

where the expected value is taken with respect to the fading
distribution of the SNR ~. For fixed ¢, the rate according to
(2) would become smaller than zero when the SNR is below
a certain threshold yy, which we avoid by setting the rate
equal to zero in this range. To shorten the notation, define

P2Q(e)/y/n and 6 2 dn(1 — s)/In 2. Thus:

00 —0
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(14)

n [7], we analyzed the integral

zﬂméhif(ggl)ﬁfwwv

for Rayleigh block-fading channels, where the SNR ~ is
exponentially distributed. At high average SNR, the dispersion
V is very close to 1, and the integral can be solved in terms
of the upper incomplete gamma function

F(s,x):/ ts e tdt.

For medium and low SNR, we applied the following series
expansion for —1 <z <1 to VV [12, (1.110)]:

15)

(16)

(1-a) =Y (a) (~2)7, (17)
i=o
which results in
1 1/2 S
W”Ouww)‘420+ 19

where we used the fact that for & = 1/2, the sign of the
binomial coefficient is alternating in j for 5 > 1, and defined

1/2 DG-1)...(3-7+1
b; 2 </)‘:(2)(2 )"(2 j+1) (19)
J J:
Applying this expansion to B(G) yields [7]:
o0 1 +,y —b Po
B = (1 ’Y)QJ . 2
Q) /yo<ep> He+ )y (20)

We approximate the product by limiting it to J factors and
expand each factor through its Taylor series [7]:

—b; PO J o k;
1 —b; PO J
e(1+7)27 = — <J ) (1)
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Collecting and combining all terms where the exponent of
(1 + ) is equal to 2v results in:

—b; PO o0 C(V)
e(1+w)27 = —_— (23)
I = 5 8%

with
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Considering only the denominator, the terms can be expected
to decrease exponentially in v. Therefore, we proposed in [7]
to specify a value © and consider only terms with v < ¥. For
an average SNR above 0 dB, the integral B() was found to
be well approximated with 2v < 20 or 7 = 10. In this case,
even though each C(v) consists of sums over kq,..., k1o,
the resulting complexity is surprisingly low, as there are at
most 42 terms which satisfy 2;021 jk;j = v. Applying the
approximation to B(6) leads to:

) ~ i C(v)ef?
v=0

For Rayleigh fading channels, the PDF f(y) is exponential,
and all factors involving the SNR + can be brought into the
form (1 ++)/7. Then, for each v, the integral is given by the
upper incomplete Gamma function (16), as we showed in [7].

For Nakagami-m fading channels, f(+y) is given by (1), and
the analysis is more involved because of the factor v~ 1,
which cannot be easily combined with the factor (1 + ~)~*.

However, a solution can be obtained using the conversion

_— B 1 m—1
(1+7) (1 5 7)
(26)
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and then applying the series expansion (17):
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Then, the integral B(6) is approximated as
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PO~ 2 Ty

pn=0rv=0

/ (1 +7)*9*2V+m7u71 e_%d,y
Y

Yo

C(v)er?

(28)

e5T (-0—2y—u+m,m(1;ry(’)), (30)
where in the last step, we performed a change of variables and
applied (16). When m is not an integer, the sum over p must
be truncated at some point. However, when m is an integer,
the sum over p is non-zero only for © < m — 1 and does not
need to be truncated.

V. NUMERICAL ANALYSIS

In this section, we start with a validation of the analytical
bounds on the delay and on the delay violation probability.
Then, we study the effect of finite blocklength coding on the
overall delay in different scenarios.

A. Validation

For validation of the analytical bounds on the delay violation
probability p, (w), we compare the analytical upper bounds
obtained through the multi-hop kernel (11) with simulation
results. For the simulations, we generate instances of the
arrival and service processes according to the system model,
and then obtain the empirical distribution of the random delay
as defined in (5). The systems were simulated for at least 10°
time slots. In Fig. 2, we show the probability p,(w) and the
corresponding analytic bound for a target delay of w = 10
time slots. For this plot, we assume that the total number N
of symbols in each time slot is constant with N = 500, but we
vary the number of symbols ny. assigned to the uplink. The
downlink will then use the remaining npy = N —nyp symbols.
We start with symmetric channel conditions® in uplink and
downlink with Ay, = Ap, = 5 dB, my. = mpr = 1 (Rayleigh
fading) and assume that the edge computing node is powerful
and can process twice the amount of data arriving in every
slot, i.e. Sgey = 2A. In order to choose the error probabilities
ey, and epr, we perform a simple line search and select the
€ which minimizes the single-hop delay bound (9) for every
choice of ny; and nypy.

We confirm in all cases that the empirical delay violation
probability obtained from simulations is below the analyti-
cal bound. Although the difference between simulations and

2Since the kernel (11) can only be computed for non-identical links, we
set a slightly different value (5.001 dB) for the SNR in the downlink.
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Fig. 2. Delay violation probability py (w) for target delay w = 10. Jy. =
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Fig. 3. Minimum delay w such that py(w) < 1076, Fy. = Ao = 5 dB,
myL = mpL = 1, A = 250 bits, Sgen = 24, ¢ = 1.

bound can be more than an order of magnitude, the overall
shapes of the curves coincide, and the bounds correctly predict
that the minimum delay violation probability is attained at
nyr, = npL = 250.

B. Delays for Different Parameters

Instead of using the delay violation probability for a given
delay w as a metric, we can also look at the smallest value of
the delay w such that the delay violation probability p, (w) is
below a given target value, e.g. 10, This delay w is shown
in Fig. 3 for the same parameters as in Fig. 2. We observe
that the analytic delay bounds are still valid upper bounds for
the actual delay as obtained from simulations, and that the
bounds correctly predict the regions where the delay is lowest
and where the delay increases. Furthermore, we see that the
region of ny, where the delay is short is significantly smaller
when finite blocklength effects are considered.

In order to decrease the delay, we investigate the effect
of adding a second antenna to the base station and applying
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Fig. 5. Minimum delay w such that py(w) < 1076, qy, = 8 dB, ApL =
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maximum ratio combining in the uplink, which would result
in a diversity and power gain that can be modeled in the
Nakagami-m fading model with my. = 2 and with a 3dB gain
in the average SNR 7 of the uplink. The results® are shown
in Fig. 4. As expected, the delays decrease significantly. We
observe that even in this non-symmetric case, the shapes of
the simulated and analytical delay curve match fairly well.
The increased uplink performance can be used to transmit
more data in the uplink. For example, a wireless sensor
network could transmit more accurate sensor readings. In
Fig. 5, we double the arrival rate A to 500 bits. We assume that
the ECN can still handle twice the amount of data generated
in each slot, i.e. Sgcy = 2A. However, the average output data
rate of the ECN stays the same, so the ECN produces only
250 output bits for 500 input bits. For the queueing analysis,
we therefore set the service scaling factor in the downlink to
¢ = 2. Compared to Fig. 4, the delay increases significantly

3The results for nyr < 200 should be treated with caution, as the
approximation (2) becomes inaccurate in that range [2].

when the uplink has limited resources (ny. < 240), due to
the increased load in the uplink. However, as soon as the
uplink has sufficient resources (ny > 240), the delay is
not much higher than seen in Fig. 4. We observe that the
shape of the delay curve is asymmetrical. A small change
towards shorter ny leads to an extreme increase in the delay.
A possible explanation is that the Nakagami-m fading in the
uplink has a more deterministic behavior than the Rayleigh
fading channel in the downlink. A deterministic server can
either handle all incoming deterministic arrivals immediately,
or it cannot provide enough service, causing infinite delay.
Similarly, we observe a sharp on-off transition when we
decrease the blocklength of the uplink in Fig. 5.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated that the queueing delay in edge
computing scenarios can be analyzed with stochastic network
calculus. Our analytical results and simulations show that finite
blocklength effects can have a significant impact on the delay
in such systems. While we analyzed the delay for data from a
single source, future work should examine the delay when the
computing node is shared among different traffic flows with
varying and independent arrival patterns.
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