
EdgeDroid: An Experimental Approach to
Benchmarking Human-in-the-Loop Applications

Manuel Olguín
School of Electrical Engineering & Computer Science

KTH Royal Institute of Technology
Stockholm, Sweden
molguin@kth.se

Junjue Wang
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania
junjuew@cs.cmu.edu

Mahadev Satyanarayanan
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania

satya@cs.cmu.edu

James Gross
School of Electrical Engineering & Computer Science

KTH Royal Institute of Technology
Stockholm, Sweden

james.gross@ee.kth.se

ABSTRACT
Many emerging mobile applications, including augmented real-

ity (AR) and wearable cognitive assistance (WCA), aim to provide
seamless user interaction. However, the complexity of benchmark-
ing these human-in-the-loop applications limits reproducibility and
makes performance evaluation difficult. In this paper, we present
EdgeDroid, a benchmarking suite designed to reproducibly evaluate
these applications.

Our core idea rests on recording traces of user interaction, which
are then replayed at benchmarking time in a controlled fashion
based on an underlying model of human behavior. This allows for
an automated system that greatly simplifies benchmarking large
scale scenarios and stress testing the application. Our results show
the benefits of EdgeDroid as a tool for both system designers and
application developers.

CCS CONCEPTS
• Software and its engineering → Software maintenance

tools; • Human-centered computing→ Mixed / augmented re-
ality; Ubiquitous and mobile computing systems and tools;

KEYWORDS
Human-in-the-Loop, Edge Computing, Cognitive Assistance,

Benchmarking, Cloudlet

1 INTRODUCTION
There is increasing interest from academia and industry in novel

applications such as immersive augmented reality (AR) or wearable
cognitive assistance (WCA) [1, 2], also known as human-in-the-loop
applications. These applications aim to seamlessly integrate into
the lives of users to provide real-time, context-aware information

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotMobile ’19, February 27–28, 2019, Santa Cruz, CA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6273-3/19/02.
https://doi.org/10.1145/3301293.3302353

by capturing user and environment information and leveraging
compute-intensive algorithms to analyze the data in order to pro-
vide real-time feedback to the user. Sensory input, such as video,
audio, and other user-related data such as orientation and move-
ment, are examples of what is typically captured, while the backend
generally employs machine learning technologies such as Deep
Neural Networks (DNN) [2]. Figure 1 depicts such a system. These
applications are highly latency sensitive, measuring latency as the
time from the capture of the sensory information until feedback
is received. Delays above a certain threshold can hurt the user
experience or even make the application unusable [3].

In literature, these challenging latency requirements have so far
mainly been addressed through research on the optimal placement
of the compute process. There is a broad understanding today that
with the advent of edge computing, human-in-the-loop applications
will become viable [3, 4, 5, 6]. However, with respect to end-to-end
latency, there are many more trade-offs involved than merely the
question of where the compute backend is placed. A human-in-the-
loop application consists of various processing steps that can be
influenced during the development of the application. What kind
of compression to apply to the sensory input on the uplink; which
backend algorithms to utilize; how to stage the backend; when to
send feedback to the human users; and how to manage congestion
on the loop, as well as wireless channel fluctuations — all these
design choices impact the latency of the application. There are also
many design choices in the infrastructure: how is the sensory input
conveyed to the point of computation (i.e. by which wireless system;
with which transmission/prioritization scheme); which hardware
is running at the backend; which operating system; how is the
feedback conveyed back to the human user? Finally, in production
use these applications will most likely run concurrently with others.
How does this, together with other best-effort applications, impact
the latencies perceived by the human user? Existing studies [1, 2,
7, 8] of this class of applications have only lightly touched upon
these issues [3]. On the other hand, recently published models for
end-to-end latency of edge computing architectures [9, 10] are quite
complex, while not accounting for the specifics of human-in-the-
loop applications. We only have a coarse understanding of the many
degrees of freedom upon which end-to-end latency depends.

https://doi.org/10.1145/3301293.3302353


The goal of this paper is to provide a methodological approach
to studying these latency trade-offs, along with a tool, EdgeDroid
1.0∗, that simplifies the benchmarking of human-in-the-loop appli-
cations. We view EdgeDroid 1.0 to be the very first, and simplest,
of a family of tools that will embody increasingly sophisticated and
accurate models of user behavior.

Due to the complex nature of the applications and the infras-
tructure, we opt for experimentally studying the trade-offs in a
repeatable and controllable fashion. This is difficult mainly due to
the unpredictable reaction of human users to the feedback from the
backend — a user might very well misinterpret the feedback handed
to them. EdgeDroid 1.0 mimics the operation of human-in-the-loop
applications by replaying recorded traces of sensory input. This sen-
sory information is then processed by the original compute process
at the backend, generating feedback. However, this feedback is not
processed by humans, but by a parameterizable model of human
reaction. Through synchronized time tracking at the different pro-
cessing points of the application, EdgeDroid 1.0 allows for accurate
measurements of key performance metrics such as the distribution
of delays across the application pipeline. Analysis of these metrics
can be performed down to the individual input sample, allowing us
to zoom into the internal model of the application under considera-
tion. Thus, EdgeDroid 1.0 allows us to illuminate the many latency
trade-offs existing at the level of the infrastructure, as well as the
level of the application. It can also be used for debugging and valida-
tion, by comparing the expected execution flow of a particular trace
with the actual flow during the benchmarking. To the best of our
knowledge, this experimentally-driven benchmarking approach is
the first one towards experimental performance characterization
and potential optimization of human-in-the-loop applications

The rest of the paper is structured as follows: Section 2 presents
some background on human-in-the-loop applications. Section 3 dis-
cusses the general approach taken with EdgeDroid, while Section 4
exposes the implementation details for EdgeDroid 1.0. We show
the value of the tool through use case analysis in Sections 5 and 6,
before discussing future work and concluding in Section 7.

2 BACKGROUND
Human-in-the-loop applications are novel applications aiming

to seamlessly integrate into the lives of users and provide real-time,
context-aware information.

Given the wide range of applications which fall under this con-
cept, we have chosen to focus our initial efforts on one particular
category: task-guidance wearable cognitive assistance (WCA) [2].
We have chosen this type of application for two reasons: one, their
relative simplicity in terms of execution flow, and two, the already
well-established existing body of work [2, 3, 7]. Task-guidanceWCA
applications aim to guide users in the execution of a task by mon-
itoring user actions and providing real-time instructions, usually
through wearable sensors and gadgets such as the Google Glass
platform. They have many potential use cases including training
and assistance for professionals performing complex tasks. Imagine
for instance a specialized technician performing field repairs on
a complex piece of machinery. A task-guidance WCA application

∗We plan to make the EdgeDroid 1.0 benchmarking suite available as Free and Open
Source Software and the recorded traces under a Creative Commons License.

could offer real-time guidance in this task, by analyzing a real-
time video feed from the technician’s head-mounted camera and
providing step-by-step repair instructions.

Broadly speaking, task-guidance WCA applications (and human-
in-the-loop in general) process a multitude of inputs in parallel,
which are also usually continuous, multidimensional and time-
sensitive, e.g. video and audio feeds. These inputs are passed to
the computation backend, where they are processed in the pipeline
depicted in Figure 1. The first step of the backend processing is
detection, which acts as a filter for irrelevant inputs. For example,
this step could consist of a computer vision detector which discards
all frames for which the relevant features were not detected or
which were below a set threshold. The remaining inputs pass on
to the symbolic representation stage, where features are extracted
and parameterized for subsequent computation. For video frames,
this parametrization would usually convert the visual data into a
matrix representation of the relevant features. This representation
of the inputs then continues on to the task model, where the actual
application logic resides, before finally passing through the feed-
back generation stage at which point human-parseable feedback is
generated; for instance, animations and voice commands.

The task model of a task-guidanceWCA is a parameterized repre-
sentation of the task in question and the steps required to complete
it. It can be represented as a Finite State Machine (FSM) M{S, E},
where S is a set of states and E is a set of edges connecting these
states. Each state si ∈ S represents a configuration the application
could potentially reach in an arbitrary execution, and each edge
ei , j ∈ E corresponds to the ability of the application to switch from
state i to state j based on some user input. We make a distinction
between the set of steps required to complete the task, Ss , and S ,
since the latter may also contain states which represent user mis-
takes in the execution of the task. Thus, if we call the set of errors
Se , we can further define S := Ss ∪ Se .

These formalisms are exemplified in Figure 2, which represents
an arbitrary segment of a linear task-guidance WCA application.
si , sj ∈ S represent sequential states in the execution of the task,
with the edge ei , j symbolizing the unique correct way of transi-
tioning between them. While in si and in the absence of inputs,
the task model continuously provides instructions to the user on
how to move to sj . We will refer to this type of output as positive
feedback, since it guides the user forward in the execution of the
task. On the other hand, in the case of an erroneous input by the
user, the task model moves to sek , where it will constantly provide
instructions until the error is corrected and normal execution can
resume. This type of output directs the user to move backwards in
the task model, and thus we will refer to it as negative feedback.

Detection
Symbolic
Repr.

Task Model
M{S, E}

Feedback
Generation

On-body
Sensors

Human User

HUD, Speakers,
etc.

Figure 1: Pipeline of human-in-the-loop applications.



si

sj

sek

In: none
Out: positive feedback

In: correct action
Out: none

In: incorrect action
Out: none

In: undo action
Out: none

In: none
Out: negative feedback

In: none
Out: positive feedback

Figure 2: Segment of the internal task model of a linear task-
guidance WCA.

3 APPROACH OF EDGEDROID
A system for benchmarking human-in-the-loop applications

needs thus not only to be able to generate realistic, real-time in-
puts that follow the behavior of a real user but also be able to
correctly react to feedback from the target application. The design
of EdgeDroid 1.0 tackles these challenges from two angles. One,
the generation of realistic inputs is delegated to a human user and
provided to the suite in the form of a trace. This ensures that the
raw sensory input data is realistic. Two, we propose the use of a
user model to adapt the replay of the trace to the task model and
current system conditions.

Concretely, our proposed approach works in the following way:
(1) A trace of the sensory inputs for an execution of the task

is recorded. For example, for a video-based application, this
trace could consist of a recording from the point of view of
a user performing the task.

(2) This trace ismanually segmented into the logical steps which
lead to the completion of the task. In other words for the
generation of the trace the task model must be known to the
human operator.

(3) The benchmarking suite is then configured to use this trace
and a certain number of virtual users. This is done through
a TOML [11] configuration file on the backend.

(4) The benchmark is executed. Mobile devices are used to em-
ulate users with wearable devices connecting to the real
cloudlet over the real network. These devices replay the afore-
mentioned trace, employing a user model to adapt the trace
to changing system conditions and navigate the task model
to reach the desired system state.

The extraction of metrics pertaining to the distribution of laten-
cies across the application pipeline is the initial focus of EdgeDroid
1.0. We calculate latencies by synchronizing clocks across the sys-
tem components and storing timestamps at key points in the feed-
back loop. These points include when input is sent and received,
as well as when feedback is sent and received. We collect raw data
about each input-feedback cycle between user and cloudlet, which
includes metrics on all the major steps in the feedback loop: uplink,
downlink and processing time, presence of feedback, payload size,
and so on. This allows us to aggregate and obtain relevant statistics

Android Device Cloudlet

Docker
Container

Orig.
Backend

Control 
Backend

Client 
Emulator

User
Model 

2. 
Feedback

Loop

1. Config,
Trace

3. Results

Config

Figure 3: Architecture of the benchmarking suite.

in postprocessing, such as average delays per step or distribution
of average delays across the feedback loop. We also store metadata
regarding the task model with each measurement, for instance to
link the state of the system with the current step being performed.

Note that this work does not directly target themotion-to-photon
latency metric. This metric includes components such as sensing
time and display time, which we do not consider. We also do not
evaluate the accuracy of the applications themselves, as we consider
them to be black boxes. The system can however be used to evaluate
the trade-off between accuracy and performance, by comparing
benchmarks performed using traces corresponding to different
levels of accuracy.

4 IMPLEMENTATION OF EDGEDROID
The system architecture is composed of a cloudlet, where one

or more instances of the target application run, and one or more
client devices, as pictured in Figure 3. These correspond to com-
pletely unaltered instances of the target application, running inside
containers [12]. This allows the suite to extract metrics from them
while remaining transparent to the application. Here we also deploy
the central component of EdgeDroid 1.0, the control backend.

The control backend is implemented in Python 3.6. Its main pur-
pose is to act as a central point of control and configuration of the
experiments, as well as to aggregate results. It controls the exe-
cution of the application instances and configures the experiment
and client devices, while also collecting system metrics during the
execution of the benchmarks. The experiments are configured in a
centralized manner to simplify scaling. Backend and clients commu-
nicate over TCP, using a simple application-layer protocol which
allows for remote configuration, transmission of the trace data and
result data, and synchronization of clocks across the system. Note
that although in the current implementation of the system the back-
end runs co-located with the application instances on the cloudlet,
we plan on implementing functionality for distributed monitoring
from a separate computer and/or across multiple cloudlets.

The client emulators correspond to Android applications with the
main purpose of emulating a real user utilizing the target cognitive
assistance application. The emulators achieve this by mimicking the
operation of real clients, but instead of obtaining the input data from
the on-board sensors, they extract it from the previously recorded



Play

Change
step

Rewind

Shut
down

Finished step but
no feedback received

Received feedback

Step
not finished

Step changed

All steps
finished

Rewound

Too many
rewinds

Figure 4: Preliminary user model.

Table 1: Hardware used in the experiments.

CPU
Freq.
[GHz] Cores

RAM
[GB]

Operating
System

Cloudlet
Intel® Core™
i7–6700 3.4 4 32

Ubuntu 17.10,
kernel v4.13.0

Clients
ARM®
Cortex™–A53 1.3 4 2 Android 7.0

trace. They replay this data over the network to the application
instances employing, as mentioned in Section 2, a user model, while
simultaneously collecting client-side statistics and measurements.

The client emulators are remote-controlled — no interaction with
a user is necessary once the application is initialized, simplifying
large scale scenarios.

For our initial iteration of the EdgeDroid 1.0 benchmarking suite,
we implement a preliminary user model, depicted in Figure 4, to
run on the client emulators, designed with a linear task model in
mind. In EdgeDroid 1.0, our model is that of a user who is totally
impervious to poor system performance, and suffers no annoyance,
fatigue, frustration, nausea or other shortcomings of real human
users. This leads to a model of a user who responds in a precisely
reproducible and deterministic manner to the same system stimulus
every time. In the future, we envision building upon this approach
with many more human-like user models that more accurately
emulate attributes such as fatigue and annoyance.

Each step (i.e. segment) of the trace is played out to the backend
until feedback is received. If no feedback is received before the end
of the step, it is replayed a pre-configured numbered of times before
completely aborting the task (i.e. giving up). Note that this model
makes no distinction between positive and negative feedback, as
both simply require the user to perform a specific action which is
included in the trace.

5 USE CASES
In this section, we demonstrate the practical utility of EdgeDroid

1.0 through scalability measurements of real cognitive assistance
application running on a cloudlet. The questions we aim to answer
relate to the ability of EdgeDroid 1.0 to provide relevant and accu-
rate metrics on the performance of human-in-the-loop applications
running on edge computing infrastructure.

Of particular interest is the ability to provide information about
scaling limits in terms of latencies at both micro and macro levels.
We envision for instance a system designer performing the set of

experiments detailed in this section. The presented results would
allow them to identify a bottleneck in performance. From that they
could extrapolate to how they need to scale their system hardware
to manage their expected load, or they might conclude that their
wireless link is not good enough for the average case. They can also
obtain real-time measurements to determine runtime measures to
optimize performance, such as load balancing. On the other hand,
imagine an application developer who wishes to optimize their
application. EdgeDroid 1.0 would allow them to extract valuable
information on where to focus their efforts.

We chose the open sourceGabriel platform [2] running the LEGO
assistance application [3] for our experimentation. This applica-
tion guides a user through the assembly of a 2-dimensional LEGO
model with visual and auditory instructions. This functionality
can be observed online.† We chose it due to its maturity and sta-
bility compared to other applications which run on the Gabriel
platform, as well as the relative simplicity of the task it performs.
The application employs a straightforward, linear task model as the
one described in Section 2. Each state only allows for one specific
correct action by the user, and any other action triggers negative
feedback until the application is reset to the previous state. The
application has several different LEGO models to choose from, all
of them roughly equal in complexity. The specific task chosen for
the experiments detailed in this section consists of the assembly of
a 7-piece LEGO model. The task has 7 distinct steps, and takes an
average of approximately 2 minutes for a normal, untrained user
to perform. The input to the task model consist of a video stream
captured either by an Android phone or a Google Glass wearable.

It should be noted that the Gabriel platform by design always
sends an acknowledgment for each input it receives, even when it
is discarded, allowing us to measure latency for all inputs.

Table 1 shows the hardware and software specifications for the
cloudlet and the clients. The components communicated through a
single consumer-grade WiFi (IEEE 802.11n, 2.4 GHz) access point.
We considered exclusively off-the-shelves hardware and software.
To minimize interference during the measurements, we locked the
wireless link to the least congested available channel.

To ensure statistical independence between each emulated user,
the initialization of each client emulator was subject to a random
delay within a predefined window of time at the beginning of each
run. This way, the time between the start of any two clients in any
repetition of the experiment is stochastic, leading to independent
samples from each. We also only take into account metrics collected
while all clients were concurrently running.

Our measurements were obtained from series of scenarios, re-
peated 100 times each. We performed three optimal scenarios with
1, 5 and 10 clients each, the signal strength of the WiFi link being
an excellent −40 dBm. Next, a scenario where the 10 clients were
moved to another room roughly 10m away, thus degrading the
network link to an average measured strength of −73 dBm. Finally,
we studied an additional optimal single-client scenario focused on
latency distributions and jitters within application execution path.
This scenario is used to showcase the utility of EdgeDroid 1.0 for
application developers.

†https://www.youtube.com/watch?v=7L9U-n29abg

https://www.youtube.com/watch?v=7L9U-n29abg


1 Client
Optimal

5 Clients
Optimal

10 Clients
Optimal

10 Clients
Impaired

WiFi

0 0

200 200

400 400

600 600

800 800

1000 1000

Ti
m

e 
[m

s]

RTT - No Transition
RTT - State Transition

Figure 5: Comparison of round-trip-times for inputs that triggered
a state transition in the task model versus inputs that did not.

1 Client
Optimal

5 Clients
Optimal

10 Clients
Optimal

10 Clients
Impaired

WiFi

0 0

100 100

200 200

300 300

400 400

500 500

600 600

Ti
m

e 
[m

s]

Uplink Time
Processing Time
Downlink Time

Figure 6: Distribution of latency across system components for in-
puts that triggered a state transition in the task model.

200 200

250 250

300 300

350 350

Ti
m

e 
[m

s]

Err
or

Sta
rt

0 t
o 1

1 t
o 2

2 t
o 3

3 t
o 4

4 t
o 5

5 t
o 6

6 t
o E

nd
0 0

50 50
RTT

Figure 7: Round-trip-times for input-feedback cycles associated
with state transitions in the internal task model for a single client
connected over an optimal wireless link.

6 RESULTS
The results presented in this section provide valuable insights

on both the system limits as well as on the application itself.
Figure 5 presents a comparison of the total measured round-trip-

times (RTTs) both for inputs which caused a state transition and

inputs that did not. Next, Figure 6 shows a comparison of the distri-
bution of latencies across system components for inputs that caused
an internal state change in the task model of the application. We
differentiate according to the three main components contributing
to latency, namely uplink and downlink transmissions, and backend
processing. Finally, Figure 7 depicts the distribution of RTTs for each
transition in the internal task model for a single client connected
over an optimal wireless link. These metrics were calculated by
recording the measured input-feedback cycle delay corresponding
to a change in state within the application. Thus, for instance, the
measurements located at column “3 to 4” in the figure correspond
to the aggregated round-trip-times for every input-feedback cy-
cle corresponding to a change from state 3 to state 4 within the
application task model, for the 100 repetitions of the scenario.

In the following discussion we will refer to inputs which trig-
gered a transition in the task model as feedback-rich inputs and
those that did not as feedback-less inputs.

For the analysis of these results, we will take into consideration
the bound of 600ms response time for step-by-step task-guidance
derived by the authors of [3]. This bound marks the point after
which further delays in the delivery of feedback to the user start to
negatively affect user experience, and allows for a straightforward
evaluation of the responsiveness of the system.

Wewill begin our analysis of the experiment results with Figure 5.
These results present a stark contrast in the round-trip-times for
inputs which cause a state transition versus inputs that do not, with
RTTs for the former being up to an order of magnitude greater. It’s
worth mentioning though that responses to feedback-less inputs
are invisible to the user, and are just included here as a sort of
baseline to compare feedback-rich round-trip times with.

We can identify a pair of interesting effects in the scaling of
the task-guidance WCA application. One, scaling behavior for the
application seems to be linear with respect to the number of clients.
Two, in the case of the impaired WiFi, the effect on the feedback-
rich inputs is very pronounced, with the average of the RTTs for
these inputs being over the previously discussed bound of 600ms.

It is worth noting that already at just 10 clients the response
times for feedback-rich inputs are very close to the bound. Looking
at this through the lens of a an application developer, it could hint at
a need for optimization of the later parts of the application pipeline,
since RTTs for inputs which are discarded in the detection stage of
the pipeline (i.e. feedback-less inputs) are still well below 200ms.

EdgeDroid 1.0 allows researchers to zoom into specific compo-
nents of the application feedback loop, as exemplified by Figure 6.
From this figure it is clear that the main component which con-
tributes to latency in the optimal case is the backend processing,
further lending credibility to our previous comment on the need
for optimization. Nevertheless, when the link quality decreases,
the delays on the downlink start to overshadow the delays on the
processing. Here, the downlink time sometimes almost reaches the
ideal bound by itself. A system designer might then conclude from
this that in order to be able to scale the application, their focus
needs to be on improving the quality of the wireless link before
increasing the processing power on the backend.

Finally, EdgeDroid 1.0 allows even more insights to be gained by
homing in to individual steps in a task-guidance WCA. Consider



Figure 7. The figure shows clears spikes in latencies at the transi-
tions from task state 3 to 4 and from task state 4 to 5, which could
indicate to the application developer that these specific transitions
are ripe for optimization.

7 CONCLUSIONS & FUTUREWORK
Benchmarking human-in-the-loop applications is hard, given

their tight interaction with human users who complicate the scaling
and repeatability of experiments. In this paper, we have presented
a benchmarking suite for this type of applications, called Edge-
Droid 1.0, capable of cutting out the need for users in performance
evaluations. We achieve this by employing pre-recorded sensory
input traces which we play over the network to the real applica-
tion backend, employing a parameterized user model to react to
feedback. We demonstrate its utility through a series of use case
scenarios, from which we are able to extract metrics regarding la-
tency both in regards to the application itself and the hardware
stack. We believe the EdgeDroid 1.0 suite thus represents an impor-
tant first step towards enabling inexpensive and low-complexity
large-scale research on the scaling limits of this type of applications,
a requirement for wide adoption of the technology.

Nonetheless, there is still future work to be done.
The user model presented in this paper is only preliminary, and

we are currently conducting research in characterizing user behav-
ior when interacting with WCA applications in order to present
a more complete model in the future. As mentioned in Section 4,
in EdgeDroid 1.0, our model is that of a user who does not suffer
any of the shortcomings of real human users such as annoyance, fa-
tigue, frustration, nausea. Rather, EdgeDroid 1.0 models a perfectly
stoic user who is like an automaton and responds in a precisely
reproducible and deterministic manner to the same system stimu-
lus every time. Of course, no real human user is an automaton. In
the future, we envision creating many versions of EdgeDroid (i.e.,
EdgeDroid 2.0, EdgeDroid 3.0, etc.) that embody more human-like
user models that more accurately emulate attributes such as those
mentioned above. Experimental validation of these human-like user
models via user studies will be an important part of our future work.

We are also working on expanding the benchmarking suite to
also work first with other types of Wearable Cognitive Assistance,
and later with other categories of human-in-the-loop applications.
Other types of WCA we will consider in future iterations of the tool
include real-time task-assistance WCA applications (such as the
Ping-Pong application described in [7]), which don’t have a linear
taskmodel like task-guidanceWCA and have tighter latency bounds
and context- and information-providing WCA applications, for
instance, applications which recognize faces and provide relevant
social-media information related to that person. The latter also do
not have a linear task model, but present more lax latency bounds.

ACKNOWLEDGMENTS
We thank Bobby Klatzky and Dan Siewiorek for many valuable

technical discussions relating to this research. We also thank our
shepherd, Wenjun Hu, and the anonymous reviewers for helping us
improve the paper. This research was supported in part by the Na-
tional Science Foundation (NSF), grant number CNS-1518865, the

VINNOVA grant MERIT (2017–05232). Additional support was pro-
vided by Intel, Vodafone, Deutsche Telekom, Verizon, Crown Castle,
NTT, and the Conklin Kistler family fund. Opinions, findings, con-
clusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the view(s) of their
employers or the mentioned funding sources.

REFERENCES
[1] D. Chatzopoulos, C. Bermejo, Z. Huang, A. Butabayeva, R.

Zheng, M. Golkarifard, and P. Hui. 2017. Hyperion: a wear-
able augmented reality system for text extraction and manip-
ulation in the air. In Proceedings of the 8th ACM on Multime-
dia Systems Conference (MMSys’17). ACM, Taipei, Taiwan.

[2] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satya-
narayanan. 2014. Towards wearable cognitive assistance.
In Proceedings of the 12th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys ’14).
ACM, Bretton Woods, New Hampshire, USA.

[3] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha,
K. Elgazzar, P. Pillai, R. Klatzky, D. Siewiorek, and M. Satya-
narayanan. 2017. An empirical study of latency in an emerg-
ing class of edge computing applications for wearable cogni-
tive assistance. In Proceedings of the Second ACM/IEEE Sym-
posium on Edge Computing (SEC ’17). ACM, San Jose, Cali-
fornia.

[4] T. Bittmann. 2017. The edge will eat the cloud. Gartner Re-
search.

[5] J. Flinn. 2012. Cyber foraging: bridging mobile and cloud
computing. Synthesis Lectures on Mobile and Pervasive Com-
puting.

[6] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan.
2013. Just-in-time provisioning for cyber foraging. In Pro-
ceeding of the 11th Annual International Conference on Mo-
bile Systems, Applications, and Services (MobiSys ’13). ACM,
Taipei, Taiwan.

[7] Z. Chen, L Jiang, W. Hu, K. Ha, B. Amos, P. Pillai, A. Haupt-
mann, and M. Satyanarayanan. 2015. Early implementation
experience with wearable cognitive assistance applications.
In Proceedings of the 2015 Workshop on Wearable Systems and
Applications (WearSys ’15). ACM, Florence, Italy.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. 2009.
The case for vm-based cloudlets in mobile computing. IEEE
Pervasive Computing.

[9] H. Al-Zubaidy, G. Dan, and V. Fodor. 2015. Performance of
in-network processing for visual analysis in wireless sensor
networks. In Proceedings of the IFIP Networking Conference
(IFIP NETWORKING’15).

[10] S. Schiessl, H. Al-Zubaidy, M. Skoglund, and J. Gross. 2017.
Finite-length coding in edge computing scenarios. In Pro-
ceedings of the International Workshop on Smart Antennas
(ITG WSA ’17).

[11] 2018. TOML. [Online; accessed 25. Sep. 2018]. https://github.
com/toml-lang/tomll.

[12] 2018. Docker. [Online; accessed 14. Aug. 2018]. https://www.
docker.com.

https://github.com/toml-lang/tomll
https://github.com/toml-lang/tomll
https://www.docker.com
https://www.docker.com

	Abstract
	1 Introduction
	2 Background
	3 Approach of EdgeDroid
	4 Implementation of EdgeDroid
	5 Use Cases
	6 Results
	7 Conclusions & Future Work
	Acknowledgments

