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Abstract—This paper proposes a new approach for physical
layer authentication where transmissions are authenticated based
on the single-input/multiple-output channel-states observed at
multiple distributed antenna-arrays. The receiver operating char-
acteristics (ROC) are derived in terms of closed form expressions
for the false alarm and missed detection probability in order
to evaluate the effectiveness compared to single-array authen-
tication. To this end, we study the worst-case missed detection
probability based on the optimal attacker position. Finally, we
apply our previously developed queueing analytical tools, based
on stochastic network calculus, in order to assess the delay per-
formance impacts of the physical layer authentication scheme in
a mission-critical communication scenario. Our results show that
the distributed approach significantly outperforms single-array
authentication in terms of worst-case missed detection probability
and that this can help mitigating the delay performance impacts
of authentication false alarms.

I. INTRODUCTION

Authenticating transmissions at the physical layer (PHY) is

an alternative method for fast and lightweight verification of

transmitter identities and detection of impersonation attacks

in wireless systems. The advantages of low security overhead

and low complexity make such schemes interesting for many

future use-cases in arising mission-critical machine type com-

munications (MTC) where high reliability and low latency are

key requirements [1].

A physical layer authentication scheme verifies the transmit-

ter identity using hypothesis testing based on dedicated fea-

tures of the communication pair, like e.g., the location-specific

channel frequency response [2], received signal strength, or

multiple-antenna angle-of-arrival (AoA). Authentication based

on diverse and multi-dimensional features provides security in

the sense that estimation and impersonation of the legitimate

transmitter features is very difficult which, in contrast to cryp-

tographic techniques, does not presuppose any computational

limitations of the attacker. On the other hand, physical layer

authentication schemes suffer from inevitable false alarms

which might require retransmissions that could be detrimental

in delay critical applications.

In our previous work [3], we studied the detection and

delay performance of physical layer authentication in a MTC

network with a multiple-antenna access point for various attack

strategies based on queueing theory and stochastic network

calculus [4]. This work concluded that, compared to the single-

antenna case, introducing 4-8 receiver antennas significantly

improved both detection rate and delay performance. However,

we also observed a degradation in the detection performance

for certain attacker positions due to the inability of the

linear receive array to distinguish between transmissions from

similar AoAs. In this work, we resolve this problem by

introducing physical layer authentication based on multiple

spatially distributed antenna arrays. By characterizing the

detection performance with closed form expressions, we are

able to quantify the benefits of the distributed approach over

a conventional deployment and to provide important insights

into deployment strategies.

To the best of our knowledge, distributed physical layer

authentication has only been studied in [5] where multiple

receivers forward the observed, possibly compressed, features

which are then authenticated by a central processing unit. Our

work differs from [5] in that we consider multiple antennas at

each receiver, spatial modeling of the physical layer channels,

and the delay impacts in a mission-critical communication

scenario. Applying physical layer authentication for mission-

critical MTC was first mentioned in [1]. However, this work

does not consider the authentication-induced delays that are

highly relevant in such scenarios. Furthermore, queuing theory

has been employed for studying delay impacts of physical

layer security techniques in [6–8]; however, besides our own

work in [3, 9], none has studied the impact of authentication

delays.

In order to be able to characterize the benefits of the

distributed antenna array architecture proposed in this paper,

we provide as one of our main contributions a closed form

expression for the missed detection probability, given as a se-

ries expansion in terms of non-central χ2 distributions. To get

a location independent metric for the detection performance,

we introduce the worst-case missed detection rate based on

an optimally positioned attacker. We furthermore combine

the derived detection performance results with our previously

developed delay analysis tools in [3] in order to assess the

baseline delay performance impacts of the scheme with the

attacker remaining inactive. Our results show that distributing

antenna arrays significantly improves the performance of phys-

ical layer authentication for a fixed total number of receive

antennas, both in terms of security and delay performance

impacts.

This paper is organized as follows: Section II introduces

the system model, the proposed distributed physical layer

authentication scheme, and the problem formulation. Sec-



tion III analyses the authentication scheme in terms of false

alarm probability, missed detection probability, and worst-case

missed detection probability. Section IV introduces the queue-

ing and delay analysis tools employed in [3] and its application

in this paper. Section V provides numerical results studying

the performance under different deployment scenarios. Finally,

the paper is concluded in Section VI.

Notation: We let X, XT , X†, and tr(X) denote matrices,

their transpose, conjugate transpose, and trace, IN denotes the

(N×N) identity matrix, and bold symbols x represent vectors

with entries xi. The operation ‖x‖ =
√

|x1|2 + ...+ |xn|2

represents the Euclidian norm. For an event E, we let P(E)
and I(E) denote the probability and indicator function, re-

spectively, and for a random variable X , E[X ] denotes its

expected value. By CN (µ,Σ), we denote the multivariate

complex Gaussian distribution with mean µ and covariance

matrix Σ. We denote by χ2
k(λ) a non-central χ2 distribution

with k degrees of freedom and non-centrality parameter λ
and let Fχ2 (k; ν;x) and fχ2(k; ν;x) denote its cumulative

distribution function (CDF) and probability density function

(PDF), respectively.

II. SYSTEM MODEL AND PHYSICAL LAYER

AUTHENTICATION SCHEME

(xB,1, yB,1)

(xB,2, yB,2) (xB,3, yB,3)Alice (xA, yA)

Eve (xE, yE)

Bob

Fig. 1. System deployment consisting of central processing unit Bob equipped
with distributed antenna arrays, legitimate single-antenna MTC device Alice,
and adversary MTC device Eve.

As depicted in Fig. 1, we study a system consisting of

a single-antenna device Alice positioned at (xA, yA), com-

municating uplink data to a central processing unit equipped

with multiple antenna arrays, referred to as Bob. We propose

a physical layer authentication scheme, described in detail

in Section II-B, in which Bob verifies the legitimacy of

the transmissions based on the line-of-sight (LOS) single-

input/multiple output (SIMO) channel-states between the

transmitter and the distributed antenna arrays. The adversary

Eve, also depicted in Fig. 1, is a single antenna device posi-

tioned at (xE , yE) with the intention of impersonating Alice

in order to communicate fraudulent messages to Bob. For the

queueing analysis of a stream of authenticated messages from

Alice to Bob, presented in detail in Section IV, we assume that

a constant flow of data is arriving at a local buffer at Alice

and that this data needs to be communicated to Bob within a

strict delay deadline.

A. Line-of-Sight Channel Model

We assume that Bob is equipped with Ka linear antenna

arrays consisting of NRx antennas each and that Alice has a

line-of-sight path to each array. The line-of-sight paths are

required for the proposed authentication scheme and may be

considered a limitation. However, such assumptions also exist

in related work, for instance for line-of-sight beamforming

for secret key agreement [10]. The jth array is positioned at

(xB,j , yB,j) and with horizontal rotation Θj . The channels are

modeled as narrowband Rice fading SIMO channels, i.e., the

complex channel vector from Alice to array j, denoted by

hA,j , is modeled as a circular-symmetric complex Gaussian

(CSCG) vector with mean denoted by µA,j and covariance

matrix by ΣA,j . The arrays are furthermore assumed to be

spaced sufficiently far apart so that the channel realizations

can be seen as independent (i.e., hA,j ⊥⊥ hA,j′ for j 6= j′).
Denoting by dA,j and ΦA,j the distance and angle-of-arrival

from Alice w.r.t. array j, respectively, and assuming that

dA,j ≫ λc∆r where ∆r denotes the normalized antenna

spacing, the channel mean µA,j can be modeled as a phased

array antenna

µA,j = Ae−
j2πdA,j

λc e(ΩA,j), (1)

where ΩA,j = sin(ΦA,j) is the directional sine, e(Ω) =
1√
NRx

[

z0, zΩ, · · · , z(NRx−1)Ω
]

is the unit spatial signature in

terms of the complex number z = e−j2π∆r , and A =
√

PA,jNRxKA,j

KA,j+1 with KA,j denoting the Rice factor. PA,j =

P0d
−β/2
A,j is the received power per antenna element according

to a path-loss model with exponent β and transmit power

P0. The array-specific covariance matrix is given by ΣA,j =
√

PA,j

KA,j+1Λ where Λ is a correlation matrix with unit diagonal

so that E[‖hA,j‖2] = PA,j . In this paper, we model the

correlation matrix according to ΛA,j = I, i.e., we assume

that the antenna spacing is large enough so that no antenna

correlation is present.

Adversary Assumptions: The channel from Eve to array j,

denoted by hE,j ∼ CN (µE,j ,ΣE,j), is modeled similarly to

Alice’s channels with dE,j and ΦE,j denoting the distance and

angle-of-arrival of Eve w.r.t. array j, respectively, and KE,j

denoting the Rice factor. We assume that Eve transmits with

the same power P0 as Alice.

In the rest of this paper, we will let vector h with index

j excluded denote the (1 × NRxKa) concatenated vector

h =
[

h
T
1 . . . h

T
Ka

]T
, i.e., hA and hE represent the

concatenated channel state from Alice and Eve, respectively,

to all antenna arrays. For the CSCG mean and covariance

matrices, we similarly let

µ =







µ1
...

µKa






, and Σ =











Σ1 0 · · · 0.
0 Σ2 · · · 0

...
...

. . .
...

0 0. · · · ΣKa











(2)



denote the concatenated mean and covariance matrix. The

diagonal form of Σ is sufficient for our purposes since we

assume that fading is independent between antenna arrays.

B. Physical Layer Authentication with Distributed Receive

Arrays

Bob performs hypothesis testing to verify the identity of the

source of each transmission. We denote the observed channel

state at array j by h̃j and let H0 represent the hypothesis that

the distribution of h̃j is parameterized by µA and ΣA (i.e., the

transmission is legitimate), and H1 that h̃j is parameterized

by µE and ΣE (i.e., originating from the adversary). The le-

gitimate distribution parameters µA,j,ΣA,j are assumed to be

available to Bob in a feature bank1. However, the distribution

of Eve’s channel remains unknown to Bob. To authenticate a

new transmission, Bob constructs the concatenated vector h̃,

and given that the transmission is legitimate, Bob knows that

h̃j ∼ CN (µA,j,ΣA,j). Consequently, Bob also knows that

h̃|H0 ∼ CN (µA,ΣA).
Bob uses a generalized likelihood ratio test (GLRT)

d(h̃)
H1

≷
H0

T, (3)

with a threshold T as a design parameter and the discriminant

function d(h̃) = 2(h̃ − µA)
†
Σ

−1
A (h̃ − µA) that quantifies

the similarity between the observation and the legitimate

distribution [3]. If Bob decides H0, the transmission is con-

sidered authentic and the data is accepted. If Bob on the other

hand decides H1, it is declared as a fraud and the data is

rejected. We assume that Bob’s decision is reported back to

the transmitting device via an error free feedback channel.

Error events: There are two types of errors that can occur

in the physical layer authentication scheme: i) a false alarm,

when a legitimate message from Alice is rejected, and ii)

a missed detection, when a fraudulent message from Eve is

accepted. The probabilities of these events can mathematically

be formulated as

pFA(T ) = P(d(h̃) > T |H0) and

pMD(T ) = P(d(h̃) < T |H1).
(4)

Bob can freely choose the authentication threshold T in (3).

However, minimizing the false alarm and missed detection

probabilities in (4) are generally two conflicting objectives.

C. Problem Formulation

In this paper we address two problems with respect to

the proposed multiple antenna-array authentication scheme de-

scribed in this section: i) we wish to characterize the detection

performance in terms of false alarm and missed detection

probabilities in closed form, and ii) we wish to evaluate

the performance improvements from the proposed multiple

antenna-array authentication scheme in terms of detection

and delay performance. Problem i) arises due to the block

1Such distributions can be obtained in a training phase or from channel
prediction. However, the details of this process are omitted in this work.

structure of the covariance matrices in (2) which makes a

straightforward extension of previous works for calculating the

missed detection probability impossible. We solve this issue

in Section III by a series expansion in terms of non-central χ2

distributions. Problem ii) is addressed by combining the results

from Section III with our previously developed delay analysis

tools in [2], summarized in Section IV, and by illustrating the

results in a numerical study for different deployment strategies

in Section V.

III. PERFORMANCE ANALYSIS OF DISTRIBUTED

PHYSICAL LAYER AUTHENTICATION

We begin this section by providing closed form expressions

for the false alarm and missed detection probabilities in (4) for

a given attacker distribution. Next, since a given distribution of

Eve’s channel is dependent on a specific attack position, we

introduce the worst-case missed detection rate based on the

optimal attack position outside a physical exclusion region.

A. False Alarm and Missed Detection Probabilities

The false alarm probability is given by the following propo-

sition:

Proposition 1. The false alarm probability in the test (3) with

threshold T is given by

pFA(T ) = 1− Fχ2(2NRxKa; 0;T ), (5)

Proof. The fact that under H0 we have d(h̃) ∼ χ2
2NRxKa

(0) is

a standard result, for instance proven in [11]. It is from this

observation clear that pFA(T ) = P(d(h̃) > T |H0) is given by

(5).

Next, we turn to the analysis of the missed detection prob-

ability which is more involved due to the spatial distribution

of the antenna arrays. First, we provide a general expression

for the missed detection probability given a particular attacker

distribution in the following proposition:

Proposition 2. The missed detection rate in the test (3) can

be written in integral form

pMD(T ) =

∫

· · ·

∫

Y

Ka
∏

j=1

fχ2(ki, νj , yj)dyj · · · dyKa
, (6)

with Y = {y1, · · · , yKa
;
∑Ka

j=1 αjyj < T } , αj =
√

PE,j(KA,j+1)
PA,j(KE,j+1) , νj = 2(µE,j − µA,j)

†
Σ

−1
E,j(µE,j − µA,j),

and ki = 2NRx.

Proof. From the block structure of the covariance matrix in

(2) it is trivial to see that

d(h̃) =

Ka
∑

j=1

2(h̃j − µA,j)
†
Σ

−1
A,j(h̃j − µA,j). (7)

Through the observation that ΣE,j =
√

PE,j

KE,j+1Λ and

ΣA,j =
√

PA,j

KA,j+1Λ, we get that ΣE,j = αjΣA,j with



αj =
√

PE,j(KA,j+1)
PA,j(KE,j+1) and it is clear that d(h̃) =

∑Ka

j=1 αjYj

with Yj = 2(h̃j−µA,j)
†
Σ

−1
A,j(h̃j−µA,j). It is straightforward

to prove that Yj is distributed according to χ2
2NRx

(νi) [3].

What remains is to note that pMD(T ) = P(d(h̃) < T |H1),
i.e., pMD(T ) = P(

∑Ka

j=1 αjYj < T ) which is given by (6)

since the χ2 random variables Yj are independent.

Solving the integral (6) is complicated except for the special

case α1 = α2, · · · , αKa
= α which yields d(h̃) ∼ χ2

2NRxKa
(ν)

with ν =
∑Ka

i=1 νi and the missed detection probability

pMD(T ) = Fχ2 (2NRxKa; ν;T ). For the general case, we

instead note that pMD(T ) is equivalent to the CDF of the

weighted sum of non-central χ2 given by d(h̃) =
∑Ka

j=1 αjYj

for which approximative solutions exist in previous litera-

ture. Approximate methods are based on inverse Laplace-

transform of an approximate moment generating function [12],

χ2 approximations with cumulant matching [13], or truncated

series expansions in terms of central χ2 CDFs [14]. The latter

approach is utilized to provide a closed form expression for

the missed detection probability in the following theorem:

Theorem 1. The missed detection rate in the test (3) can be

written

pMD(T ) =

∞
∑

i=0

ciF2(i+k̄)(y/β) (8)

for any 0 < β ≤ min(α1, · · · , αKa
) with k̄ =

∑Ka

i=0 ki,

κi = 1 − β/αi, gk = NRx

∑Ka

i=0 κ
k
i + k/2

∑Ka

i=0 νiκ
k−1
i (1 −

κi), c0 =
∏Ka

i=0(β/αi)
NRx exp(−1/2

∑Ka

i=0 νi), and ck =

k−1
∑k−1

r=0 gk−rcr for k ≥ 1.

Proof. From Proposition 2, we know that pMD(T ) =
P(
∑Ka

j=1 αjYj < T ) with Yj distributed according to χ2
ki
(νi).

The series expansion (8) of its CDF is provided in Section VI

in [14].

For a computable expression for the missed detection rate,

we can truncate the sum in (8) and write papprox
MD (T ) =

∑N
i=0 ciF2(i+KaNRx)(T/β). The truncation error ǫ(N) =

pMD(T )− papprox
MD (T ) is shown in [14] to be bounded by

0 < ǫ(N) ≤ 1−
N
∑

k=1

ck. (9)

B. Worst-Case Missed Detection Probability

The derived missed detection rate is dependent on the

particular position of Eve through the channel distribution

and Eve can choose her position to optimize her success

probability (e.g, a location close to Alice or with similar

angle-of-arrival w.r.t. the receive array). Therefore, in this

paper we adopt a worst-case detection performance metric

based on a physical exclusion region2 R(R) = {(x, y) ∈

2Obviously, pMD ≈ 1 at positions very close to Alice where the channel
distribution is close to the legitimate (i.e., µE ≈ µA). The rationale behind
this region is to exclude such points from Eve’s choices.

R
2; (x − xA)

2 + (y − yA)
2 ≤ R2} and let Eve optimize her

position outside the exclusion region:

p
(max)
MD (T,R) = max

(xE ,yE)∈R(R)c
pMD(T, xE , yE). (10)

In other words, p
(max)
MD (T,R) captures the highest success-rate

an adversary can achieve given that it cannot get closer to

the legitimate device than a distance of R. Note that in this

work, we only consider grid search methods for optimizing

the attacker position.

IV. QUEUEING ANALYSIS OF AUTHENTICATION DELAYS

Authentication false alarms during a stream of messages

transmitted from Alice might cause unwanted retransmissions

resulting in delays. In our previous work [3], we developed a

queueing model taking the inevitable false alarms into account.

In this section, we present how this analysis can be applied

to the system model considered in this paper. For complete

details, we refer the reader to [3]. We note that in this paper,

the focus is on the baseline queueing performance on the single

link from Alice to Bob and Eve is remaining inactive not

interfering with the transmissions.

A. Queueing Modelling of Authentication Delays

We model a flow of data from Alice to Bob as a queueing

system with a stochastic service process due to authentication

false alarms and channel fading. The bivariate stochastic pro-

cesses A(τ, t) =
∑t

k=τ ak and D(τ, t) =
∑t

k=τ dk represent

the cumulative arrivals to and departures from the queue in

the time interval [τ, t) for all 0 ≤ τ ≤ t. In frame k, ak
represents the instantaneous arrivals to Alice’s buffer measured

in bits, and dk represents the instantaneous departures from

the queue (i.e., information successfully received at Bob).

The links ability to transfer data from the buffer at Alice

to the destination at Bob is characterized by the cumulative

service process S(τ, t) =
∑t

k=τ sk, where sk represent the

instantaneous service in frame k (i.e., the available resources

for transmitting information bits over the wireless channel with

error-free reception at Bob).

In this paper, we assume a frame based medium access

scheme where the uplink grants transmission of M complex

symbols in each frame. We consider a deterministic arrival

process where ak = a bits arrive in each frame. The transmis-

sion in each frame is modeled by: i) Alice adopts a coding

rate R(k) and encodes MR(k) information bits from the buffer

that are transmitted over the channel, ii) Bob employs maximal

ratio combining (MRC) using the received symbols from each

antenna array, iii) Bob authenticates the transmission using the

observed channel state h
(k)
A and reports the decision through

an error-free feedback link. According to the channel model in

Section II-A, the channel from Alice to Bob is a Rice fading

SIMO channel with h
(k)
A ∼ CN (µA,ΣA) and we assume that

the frame period is long enough such that h
(k)
A is i.i.d fading

across frames. Given MRC at Bob, we adopt the Shannon

capacity R(k) = log

(

1 +
‖h(k)

A
‖2

N0

)

as a proxy for the adopted



rate in frame k where N0 is AWGN noise power. Given these

assumptions, the service model can be written as

sk =







M log

(

1 +
‖h(k)

A
‖2

N0

)

, if Xk

0 if Xc

k,
(11)

where we let Xk denote the event that frame k is successfully

authenticated (i.e., P(Xk = 0) = pFA(T )).

Delay performance can be evaluated through the delay

violation probability

p(w) = P(W (t) > w), (12)

i.e., the probability the the delay exceeds a defined deadline

w, where W (t) , inf{u > 0;A(0, t) ≤ D(0, t+u)} represent

the queueing delay at time t (i.e., the frames required to serve

the bits in the queue at time t).

B. Delay Violation Bound Using Stochastic Network Calculus

Stochastic network calculus is a mathematical framework

that allows us to analyze input-output relationships of stochas-

tic queueing systems. The work in [15] developed the stochas-

tic network calculus framework for wireless fading links by

observing that the analysis can be conducted conveniently by

converting the bivariate stochastic processes A(τ, t), S(τ, t)
and D(τ, t) into A(τ, t) , eA(τ,t), S(τ, t) , eS(τ,t) and

D(τ, t) , eD(τ,t), referred to as the SNR-domain processes.

Performance bounds are derived in terms of Mellin transforms,

defined as MX(s) = E[Xs−1] for a random variable X , of

the involved SNR-domain processes. An upper bound on the

delay violation probability is given in [15], recapitulated in

the following lemma:

Lemma 1. The delay violation probability is upper bounded

by

p(w) ≤ inf
s>0

{

MS(1− s)w

1−MA(1 + s)MS(1− s)

}

, (13)

where MS(s) , E[esk(s−1)] and MA(s) , E[eak(s−1)]
under the stability condition MA(1 + s)MS(1 − s) < 1.

Proof. See Theorem 1 in [15] and [3] for details.

The steady-state kernel in (13) has been shown to be a

convex function for every s in the stability interval MA(1 +
s)MS(1 − s) < 1 (see Theorem 1 in [16]). However, no

previous works have provided an analytical solution to this

minimization problem, so one typically resorts to grid search

methods.

In [3], we derived the service-process Mellin transform

MS(s) for a service model of the form (11). In the following

Section V, we apply the bound (13) to the authentication

scheme presented in this paper to evaluate the delay perfor-

mance impacts of the distributed physical layer authentication

scheme.

50 m

50 m

Parameter Value

Carrier frequency 2.4 GHz

∆r 0.5

KaNRx 8

β 4

P0 100 mW

Ka = 1 {A1}
Ka = 2 {A1, A3}
Ka = 4 {A1, A3, A5, A7}
Ka = 8 {A1-A8}

Fig. 2. Deployment scenario and system parameters.

V. NUMERICAL RESULTS

In this section, we numerically study the performance of

the distributed authentication approach with Ka = {1, 2, 4, 8}
arrays. It is important to note that in this section we always

consider a fixed total number of antennas KaNRx = 8 dis-

tributed over the Ka arrays. The system deployment, relevant

parameter values, and the array deployment mapping can be

seen in Fig. 2. The arrays are deployed 25 m from and directed

towards the center where Alice is situated at (xA, yA) =
(25, 25) m. For positioning of Eve, the optimal coordinates are

obtained according to (10) through an exhaustive search due

to lack of an analytical solution. Note that due to symmetry,

the deployment in Fig. 2 contains many equivalent attacker

positions which help reduce the size of the search.

In Fig. 3(a), we show the ROC performance curve for

each deployment scenario when Eve is located at the optimal

position outside the exclusion region with R = 20 m. A

truncation at N ≈ 200 terms is sufficient for (8) to get an

approximation error ǫ(N) < 10−6. With a single array, the

performance is poor since Eve can mimic the channel of Alice

by positioning herself at the same distance from A1 at the

opposite side in order to mirror the position of Alice. However,

we also see that the distributed approaches are outperforming

the single array scenario with the highest performance gain

achieved for Ka = 4 arrays of NRx = 2 antennas each. The

reason that performance degrades from Ka = 4 to Ka = 8 is

that the latter setup consists of single-antenna receivers which

cannot resolve the direction of the received signal.

Fig. 3(b) illustrates the optimal polar coordinates for Eve

w.r.t. Alice’s position as functions of the radius R of the

physical exclusion region. We observe that for R > 10, Eve

is constantly choosing the angle φE = 0 i.e., she is placed

at the opposite side of array A1 (see Fig. 2). We also see

that Eve is choosing positions approximately mirroring the

distance from Alice to array A1 (positioned 25 m from Alice

in the considered deployment scenario). However, our results

show that the mirroring point is not fixed but depending on the

number of antenna arrays. The variations of φE for Ka = 2
are due to numerical imprecisions and the asymmetry of the

Ka = 2 array configuration (see Fig. 2).
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Fig. 3. Nummerical results: (a) ROC curves considering Eve at optimal position. KRice = KRice,E = 7 dB. (b) Optimal Eve position in polar coordinates

w.r.t. Alices position, (c) Delay wǫ for ǫ = 10−6 for various worst-case missed detection rates (MDR).

In Fig. 3(c), we illustrate the delay performance impacts

of the different deployment scenarios considering the optimal

attacker position. We have assumed M = 100 complex

symbols/frame and a fixed arrival rate of a = 500 bits/frame.

We evaluate the delay wǫ that is guaranteed not to be violated

with a confidence of ǫ = 10−6, i.e., p(wǫ) ≤ ǫ. Fig. 3(c)

shows again that the performance of the single array scenario

is poor when the attacker position is optimal. The reason for

this is frequent false alarms due to the fact that the threshold

T needs to be very low to achieve the missed detection rates

(MDR) in Fig. 3(c). On the other hand, we can observe that the

distributed approach can guarantee much lower delays even

at fairly low worst-case missed detection rates (i.e., MDR

= 10−6). Again, the performance is optimized for Ka = 4
arrays which is expected since this scheme can achieve the

lowest false alarm rate for a given missed detection rate (see

Fig. 3(a)).

The numerical study verifies that our proposed physical

layer authentication approach improves detection and delay

performance for a fixed total number of antennas. Further-

more, it illustrates that the completely distributed approach

of Ka = 8 single antenna receivers is suboptimal, and hence,

there is an optimal array deployment (i.e., Ka = 4 in our case).

Positioning of Eve through the exhaustive grid search method

seems to indicate that the optimal position is at the opposite

side of any of the antenna arrays, regardless of the number of

arrays. Investigation of more sophisticated optimization tools

for finding worst-case attacker positions is left for future work.

VI. CONCLUSIONS

In this paper, we have proposed and studied a new approach

for physical layer authentication using multiple distributed

antenna arrays. We have provided closed expressions for the

ROC, formulated a detection performance metric based on

the optimal attacker position, and applied our previous delay

analysis tools to the new scheme. As our results have shown,

our proposed approach outperforms the single-array scheme,

both in terms of worst case missed-detection rate and delay

impact. Moreover, the results illustrate that the completely

distributed approach of single antennas is suboptimal, and

hence there is an optimal choice of number of and antennas

per array.

For future work, we wish to extend the queueing analysis

to include an active adversary and show the effectiveness of

this distributed approach in mitigating various attacks. We

will also investigate analytical tools for finding the optimal

attacker position. Furthermore, we will introduce and analyze

different system architectures (e.g., independent decoding and

authentication at the remote arrays with fusing at the central

processing unit).
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