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Abstract—The efficient design of ultra-reliable low-latency
communication (URLLC) is a major research objective for
next generation wireless systems, in particular for industrial
automation applications. Massive MIMO has been successful
in providing high spectral and energy efficiency, and it is of
importance to investigate the potential gains and limitations
it exhibits when applied for URLLC. We study a scenario
where two sets of nodes with different traffic characteristics
communicate with a central node equipped with multiple antenna
elements. We characterize the outage probability when fully
orthogonal training sequences are used versus sharing of the
training sequences between the two sets of nodes. It is shown
that substantial performance gains can be reaped with shared
training sequences when there are strict latency requirements
and/or large number of nodes to be served.

I. INTRODUCTION

The efforts of researchers and the industry to advance
wireless communication systems have focused so far on pro-
viding higher data rates to the served users and improving
the energy efficiency of the networks. However, the fifth
generation (5G) of wireless networks is also expected to
support massive connectivity of multiple Internet-of-Things
(IoT) devices and ultra-reliable, low-latency communication
(URLLC) connections [1]. These additional services will cause
a major disruption in the design of 5G networks [2].

When the objective is to provide high data rates for ap-
plications with loose latency requirements or large amounts
of data, such as web browsing or video streaming, reliable
communication can be achieved by coding over large blocks
of information, as dictated by Shannon’s capacity results.
Further, the additional control signaling that is required to
establish a connection is not significant. In contrast, URLLC
includes transmission of short packets, with strict latency
and reliability requirements, which are sometimes triggered
by random, external events such as alarms. The combination
of low-latency, high reliability and potential intermittence of
communication impose considerable challenges to the system
design of URLLC [3].

The use of multiple antennas has undeniably transformed
the design of wireless networks in the recent decades. Re-
cently, Massive MIMO was shown to provide unprecedented
gains in spectral and energy efficiency [4]. However, one can
use the large number of base station antennas to achieve high

reliability instead of aggressive spatial multiplexing. Hence, it
is important to investigate the potential gains and the limita-
tions of Massive MIMO in the area of URLLC. Due to channel
hardening, Massive MIMO can effectively mitigate deep fades
in the wireless channel and, consequently, can provide a
reliable communication link. However, channel hardening can
only be exploited when there is accurate knowledge of the
propagation channel. This knowledge is typically acquired via
dedicated training, which increases the latency and reduces the
transmission rate. A rigorous characterization of this latency-
reliability trade-off is necessary.

In this work, we consider an uplink scenario, where two
sets of single-antenna nodes, termed periodic and sporadic,
respectively, communicate over the same time and frequency
resources with a central node equipped with a large number
of antennas. Both periodic and sporadic nodes communicate
blocks of critical information that must be delivered with
strict latency requirements. A block of information arrives
at each periodic node at constant time intervals, hence, the
periodic nodes transmit at every transmission opportunity. In
contrast, a block of information arrives at a sporadic node
randomly, hence, a sporadic node transmits (is active) only
at the transmission opportunities that a block of information
has arrived. An example, where such a scenario can arise
is the case of industrial automation, where a set of sensors
(periodic nodes) communicates periodically its measurements
towards an information fusion center (central node) and a
set of safety nodes (sporadic nodes) communicate their alarm
signals sporadically.

The central node acquires an estimate of the channel from
each node by dedicated channel training. An accurate channel
estimate for every node can be acquired only if each node
is assigned an orthogonal training sequence. However, with
strict latency constraints, large number of nodes and low
probability that a sporadic node is active, such a training
sequence assignment might be wasteful of resources. Orthog-
onal training requires longer training sequences, which might
exhaust the latency constraint and reduce the available time
for information transmission. A simple solution to reduce the
training overhead significantly is to assign the same training
sequence to a pair of one periodic node and one sporadic
node. However, in this case, the central node acquires a single
estimate for each pair of nodes, which adversely affects the



2

system performance.
In this work, the latency-reliability trade-off of the two dif-

ferent training sequence assignments is characterized in terms
of the outage probability under various operating conditions
and decoding strategies. It is shown that considerable gains
in terms of reliability can be achieved with non-orthogonal
training sequence assignment by means of simple signal
processing. Also, non-orthogonal assignment can achieve a
more balanced performance between the two groups of nodes.
Further, it is expected that better performance can be achieved
by using more sophisticated receive strategies and by appropri-
ately exploiting statistical information about the propagation
channels.

Notation: x denotes a scalar constant, x a scalar random
variable and x its realization. Vectors are denoted with bold
lower case letters and matrices with bold upper case letters.
The same convention with that of scalars, holds for vectors
and matrices, to distinguish constants, random variables and
random variable realizations. Also, for short we use R(x) =
log2(1 + x) and x

d
= y denotes that the random variable x is

equal in distribution to the random variable y.

II. SYSTEM MODEL AND CHANNEL ESTIMATION

The received signal at the central node on the i-th channel
use is given by

y[i] =
√
ρp

K∑
k=1

hkxk[i] +
√
ρs

2K∑
k=K+1

ϑkhkxk[i] + z[i], (1)

where ρp, ρs are the power constraints for the periodic
and the sporadic nodes during data transmission, respectively,
hk ∼ NC(0, IM ) is the channel vector of the k-th node and
is independent of the channel vectors of the other nodes,
xk[i] is the transmitted symbol from the k-th node and
ϑk ∈ {0, 1}, k = K + 1, . . . , 2K, is a binary variable set
to 1 when the corresponding sporadic node is active, else set
to 0. The additive white Gaussian noise vector is denoted by
z[i] ∼ NC(0, IM ).

The channels remain constant for a coherence interval of
Nc channel uses and change to an independent realization
after that. However, a latency constraint of NL channel uses
is assumed such that NL < Nc and, hence, the transmission
sees only one realization of the channel fading.

A. Estimation with Shared Training Sequences

Let xk ∈ CK×1 be the k-th training sequence, k =
1, . . . ,K, such that xHk xq = KI {k = q}, where I {·} is the
indicator function. The received signal at the central node
during training is given by

Ytr =
√
%p

K∑
k=1

hkx
H
k +
√
%s

2K∑
k=K+1

hkx
H
k−K + Ztr, (2)

where vec(Ztr) ∼ NC(0, IKM ) is the vectorized additive
white Gaussian noise matrix and %p, %s are the power con-
straints during training of the periodic and sporadic nodes,
respectively. The central node correlates the received matrix
Ytr with the training sequence xk and uses the statistic

ytr,k = 1√
K
Ytrxk to calculate the MMSE estimates for the k-

th periodic node and the (k+K)-th sporadic node, that consti-
tute a pair of nodes that share the same training sequence. The
MMSE estimate for the k-th periodic node is given by ĥk =
ĉp√
%pK

ytr,k ∼ NC(0, ĉpIM ), ĉp =
%pK

%pK+%sK+1 . Similarly, the

MMSE estimate for the (k+K)-th sporadic node is given by
ĥk+K = ĉs√

%sK
ytr,k ∼ NC(0, ĉsIM ), ĉs =

%sK
%pK+%sK+1 . The

associated estimation error vectors are denoted by h̃k. Observe
that the two channel estimates are colinear, in particular,
they are related as ĥk+K =

√
%s
%p
ĥk, hence, the quality of

estimation is compromised in order to be able to serve more
nodes with strict latency requirements.

Remark 1: When all the nodes in the system are assigned
orthogonal training sequences (in this case the length of the
sequences is 2K), the MMSE channel estimate for the k-
th periodic node is ĥ⊥k ∼ NC(0, ĉ

⊥
p IM ), ĉ⊥p =

2%pK
2%pK+1 .

Similarly, for the (k+K)-th sporadic node, the MMSE channel
estimate is given by ĥ⊥k+K ∼ NC(0, ĉ

⊥
s IM ), ĉ⊥s = 2%sK

2%sK+1 .

III. OUTAGE PROBABILITY

In this section we present the outage probabilities under
various operating conditions and decoding strategies. The
precise definition of outage probability within this work is
given in Definition 1, which follows in Section III-A. The
choice of the outage probability is natural within this context,
since the transmission experiences only one realization of the
channel fading, hence, the use of the ergodic capacity cannot
be justified. Further, relating to the motivating example from
industrial automation, industries design their operation so that
they adhere to predetermined safety integrity levels. In our
scenario, this translates to a maximum violation probability
requirement for a latency-constrained operation1. Since the
goal is to design the system according to those safety integrity
levels, it is of fundamental importance to define the relevant
measure of error and investigate its behavior.

The central node uses the acquired channel estimates,
Ĥ =

{
ĥk : k = 1, . . . , 2K

}
, to perform matched filtering to

the received signal, y[i], given by (1). The detected symbol
for the k-th node is given by x̂k[i] = ĥHk y[i].

A. Periodic Nodes with Inactive Paired Sporadic Nodes

In this case the sporadic node k+K, which is paired with the
periodic node k, is inactive, hence, ϑk+K = 0. The acquired
estimate, however, is still a superposition of the channels of
the k and k +K nodes. The detected symbol, x̂k[i], is

x̂k[i] = ĥHk y[i] =
√
ρp

∥∥∥ĥk∥∥∥2 xk[i] + ĥHk z̃k[i], (3)

where z̃k[i] =
√
ρph̃kxk[i] +

√
ρp
∑K
q 6=k hqxq[i] +

√
ρs
∑2K
q=K+1 ϑqhqxq[i] + z[i]. Using standard arguments [5,

Ch. 2, App. C], the mutual information I
(
xk[i]; x̂k[i]

∣∣Ĥ) for
the k-th periodic node with inactive paired sporadic node can
be lower-bounded by

1In this context, operation can be understood by a simple communication
task, or more complex, typically concatenated, operational steps.
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I
(
xk[i]; x̂k[i]

∣∣Ĥ) ≥ Rk(Ĥ) = R
ρp

∥∥∥ĥk∥∥∥4
ĥHk Ckĥk

 , (4)

where Ck = ρp
∑K
q 6=k βqĥqĥ

H
q + ξkIM , βq = 1 +

ϑq+K

(
ρs
ρp

)2
and ξk = ρpK(1− ĉp)+ρs |As| (1− ĉs)+1. As

is the set of active sporadic nodes and |As| =
∑2K
q=K+1 ϑq is

its cardinality.
Remark 2: For the case of fully orthogonal training, (4) is

still a lower bound on the mutual information for the periodic
and active sporadic nodes by simply setting ĥk 7→ ĥ⊥k ,

ĉp 7→ ĉ⊥p , ĉs 7→ ĉ⊥s and Ck = ρp
∑K

q=1
q 6=k

ĥ⊥q

(
ĥ⊥q

)H
+

ρs
∑2K
q=K+1
q 6=k

ϑqĥ
⊥
q

(
ĥ⊥q

)H
+ ξ⊥k IM .

Definition 1: The k-th node is in outage when Rk
(
Ĥ
)
<

rth, where rth is a threshold spectral efficiency. The outage
probability is given by pout(rth) = P

{
Rk
(
Ĥ
)
< rth

}
. 2

Proposition 1: For a selected transmission rate ηk, the
outage probability for the k-th periodic node with inactive
paired sporadic node is given by

pout,p(ηk) = P
{
R
(
ρpĉpup
IFPNk

)
<
ηk
$

}
, (5)

where up ∼ χ2
2M , IFPNk = ρpĉp

(
1 +

(
ρs
ρp

)2)
ws +

ρpĉpwp + 2ξk, ws ∼ χ2
2|As|, wp ∼ χ2

2(K−|As|−1) and
$ = 1− K

NL
.

Proof: For a fixed ĥk = ĥk we study the probabil-
ity P

{
Rk <

ηk
$

∣∣∣ĥk = ĥk
}

. Using Lemma 1, ĥ
H

k Ckĥk
d
=∥∥∥ĥk∥∥∥2 (ρp∑K

q 6=k
ĉpβq

2 vq + ξk

)
, where vq ∼ Exp(2) is a

sequence of i.i.d. exponential random variables with mean
2. By grouping the terms with ϑq = 1 and ϑq = 0 in two
different groups and using the fact that

∑n
i=1 vi ∼ χ2

2n, it

holds 2

‖ĥk‖2 ĥ
H

k Ckĥk
d
= IFPNk. Since 2

ĉp

∥∥∥ĥk∥∥∥2 d
= up ∼ χ2

2M

the result follows.
Corollary 1: For a selected transmission rate ηk when fully

orthogonal training is applied, the outage probability for the
k-th periodic node is given by

p⊥out,p(ηk) = P

{
R

(
ρpĉ
⊥
p up

ρpĉ⊥p wp + ρsĉ⊥s ws + 2ξ⊥k

)
<

ηk
$⊥

}
,

(6)

where up ∼ χ2
2M , wp ∼ χ2

2(K−1), ws ∼ χ2
2|As| and $⊥ =

1− 2K
NL

. The respective outage probability for the k-th active
sporadic node is given by

p⊥out,s(ηk) = P

{
R

(
ρsĉ
⊥
s us

ρpĉ⊥p wp + ρsĉ⊥s ws + 2ξ⊥k

)
<

ηk
$⊥

}
,

(7)

where us ∼ χ2
2M , wp ∼ χ2

2K and ws ∼ χ2
2(|As|−1).

2The outage event is defined in this work with respect to a lower bound
on the mutual information (see (4)). Hence, the derived outage probability is
an upper bound on the true outage probability.

B. Periodic Nodes with Active Paired Sporadic Nodes
In this case, matched filtering results in a corresponding 2-

node multiple access channel (MAC). We study the outage
performance of successive interference cancellation (SIC).
In particular, we study the outage performance under both
possible decoding orders of SIC, i.e., decoding either first the
periodic node (P-S) or first the sporadic node (S-P).

Proposition 2: The mutual information I
(
xk[i]; x̂k[i]

∣∣Ĥ) for
the k-th periodic node, when the paired sporadic node is
active and the decoding order is P-S, is lower-bounded by (4)

where Ck = ρp

(
ρs
ρp

)2
ĥkĥ

H
k + ρp

∑K
q 6=k βqĥqĥ

H
q + ξkIM .

The corresponding lower bound for the paired active sporadic
node, k +K, is I

(
xk+K [i]; x̂k+K [i]

∣∣Ĥ) ≥ Rk+K(Ĥ) where

Rk+K(Ĥ) = R

 ρs

∥∥∥ĥk+K∥∥∥4
ĥHk+KCk+K ĥk+K

 . (8)

The noise covariance matrix is given by

Ck+K = ρpĥkĥ
H
k ςk + ρp

K∑
q 6=k

βqĥqĥ
H
q + ξkIM . (9)

The binary variable ςk is set to 0 when the decoding of the
periodic node has been successful and to 1 when the decoding
of the periodic node has been unsuccessful.

Proposition 3: For a selected pair of transmission rates
(ηk, ηk+K), the outage probability for the k-th periodic node
with active paired sporadic node when the decoding order is
P-S is given by

pP-S
out,p(ηk) = P

{
R
(

SINRP-S
k

)
<
ηk
$

}
, (10)

where
SINRP-S

k =
ρpĉpup

ρp

(
ρs
ρp

)2
ĉpup + IFPNP-S

k

,

up ∼ χ2
2M and IFPNP-S

k = ρpĉp

(
1 +

(
ρs
ρp

)2)
ws+ρpĉpwp+

2ξk, ws ∼ χ2
2(|As|−1) and wp ∼ χ2

2(K−|As|). The outage
probability for the (k +K)-th active sporadic node is

pP-S
out,s(ηk+K) = pP-S

out,p(ηk)P
{
R
(

SINRP-S
k+K(1)

)
<
ηk+K
$

}
+
(
1− pP-S

out,p(ηk)
)
P
{
R
(

SINRP-S
k+K(0)

)
<
ηk+K
$

}
(11)

where

SINRP-S
k+K(ςk) =

ρsĉsus

ρs

(
ρp
ρs

)2
ĉsusςk + IFPNP-S

k+K

,

IFPNP-S
k+K = ρsĉs

(
1 +

(
ρp
ρs

)2)
ws + ρsĉs

(
ρp
ρs

)2
wp + 2ξk,

us ∼ χ2
2M , ws ∼ χ2

2(|As|−1) and wp ∼ χ2
2(K−|As|).

Proposition 4: The mutual information
I
(
xk+K [i]; x̂k+K [i]

∣∣Ĥ) for the (k + K)-th active sporadic
node, when the decoding order is S-P, is lower-bounded by
(8) and (9) for ςk = 1. The corresponding lower bound for
the paired periodic node, k, are given by (4) where

Ck = ρs

(
ρp
ρs

)2

ĥkĥ
H
k ςk + ρp

K∑
q 6=k

βqĥqĥ
H
q + ξkIM , (12)
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where, similarly, ςk is set to 0 when the decoding of the active
sporadic node has been successful and to 1 else.

Proposition 5: For a selected pair of transmission rates
(ηk, ηk+K), the outage probability for the (k +K)-th active
sporadic node when the decoding order is S-P is given by

pS-P
out,s(ηk+K) = P

{
R
(

SINRS-P
k+K

)
<
ηk+K
$

}
, (13)

where

SINRS-P
k+K =

ρsĉsus

ρs

(
ρp
ρs

)2
ĉsus + IFPNS-P

k+K

,

us ∼ χ2
2M and IFPNS-P

k+K
d
= IFPNP-S

k+K in Proposition 3. The
outage probability for the k-th periodic node is given by

pS-P
out,p(ηk) =

(
1− pS-P

out,s(ηk+K)
)
P
{
R
(

SINRS-P
k (0)

)
<
ηk
$

}
+ pS-P

out,s(ηk+K)P
{
R
(

SINRS-P
k (1)

)
<
ηk
$

}
(14)

where

SINRS-P
k (ςk) =

ρpĉpup

ρp

(
ρs
ρp

)2
ĉpupςk + IFPNS-P

k

,

up ∼ χ2
2M and IFPNS-P

k
d
= IFPNP-S

k in Proposition 3.

IV. NUMERICAL EXAMPLES

In this section we present numerical examples that reveal the
performance trade-off between the different communication
strategies. The values assigned to the parameters are summa-
rized: K = 30, |As| = 15, M = 60, NL = 100, %p = ρp,
%s = ρs = 0 dB. Two different scenarios are investigated,
namely, when ρs =

ρp
4 (strong periodic node) and when

ρs = 4ρp (strong sporadic node). In the strong periodic node
scenario, the selected operating point (in bits per channel use
(bpcu)) is (ηk, ηk+K) = (0.4, 0.05), ∀k = 1, . . . ,K. In the
strong sporadic node scenario the selected operating point is
(ηk, ηk+K) = (0.08, 0.5), ∀k = 1, . . . ,K. As a reference,
in Table 1 the corresponding ergodic rates are tabulated. The
selected operating points are in the corresponding ergodic rate
regions for ρp = 20 dB and are chosen to be relatively close
to the boundary. Hence, they are reasonable choices to balance
outage probability and information rate.

In the Figs. 1 and 2, the curves labeled “Orthogonal Train-
ing” correspond to (6) and (7) in Corollary 1, the “Inactive
Sporadic” correspond to (5) in Proposition 1, the “Active (P-
S)” correspond to (10) and (11) Proposition 3 and the “Active
(S-P)” to (13) and (14) in Proposition 5.

In Fig. 1 the outage probability of a periodic node is plotted
as a function of ρp3 in [dB] (Fig. 1a), as a function of the
antennas M at the central node (Fig. 1b) and as a function of
the latency constraint NL (Fig. 1c). In all cases, substantial
performance improvement is observed with respect to the
case of fully orthogonal training sequences. In Fig. 1a the
outage probability reaches a saturation level at high ρp. This
is attributed to the matched filtering at the receiver, which

3Due to the normalization of the channel statistics and the noise variance,
ρp is proportional to the SNR.

Table 1: Ergodic Rates

Strong Periodic Strong Sporadic
Periodic Sporadic Periodic Sporadic

Orthogonal 0.4198 0.1505 0.2099 0.5375
Inactive S 0.6325 0.0893
P-S 0.6329 0.0620
S-P 0.0925 0.7591

is a suboptimal strategy against strong interference. In Fig.
1b the outage probability decays rapidly with the number
of antennas, M , which verifies that even with rudimentary
signal processing, the use of excess antennas can substantially
improve the system performance. In Fig. 1c the performance
gap diminishes as NL grows large, since the training overhead
becomes less significant. In all plots, the constant gap between
the “Inactive Sporadic” and the “Active Sporadic (P-S)” is
attributed to the additional interference from the active paired
sporadic node. Finally, in Fig. 2, the strong sporadic nodes
scenario is plotted. Similar behavior to that in Fig. 1 is
observed.

V. CONCLUSIONS

Substantial gains in outage probability can be obtained
by sharing training sequences in comparison to the fully
orthogonal training assignment, when the number of nodes
is large and/or the latency requirements are very stringent.
However, these gains cannot be obtained for both sporadic
and periodic nodes simultaneously. The current study depicts
the worst case propagation environment given that all the
propagation channels have the same second order statistics.
In environments that exhibit more correlation, the exploitation
of this knowledge in node pairing and in signal processing
is expected to yield better results, making the non-orthogonal
assignment of pilots competitive in more general scenarios.

APPENDIX

Lemma 1: Let v ∈ CM×1 a constant vector and w ∼
NC(0, cIM ). Then 2

c‖v‖2
∣∣vHw

∣∣2 ∼ χ2
2.

Proof: Define the unitary matrix U ∈ CM×M
such that the first column u1 = v

‖v‖ and vHui =

0, i = 2, . . . ,M . It holds
∣∣vHw

∣∣2 =
∣∣∣vHUUHw

∣∣∣2 =∣∣∣‖v‖ eT1 UHw
∣∣∣2 = ‖v‖2

∣∣∣eT1 UHw
∣∣∣2. Since UHw ∼

NC(0, cIM )⇒ eT1 U
Hw ∼ NC(0, c) the result follows.
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(a) Outage probability versus ρp, [dB].

(b) Outage probability versus central node antennas, M .

(c) Outage probability versus latency constraint, NL.

Fig. 1: Outage probability of periodic node when it is stronger
than the sporadic node at the operating point (ηk, ηk+K) =
(0.4, 0.05), ∀k = 1, . . . ,K

(a) Outage probability versus ρp, [dB].

(b) Outage probability versus central node antennas, M .

(c) Outage probability versus latency constraint, NL.

Fig. 2: Outage probability of sporadic node when it is stronger
than the periodic node at the operating point (ηk, ηk+K) =
(0.08, 0.5), ∀k = 1, . . . ,K


