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Abstract—Next generation cellular networks are expected to
improve aggregate multi-user sum rates by a thousand-fold,
implying the deployment of cloud radio access networks (CRANs)
that consist of a dense set of radio heads. Such a densification of
the network inevitably results in high interference coordination
complexity and is associated with significant channel state infor-
mation (CSI) acquisition overhead. The main hypothesis behind
this study is that both the coordinated resource allocation com-
plexity and the signaling overhead can be significantly reduced by
exploiting explicit knowledge about a terminal’s position to make
resource allocation predictions. More specifically, we present a
design of a learning-based resource allocation scheme for 5G
systems that uses Random Forests as multi-class classifier to
predict the modulation and coding scheme of a terminal at
any given position served by the CRAN. Through performance
evaluations it is shown that the signaling overhead is significantly
reduced while the learning-based resource allocation scheme can
achieve a comparable spectral efficiency to CSI-based schemes.
We demonstrate the robustness of the proposed scheme for a
varying accuracy of users’ positions, showing that even for quite
large variations the learning-based approach can still exhibit
good performance.

Index Terms—5G, CRAN, resource allocation, machine learn-
ing, Random Forests.

I. INTRODUCTION

As compared to Long Term Evolution-Advanced (LTE-
A) systems, 5G systems are expected to provide a 1000x
increase in system capacity [1], a round trip time over the
radio interface of less than 1 ms [2], and support for medium
to high mobility users, with high throughput and always-on
connectivity requirements. Meeting the capacity and delay
demands can be achieved by means of network densification,
resulting in an increased interference in the system.

Today’s LTE system architecture cannot handle the emerg-
ing interference associated with an increased network density.
For this purpose, the cloud radio access network (CRAN) [3]]
has been devised. In CRAN, the radio access units, which
constitute transmission points formed from distributed antenna
systems, are separated from the central processing units via
high-capacity links, that handle all the baseband processing.
Each unit of this distributed antenna system is called remote
radio head (RRH), which when densely placed with other
RRHs in an area is formally known as ultra-dense network
(UDN) deployment [4]. Although CRANs may be ideal for
achieving tight interference coordination between RRHs, the
overhead for channel state acquisition in such UDNs becomes

excessive as the densification increases [5]], potentially destroy-
ing the gains from interference coordination.

The traditional approach utilizes the users’ channel state
information (CSI) for doing resource allocation in a centralized
or distributed fashion for multi-antenna systems [6], [[7]. Note
that the same approach can be applied for a 5G system,
combined with the advantage of coordination between RRHs
provided by the CRAN architecture. However, the resulting
system overhead can lead to deteriorating performance for
increased number of users in the system. Moreover, the CSI-
based resource allocation leads to increased computational
complexity with large number of users to be served in the
system. In [§]], it is shown that resource allocation based on
CSI is much more expensive in terms of system overhead
compared to location-based resource allocation in the context
of device-to-device communications.

The objective of this research study is to design an efficient
resource allocation scheme that reduces the signaling overhead
in CRAN based 5G system, and maximizes the sum-goodput
of the CRAN. In lieu of our previous work [9], we design
a resource allocation approach using a supervised machine
learning algorithm to combine the acquired users’ position
information with different correlated system parameters. We
then compare the resulting sum-goodput with that obtained
from the traditional CSI-based resource allocation scheme. We
use the Random Forests algorithm as a multi-class classifier,
as opposed to the binary classifier implementation used in [9].
Our proposed scheme alleviates the problem of system over-
head while achieving a sum-goodput comparable to the CSI-
based scheme. Furthermore, the proposed method is robust
to errors in the estimated position of the terminals, naturally
present in the system.

The remaining paper is structured as follows: Section
presents the system model while the machine learning-based
approach for resource allocation is presented in Section [III]
along with brief introduction to the Random Forests algorithm.
Performance of the proposed scheme is evaluated in Section[[V]
and conclusions are drawn in Section [V]

II. SYSTEM MODEL

Fig. [T] presents the CRAN system, consisting of an aggre-
gation node, AN, which performs all the baseband processing
in the entire system. A number of R remote radio heads
(RRHs) arranged in a dense deployment are connected to this
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Fig. 1. The CRAN architecture for 5G system

aggregation node by a fast backhaul. The RRHs serve N users
spread out across the entire CRAN system in the downlink.
The CRAN system operates in time division duplex (TDD),
where time frames of duration 7t are used for a communication
link. Each time frame consists of a number of L sub-frames,
each of duration Tyy,. Each sub-frame further consists of a
number of symbols Sy and fi. sub-carriers. The operating
frequency of the system is f., with a system bandwidth
W. Users are roaming freely within the area with varying
velocities and directions. Each RRH and user is equipped with
Aty and Agy antennas, respectively.

The aggregation node is the resource allocation unit in the
considered CRAN system. First, it assigns each RRH to the
users present in the system, such that each RRH serves at least
one user within a given frame. Once the user assignment is
done, the aggregation node then selects a transmit beam vZ,
and a receive filter u’,, to be used by the assigned RRH and
its corresponding user, respectively. The transmit beams and
receive filters are taken from the pre-defined sets of beams, V
and U, that are available at each RRH and user, respectively.
Finally, the aggregation node selects a modulation and coding
scheme (MCS), ml,, from the set M, for data transmission be-
tween each RRH-user link. The resource allocation is done by
the aggregation node on per-frame basis, where the objective
is to maximize the system goodput.

For simplicity, we consider the case where each RRH is
serving only one user in a given time frame. The propaga-
tion scenario is interference-limited, having densely deployed
RRHs within the area of interest. Given a certain allocation
of users to RRHs in the system, combined with the selection
of transmit beams and receive filters for each allocation, the
signal-to-interference-and-noise ratio (SINR) of a user n for
time ¢ can be written as:
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where, P}, is the signal power received by user n, from its
serving RRH r, at time ¢ and is given by:
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Fig. 2. The frame structure

Here, Pry denotes the transmit power allocated per RRH. H], ,
is the Arx X Atx downlink MIMO channel matrix for the time
frame ¢ between user n and its serving RRH r. % is the
noise power, whereas (.)" denotes the Hermitian of a vector.
Throughout the time frame we assume this SINR to remain
constant in time and frequency.

Each element of the channel matrix H) , represents the
complex polarimetric channel impulse response between each
transmitter antenna element atx and receiver antenna element
arx, denoted by H,, 4, (f, 7). In reality, this channel response
is the combination of different path components, i.e. reflec-
tion, diffraction, and scattering, which can be modelled as k
different multipath components, and is given by:

K
HaRx,aTx (t7 T) = Z hk,aRx,aTx (t)
k=1

j2mdy (1)
1
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Here, K is the total number of multipath components.
Ry ag,.ar, () is the impulse response of k-th multipath, includ-
ing the relevant pathloss. A denotes the wavelength, and dy is
the total distance for multipath k at time 7. (T — Tk ag,.ar, (1)) 18
the dirac delta function representing the evolution of channel
impulse response with respect to different multipath delays
Tk, agrx,atx *

Given the SINR per time frame, the system utilizes the
MCS m!, chosen by the resource allocation unit, i.e. the
aggregation node, to convey backlogged information to the
corresponding user. This results in a certain spectral efficiency
combined with a block error rate e(y’,). Thus, assuming full-
buffer at the aggregation node, the choice of MCS determines
a corresponding payload size b/, that can be sent over the
channel, and depending on the resulting block error rate, the
goodput for corresponding link at time ¢ can be calculated as:

_ (I —e(yp) - b,
= T .

The determination of user assignments and resource allo-
cations is done by the aggregation node utilizing either the
position estimates of the users present in the system, or their
CSI. The acquisition of either comes at a certain expense,
which we model as a system overhead. We assume a time
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frame structure, as shown in Fig. @], where the frame duration
Tt is 1 ms, and it comprises of 5 sub-frames, each of duration
Tob. The first few symbols of each sub-frame are used for
acquiring users’ position or CSI estimates. Since TDD-based
system operation is assumed, channel reciprocity holds and
therefore, the uplink pilots can be used for users’ positions or
CSI estimates in the downlink transmission.

The first symbol of each sub-frame is used for position
acquisition, since narrow-band pilots are sufficient for such
purpose [2]]. The next four consecutive symbols in each sub-
frame are the full-band pilots used for CSI acquisition. The
number of pilots needed for position or CSI estimation depend
on the number of users present in the system; larger number
of users result in larger number of full-band pilots needed for
CSI estimation, but the number of narrow-band pilots typically
spans a few time symbols within a frame 7. It should be noted
that the adjacent CSI-sensing pilots are scheduled based on
the cyclic-prefix compensation distance, as explained in [2],
to avoid inter-carrier interference. Also, if any of the pilots in
the sub-frames within a frame are not used for position or CSI
sensing, they can be used for data transmission in downlink.

Based on these parameters, the percentage overhead for
position acquisition per frame can be calculated as:

Spos X fsc,pos
Stotal X fsc,total

Here, Spos is the number of symbols used for position estima-
tion of users in the system, and fi pos denotes the number of
sub-carriers used in the positioning beacon. Sioa1 and fic total
is the total number of symbols and sub-carriers available in
the time frame Tt, respectively.

Similarly, for CSI acquisition per frame, the percentage
overhead can be computed as:

OHpos = x 100%. (5)

Scst X fse,cs1
Stotal X fsc,lotal
where Scsi and ficcsi denote the number of symbols and

the number of sub-carriers, used for CSI acquisition of users
present in the system in a transmitted frame, respectively.

OHcs = x 100%, (6)

III. LEARNING-BASED RESOURCE ALLOCATION SCHEME

We use the Random Forests algorithm [10], a supervised
machine learning technique, for designing the learning-based
resource allocation scheme. In general, Random Forests algo-
rithm is well known for its properties of inherent robustness
and capability of handling missing data values over other
known supervised learning techniques [[10], and is the reason
for our choice in the design of this proposed scheme.

The algorithm uses a combination of multiple ‘random’
binary decision trees, which make up the forest, for predicting
one (or a set of) outcome(s). Being a supervised learning
technique, Random Forests algorithm relies on provision of
a training dataset to generate the decision trees. The training
dataset D consists of two parts: a set of data characteristics or
features F, and a set of output variables Y. Each instance d;
of the training dataset is called an input feature vector. The
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Fig. 3. An example of a binary random decision tree
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algorithm then constructs ; binary random trees, each with
a depth Qg , using the different features (selected randomly)
in the training dataset. Each tree typically consists of a root
node, one or more interior nodes and terminates at leaf nodes,
as shown in the sample tree in Fig. 3] The leaf nodes store
the output variable(s), technically called a ‘vote’, and the
output variable predicted by the algorithm is the mode of those
votes from all trees in the Random Forest. It is worthy to
mention here that the algorithm attempts to learn the input-
output correlation so as to maximize the overall accuracy of
prediction, irrespective of the distribution of individual values
of the output variable y. Therefore, care has to be taken that
the set of output variables ¥ is not ‘biased’ towards some
particular values in the training data. Once a forest has been
trained (during the operational phase), the input features of
a new (and potentially unknown) instance is presented to the
decision forest, leading to a prediction (through the voting of
the trees) of the output variable [[10].

As mentioned earlier, the main motivation for designing
the proposed approach is to use the acquired users’ position
estimates for allocating system resources efficiently. The re-
sources include transmit beam, v., per RRH-user link, receive
filter, u!,, per user, and the appropriate MCSs’ selection, m!,,
for each RRH-user assignment. We consider fixed RRH-user
assignments, where each RRH serves only one user throughout
the operational phase. We apply a simplistic approach for
designing the training dataset: we use the acquired users’
position estimates in combination with some system resources
as inputs, and train the algorithm for predicting the MCS as
an output. Specifically, the input parameters are the following:

« The estimated position for user n at time #, .. In reality,
this is acquired with certain precision using an extended
Kalman filter, along with the direction of arrival and time
of arrival estimates of user n [11].

o Transmit beam v’ used for serving the dedicated user.
Essentially, they belong to a set of fixed beams V based
on geometric beamforming, with a certain angular sepa-
ration.

« Receive filter u!, used by the user terminal to receive
transmitted data in a specific direction. These filters
are also geometric beams, with an angular separation
dependent on the number of antennas at the terminal.



TABLE I
PROPERTIES OF THE INPUT FEATURES & OUTPUT VARIABLE

Variable Name Data Type Range
MS_ID integer 1-4
Position_x float 273.5m - 291.5m
Position_y float 67m - 203m
Tx_beam integer 1-28
Rx_filter integer 1-7
Tx_IF1,Tx_IF2,Tx_IF3 integer 1-28
Output: MCS integer 1-8

« Interfering transmit beams v;, q # r used by the interfer-
ing RRHs, for n-th system user.

Random Forests algorithm is trained on these ‘input fea-
tures” to predict the MCS, m!, such that the sum-goodput
is maximized. Table [I| shows details of the input variables
used for constructing the input feature vector for training the
Random Forests model, along with the output variable. Here,
‘Tx_TIF1’ refers to the interfering transmit beam from the first
interfering RRH, ‘Tx_IF2’ is the interfering transmit beam
for the second interferer, and so on.

Essentially, we deploy the Random Forests as multi-class
classifier, where the output variable m!, has multiple values, or
classes. For constructing the training dataset, we use ‘exhaus-
tive search’ to determine the optimal allocation of resources
i.e. vL, u!, and m!, for a user location P}, to be served by a
pre-allocated RRH. In a realistic system, a heuristic approach
can be used to determine the optimal resource allocation for
the acquired user position estimates, to construct the training
dataset. Once the training of the Random Forests is complete,
we use it as a ‘scheduler’ for predicting the resource variable,
MCS m!,, for a newly acquired user position estimate to test
its performance. This is done by constructing a test dataset,
where the newly acquired position information is compared to
the position estimates known during the training process. The
input features for the closest matching user position are then
combined with the new position estimate to construct the test
data sample, for which a prediction of MCS is obtained from
the trained Random Forests’ data structure. Using the predicted
MCS, the sum-goodput is computed by combining all RRH-
user links’ goodput, calculated using (@), for evaluating the
overall system performance.

IV. PERFORMANCE EVALUATION
A. Evaluation Methodology

The performance evaluation of the proposed learning-based
resource allocation scheme is done by performing simulations
using the discrete event simulator Horizon [12]]. Fig. ] shows
the simulation scenario, comprising 4 RRHs, each serving
a single user. This represents a simpler multi-RRH, multi-
user scenario for 5G CRAN system where only inter-RRH
interference exists. The user position estimates can either be
accurate or can be erroneous, where the error in position is
modelled using normal distribution with zero mean and a given
standard deviation. A fixed set of transmit beams is designed
using geometric beamforming, with an angular separation of
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Fig. 4. The simulation scenario; each RRH serves one user

TABLE 11
PARAMETER SETTINGS
Parameter Value

fe 3.5 GHz
BW 200 MHz
Rty 8
NRx 2
th 10 m
hrx 1.5 m
Prx 1 mW
T; 1 ms
Toub 0.2 ms
VRx 30 m/s

3°. The receive filters are designed in the same way, but the
angular separation is kept as 12°. Other parameter settings for
the simulation set up are given in Table [l Since downlink
communication is assumed in the system model, therefore,
channel coefficients for TDD-based downlink are extracted
for each RRH-user link in the simulation scenario, using the
map-based METIS channel model for Madrid grid [13]]. A ray-
tracer based channel model was implemented for this purpose,
the details for which can be found in [[14]]. Note that in Table|TI]
htx refers to the height of the RRH antennas from the ground,
while &y refers to the user’s antenna height from the ground.
Depending on the investigation scenario, the training
datasets are constructed as the next step, using the procedure
outlined in Section These training datasets are used to
construct the multi-class Random Forests model, where we
rely on the implementation provided by OpenCV [I5]. A
total of 100 positions, per user, are selected randomly from
a set of 1000 user positions generated by Horizon, to create
training datasets of 0.25 million samples for each investigation
scenario. The output from the Random Forests model is used
to compute the user goodput per time instance 7, using (@). The
system goodput is computed by taking the sum of user goodput
per time instance, and its average over all considered 100 user
positions is used for system-based performance evaluation.



TABLE III
TRAINING AND TEST ACCURACY FOR DIFFERENT PARAMETRIZATION OF
RANDOM FORESTS MODEL

T, T, | Training Accuracy (%) | Test Accuracy (%)
5 3 89.7 90.5
10 3 89.75 90.25
10 5 94 92.75
10 10 99.5 93
50 5 94.75 92.75
50 10 99 93.5
100 5 94 92.75
100 | 10 99.5 93.25
200 | 10 99.5 93.25
300 | 10 99.5 93.25

B. Performance Analysis of Random Forests Algorithm

Random Forests algorithm essentially optimizes the forest
data structure for accuracy over the whole training dataset.
Here, an important aspect relates to the dimensioning of the
forest itself, as it impacts the training and test accuracy.
Dimensioning relates to the depth of the trees as well as the
number of trees to be used in the forest. For optimized forest
design, the number of random features selected for creating a
node split in each tree is chosen to be \/m according to the
analysis study presented in [10].

The training accuracy is obtained by using a subset of
training data for validation of the constructed Random Forests
model. Once a sufficiently dimensioned forest structure has
been found, a test dataset is then used to compute the test
accuracy of the model by passing each instance of the test
dataset through each of the random trees in the model. In
this work, the number of test samples is the same as that
of the training samples, i.e. 0.25 million, with 100 user
positions drawn randomly from among 1000 user positions’
data. In terms of performance evaluation, the accuracy of the
data structure built by the Random Forests algorithm is an
important metric; the higher the number of correctly predicted
output by the model (whether for the validation dataset, or
the test dataset), the higher will be the accuracy. However,
having a very high training accuracy is not an indicator of an
appropriately learned forest structure. It could be the case that
the learned structure works perfectly for the training dataset,
but shows a low accuracy for test dataset. Such a Random
Forests structure is then an over-fit to the training data.

For building a robust learning model, we need to vary the
number of trees €, in the forest, as well as the depth of
the trees 4, in such a way that the model achieves a fairly
high accuracy on both the training and test datasets. Hence,
for some data collected from a first system set-up (see the
next sub-section for details), we study in Table [IT]] the training
and test accuracy obtained for different parametrization of the
Random Forests structure. Based on these investigations, we
used the best possible Random Forests model for the design of
the learning-based resource allocation scheme, with 100 trees,
each with a maximum depth of 10. Once we have the learnt
model, we use it for predicting the output variable for the test
dataset generated for the considered CRAN system.
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Fig. 5. Effect of overhead on average system goodput for different resource
allocation schemes, for perfect information estimates of all users

C. Evaluation Results for the Proposed Learning-based Re-
source Allocation Scheme

Taking the system overhead into account, we set the trans-
mission time-frame duration to 1 ms and assume 5 sub-
frames to be used for position, or CSI, acquisition and data
transmission for all users present in the system. This serves as
basic parametrization for the overhead calculations presented
in (3) and (6). Our goal is to study the impact of overhead on
the performance of the learning-based and CSI-based resource
allocation (RA) schemes as the number of users in the system
(for which the state information needs to be collected) grows.
Note that we consider at this step still all state information to
be perfectly accurate (i.e. the position information as well as
the CSI).

Fig. [B] shows the results for average system goodput ob-
tained using accurate user position information at all RRHs
for the learning-based and CSI-based resource allocation (RA)
schemes. The colored bars show the effective average system
goodput, i.e. the system goodput obtained after taking into ac-
count the effect of system overhead due to position beaconing
or CSI sensing, while the underlying gray bars represent the
system performance without taking the overhead into account.
Overall, the proposed scheme achieves about 96% of the
system goodput achieved by the CSI-based scheme, without
considering any overhead. However, if the system overhead is
accounted for, we observe that the proposed scheme is either at
par or better in performance than the CSI-based scheme for all
possible number of users present in the system. In particular, as
we increase the number of users in the system, the number of
narrow-band beacons for acquiring users’ position estimates
increases gradually per time-frame, and thus the overhead
scales up only marginally for the learning-based resource
allocation scheme. In contrast, the overhead for the CSI-based
scheme grows much stronger with the increase in the number
of users present in the system (reaching up to 48% of the frame
time), showing that effective system performance degrades
severely if CSI-based scheme is used for allocating resources
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in a system with high user density.

These two initial results are quite striking: Firstly, with
respect to pure spectral efficiency, a learning-based resource
allocation scheme using position information only can achieve
quite a good performance already in comparison to a CSI-
based scheme. This holds at least for the considered system
scenario, which nevertheless has been designed carefully and
contains a typical level of detail for a system-level simulation
of a 5G network. Secondly, if the overhead or the state
acquisition is factored in, due to the high cost of the CSI
acquisition, the learning-based resource allocation scheme can
significantly outperform CSI-based approaches (up to 100%
performance improvement).

D. Robustness Allocation

Scheme

of Learning-Based Resource

The afore-mentioned performance advantage motivates a
more thorough study on the robustness of our proposed
learning-based scheme. We start with considering the most
obvious potential source of inaccuracy influencing the pro-
posed scheme, namely the accuracy of position information.
Fig. [6] shows results for the average system goodput obtained
when a random error is involved in the position estimation
of the users being served by RRHs. It can be seen that the
classifier trained on perfect user position information is enough
to guarantee good system performance up to a certain degree
of error involved in the position estimation. However, if the
error margin in the user position estimates exceeds 2 m, the
learning-based resource allocation (RA) scheme trained on
perfect user position estimates fails to provide satisfactory
system performance. Better system goodput can be obtained
using the learning-based scheme trained on inaccurate position
estimates, but the traditional CSI-based scheme still provides
about 10% better effective system performance. This shows
the robustness of the proposed scheme for small degrees
of error involved in acquired user position information, but
when the error margin becomes excessively large, the CSI-
based resource allocation scheme provides better effective

system performance, when the best-case user density scenario
is considered.

V. CONCLUSIONS

In this paper, Random Forests algorithm is used for design-
ing a learning-based resource allocation scheme that serves the
different user terminals using only their position information.
The proposed learning-based scheme operates with much
lower system overhead and complexity than the tradition-
ally used CSI-based resource allocation scheme. It further
exhibits either comparable or significantly better effective
system performance compared to the CSI-based scheme for
different user densities in the system. In terms of the design
parameter variations, the proposed scheme is fairly robust to
the inaccuracy involved in the users’ position estimation.
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