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Abstract—Many network faults are flooding the telecommu-
nication companies in the form of Trouble Tickets (TT). Au-
tomation in managing these TTs is vital in increasing customer
satisfaction. We develop a solution to address two challenges
regarding TTs generated from fixed and mobile access net-
work domains: Prediction of resolution times and technician
dispatch needs. Our study utilizes datasets from Telenor, a
Swedish telecommunication operator, encompassing 35,000 access
switches and 8,000 base stations. It incorporates 40,000 switch
TTs and 22,000 mobile TTs during 2019-2023. None of the
previous works studied multiple telecommunication domains or
considered the time evolution of TTs. This work comprehensively
studies several prediction models for the mentioned use cases
and network domains. Our models successfully outperform the
company baseline and best proposed state-of-the-art models.
Within 1-hour confidence interval, our method can correctly
predict shortest ranges of resolution times for 90% of switch
TTs and 80% of mobile TTs. We also predict the necessity of
dispatching workforce to the place with weighted F1 scores of
respectively, 88% and 89% for switch and mobile TTs which
shows high average accuracy of our system in prediction across
both dispatch and non-dispatch TT classes to assist operation.
With these scores, our model is capable of allocating resources
automatically, enhancing customer satisfaction. We also studied
the TTs evolution, for example, for switch TTs, within 15 minutes
of creation time, prediction improves by 57% and 50%, for
resolution and dispatch prediction, respectively.

Index Terms—Trouble Tickets, Mobile Network, Fixed Net-
work, Fault Management, Resolution Time Prediction, Dispatch-
need Prediction, Machine Learning Models

I. INTRODUCTION

The history of network management is characterized by a
gradual progression from manual configurations (e.g., Early
packet-switching networks such as ARPANET [1]) and script-
ing (Command-Line Interfaces (CLI)) to more sophisticated
approaches involving standardized protocols (Simple Net-
work Management Protocol (SNMP)), centralized control
(Software-Defined Networking (SDN)/Network Function Vir-
tualization (NFV)), intent-driven policies (Intent-Based Net-
working (IBN)), and intelligent automation technologies (Ar-
tificial Intelligence (AI) and Machine Learning (ML)) [2]. Tra-
ditional approaches to managing networks are often time and
cost-consuming and prone to errors. The over-time need for
continuous connectivity, optimizing the user experience, and
dynamic networks such as 5G and beyond necessitates engag-
ing automation in network management processes [3]. Such

networks can autonomously monitor, analyze, and optimize
their performance, minimizing human intervention, leading to
zero-touch and self-driving networks [4]. However, pragmatic
realization calls for incremental deployment strategies with
backward compatibility to legacy systems, gradually leading
to a smooth technology transition [5].

In this work, we aim to bridge the gap between the con-
cept of self-driving networks in the literature and the reality
of Telecommunication (Telco) networks by implementing an
automated assistant system for operation on top of our existing
network infrastructure [5]. Networks owned by Telco service
providers consist of thousands of interconnected components
such as access switches, radio base stations, data centers,
routers, and cables. In such a complex network, it is expected
that faults happen on any component from time to time and
cause disturbance in the network. This potentially leads to cus-
tomer dissatisfaction and complaints. The company’s Network
Operation Center (NOC) manages network faults and handles
customers’ network performance-relevant complaint cases. In
such a complicated network that contains many different
elements, manually controlling the cases and responding to all
complaints is infeasible and a significant roadblock to scaling
network functionality for NOC personnel; thus, automating the
tasks plays an important role.

With ever-growing traffic data and network elements, one
way to achieve automation for network fault management is
to use ML techniques. ML-based automation allows learning
insights from data and helps develop automated assistant
systems. These systems can assist personnel in the prognosis
and diagnosis of network issues. Looking at insights, NOC
can proactively troubleshoot and plan tasks, resolving network
issues quickly. This reduces human intervention, optimizes
resource usage, and minimizes operational costs, enhancing
network connectivity and performance. Ultimately, a higher
Quality of Service (QoS) and a better Quality of Experience
(QoE) can be ensured over time.

In the realm of Telco, particularly at Sweden’s leading
service provider, Telenor, network faults and resolutions are
documented through Trouble Ticket (TT) records in an internal
incident handling system. These TTs, categorized as Customer
TTs (reported by customers) and Network TTs (originating
from faulty network elements), contain various fields storing
information, as depicted in Fig.1. TTs go through an evolution
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Fig. 1: Part of a network TT record

process during their life cycle. The evolution process of
network TTs is rooted in updates from customer calls, NOC
operators, and automatic system updates (Fig.3). Telenor’s
NOC employs varying degrees of automation in TTs handling
tasks, primarily relying on predefined rules established by
human experts. However, manual or rule-based handling of
TTs may lead to challenges and potential errors due to data
heterogeneity and causes resolution delays [6]. This paper
facilitates NOC work of handling TTs by automating part
of TT handling process. To this end, we engage TTs gen-
erated from faulty fixed access switches and radio access
base stations, in both fixed and mobile network domains
(referred to as Switch TTs and Mobile TTs). We introduce
two use cases: TT resolution time prediction and TT on-site
dispatch-need prediction. Leveraging Telenor’s extensive TT
dataset, this study represents a pioneering effort in automating
Telco network TTs by thoroughly examining their evolution
over time using data-driven approaches. It aims to provide
pragmatic steps towards TTs resolution automation at Telenor
and similar Telco service providers.

We present some relevant works in this domain and high-
light the paper’s contributions.

A. Related Work

Fault management is crucial in today’s heterogeneous Telco
network systems to ensure effective communication. It in-
volves detecting, diagnosing, isolating, and resolving network
malfunctions [7]-[10]. Traditionally rule-based approaches
were used for network fault management. These approaches
worked based on rules that require expert knowledge. Relying
on expert knowledge makes the fault management process
time-consuming and prone to errors [7]. Recently, ML tech-
niques have been used to learn knowledge from historical
data. A large number of works managed to detect the root
causes of network faults with different ML techniques such as
neural networks, decision trees, Bayesian networks, and de-

pendency graphs [11]-[18]. Some studies detected abnormality
in the network using approaches such as neural networks,
support vector machines, and probabilistic inference [19]-
[22]. Some works predicted the faults using neural networks
and support vector machines [23]-[25]. Authors in [8], [26]-
[29] proposed recommender systems to automatically detect
the network status using tree-based models or reinforcement
learning techniques and recommended appropriate actions for
fault resolution. All the mentioned works above mostly rely
on data such as alarm logs, network event traces, sensor
measurements, and real or simulated network topology data.
In this work, we engage network TTs to automate part of NOC
fault resolution tasks.

In the last few decades, several works have investigated
different aspects of TTs. For example, various works [30]-[33]
applied natural language processing and data mining methods
to find the general trend in disturbances. Also, a wide range of
works [34]-[37] focused on using ML techniques to predict TT
occurrences proactively. For instance, in [34], the likelihood of
TT occurrences and the best prevention actions are predicted
based on the TTs studied causes.

Some works focused on managing TTs by addressing dif-
ferent aspects of their handling processes. For example, works
presented in [38], [39] investigated applying ML models for
predicting severity changes and on-site dispatch-need of TTs.
An average weighted F1 score of almost 60% is achieved from
[38] based on the evaluation metrics reported for predicting the
on-site dispatch-need of automatically and manually generated
Telco network TTs.

Some works investigated the prediction of TTs resolution
time; for example, [40] used a classification method to predict
the TTs resolution time spans (achieved 74.5% accuracy) and
regression for predicting the value of TTs resolution time
(achieved Mean Absolute Error (MAE) of 24.8 hours). More-
over, Haw et al. [41] predicted the resolution time of Telco
customer TTs using classification and regression approaches in
sequence. They implemented a classifier to predict the severity
and used its outcome to predict the TT resolution times using
regression. They achieved Root Mean Squared Error (RMSE)
of 1 day and 12 hours in their respective dataset. TTs also
caught attention in other domains. [42] is an example that
studied TTs in electrical power companies. They investigated
the prediction of resolution times of power outages.

Studies conducted in [38], [40]-[42] are the closest to
ours. However, they come with shortcomings or are performed
in domains other than Telco networks. The concept of TT
evolution over time has been discussed in [38]; however, no
results are presented about it. Furthermore, the results reported
in this work regarding predicting dispatch-need for Telco
network TTs are inconclusive. Firstly, classification accuracy
is a poor metric of model performance to report in this setup.
This is due to the unbalanced nature of the data set, which
is indicated by the high percentage of false negative cases
(around 63%) in their reported results [43]. Additionally, this
work does not specify to which network domains their results
belong. We consider the best dispatch-need prediction model
proposed in [38] as a scientific baseline method to compare
with the results of our second use case.



[40]-[42] address the prediction of TTs resolution time
in domains other than Telco. However, we consider the best
regression model reported in [40] as a scientific baseline
method to compare with the results of our first use case. The
comparisons have been presented and discussed in section IV

B. Contributions

This study considers analyzing Telenor network TTs gen-
erated automatically or manually from network elements such
as access switches and radio base stations. To the best of our
knowledge, this is the first time this analysis has been pre-
sented for TTs from two fixed and mobile network domains,
and TT evolution analysis has also been taken into account.
All services offered by Telenor to the customers benefit from
this solution since it helps reduce the impact of network
faults on customers and optimize resource usage. Our main
contributions are as follows:

o We automate part of TT handling process by predicting
TTs resolution time and dispatch need to provide assis-
tance to NOC. To this end, we extract valuable knowledge
from TT by preprocessing and feature engineering of TT
snapshots collected from Telenor’s network encompassing
35,000 access switches and 8,000 base station cells.
It incorporates 40,000 switch TTs and 22,000 mobile
TTs between 2019 and 2023. Existing literature on the
prediction of TTs resolution time and dispatch-need either
do not use Telco datasets or uses improper evaluation
metrics. To the best of our knowledge, it is the first
time the resolution time has been predicted using Telco
datasets of switch and mobile TTs, respectively.

« Introducing a 1-hour confidence interval results in accu-
rate resolution time ranges in 90% and 80% of cases for
switch and mobile TTs, respectively. Our models achieve
an 80% and 61% reduction in MAE compared to the
company baseline at TT creation time. We also predict
the necessity of dispatching workforce to the site with
weighted average F1 scores of respectively, 88% and 89%
for switch and mobile TTs. With these scores, our model
is capable of allocating resources automatically, enhanc-
ing customer satisfaction. These may serve as guidelines
for other Telco providers interested in automating their
TT handling process.

o In examining the evolution of switch TTs, our study
represents the analysis of Telco network TTs evolution
in ML-based automation for network fault management.
Within 15 minutes of creation, our model exhibits a
substantial 57% and 50% improvement in MAE and
average F1 score for predicting, respectively, resolution
times and dispatch-needs compared to the results reported
at creation time.

The paper unfolds as follows: Section II provides back-
ground on network domains and the Telenor TT handling
system. Section III details our data analysis methodology and
the applied predictive models. Section IV presents results,
comparisons, and insights for the considered models. The
paper concludes in Section V, summarizing findings and
outlining future directions.
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II. BACKGROUND

This section will discuss the details of the two network do-
mains we referred to in I. Additionally, we will talk about the
data sources we use to extract data. To this end, in subsection
II-A, we will discuss the architectures, functionality, and fault
generation processes on fixed and mobile network domains,
followed by the description of the TT incident handling system
and TT life cycle in Section II-B.

A. Network Domains Overview

Consumer services offered by Telenor Sweden include mo-
bile (2.9M subscribers), broadband (700K subscribers), and
TV (500K subscribers). Telenor owns a fixed and mobile
network consisting of thousands of switches and radio base
stations distributed over the country to provide these services.

A fixed network connects various devices to a Local Area
Network (LAN) and forwards data within a building or small
geographical area, providing services such as Voice Over IP
(VOIP) and fixed broadband. Telenor Sweden manages around
35,000 such access switches. In contrast, a mobile network
uses radio base stations to offer wireless connections to mobile
devices within designated cells, which together form a Radio
Access Network (RAN) linked to a core network for call
routing and data transfer. Telenor Sweden operates nearly
8,000 base station cells(Fig.2).



As a result, Telenor is managing complex running networks
consisting of thousands of interconnected fixed and mobile
service-providing elements. Different types of faults are ex-
pected to happen in these complex networks. Faults within the
network can be defined as any incidents that impede regular
operation, disrupting the connection and affecting customer
service. Timely response to these faults can guarantee the
smooth operation of the network.

A network disturbance happens because of the faults in the
elements. The component cannot respond to the controlling
messages in this situation, and an alarm is raised. The source
of error could be a power outage, threshold exceed, signal
degradation, fiber cuts, planned maintenance, etc. [44]. The
alarm might be automatically or manually converted to net-
work TT, depending on the severity and type of the alarm (see
Fig.3 (a)). In the case of automatic TT creation, the system
fills out the TT’s fields. Otherwise, personnel at NOC perform
it manually. Once a TT is created, we consider its timestamp
as TO. The timestamp indicates the evolution of a TT. As time
evolves, some features in TT change due to addition of more
information. All TT monitoring and management processes
are performed in the incident handling system [45].

B. TTs handling System

TTs go through a journey from the moment they are created.
NOC administrators work on resolving the TTs during this
journey and make logs of their actions. At each time stamp of
this journey, the values of TT fields might change based on
the information realized from the fault up to that moment. The
values can be updated automatically by systems or manually
by administrators. Fig.3 (b) shows how TTs evolve during their
life cycles.

Depending on the fault’s causes, the TT’s resolution is per-
formed automatically or manually. In some cases, for example,
if the fault happens because of a power outage, the TT usually
is resolved automatically by itself and restarts responding to
the monitoring message once the power is back [44]. In other
cases, TTs are resolved by NOC system and field engineers
either remotely or by dispatching the workforce to the place.
When a TT is generated, NOC performs several remote tests.
In some cases, rebooting the equipment or changing the
configuration parameters resolves the problem remotely (e.g.
software faults). Otherwise, the NOC will schedule on-site
troubleshooting to check for the underlying causes (e.g. fiber
break) [44], [45]. Fig.3 shows a diagram of TTs creation,
handling, updating, and resolution over time.

When a TT is resolved, the period it has taken for resolution
(resolution time) and information about the necessity of dis-
patching the workforce to the site (dispatch-need) are recorded
in separate fields in the TT record. Currently, the company
reports 480 minutes resolution time for all TTs once they
are generated from access switches and radio base stations.
This is an estimation based on the expertise and service level
agreement. However, there is no estimation for the dispatch-
need. It is usually realized by monitoring the fault symptoms
during the TT handling procedures. This could take a few
minutes to several hours, depending on the problem. This
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paper investigates predicting the resolution time and dispatch-
need in order to facilitate NOC operations.

IIT. DATA ANALYSIS AND PREDICTIVE MODELS

This section gives an overview of the TT data sets, the
feature engineering steps, and the predictive ML models we
use for training. In subsection III-A, we will discuss switch and
mobile TT data sets and the information available in them. In
subsection I1I-B, we will explain the feature engineering steps
on TT data sets. Finally, in subsection III-C, we will elaborate
on different ML models and their tuning.

A. TT Dataset

This study uses approximately 40,000 switch TTs and
22,000 mobile TTs'. We analyze these two datasets separately
because of their different fields (Fig.1) and characteristics. This

For access to the code and datasets, please contact the corresponding
author.



study only considers the fields with structured formats, exclud-
ing those filled with human natural language. This exclusion is
due to inconsistency in quality, language variability (Swedish
and English), and the potential inclusion of sensitive customer
information. These factors make such fields unreliable for
our study. Using regular expressions, we manage to mine the
textual fields of the TTs and extract vital information about
faults. We refer to the fields and extracted information as
features of the TT.

Some examples of extracted features from both datasets
include dates and time of TT creation, location of the element,
TT severity weights, model and technology of the device, the
impact of the fault on different services, alarm categories, TT
resolution time, TT dispatch-need, parent TT, and the number
of children. Parent TTs are the ones that have caused the
generation of other TTs. Not all features are available at the
time of TT creation (7y). As discussed before, TT resolution
time is added later on to the tickets (when the TT case is
resolved). Information about the dispatch-need, fault impact
on different services, parent TT, and the number of children
are added later and updated over time as more information
is received from the faults (77, T», etc.). The complete list of
extracted features and their descriptions for both switch and
mobile TTs can be found in Appendix A section.

B. Feature Engineering and Visualization

We keep 80% of the data for training the models and
20% for testing their performance on unseen data. There
are many blank fields in both datasets. To prepare data for
model building, we fill out the categorical blank fields with a
constant value and infer blank numerical fields from known
parts of the data using the iterative imputation technique [46].
Furthermore, we encode the categorical features so that ‘1’
stands for the category that appears in the field and ‘0’ stands
for the remaining categories. We also scale the numerical
features between 0 and 1 to speed up the optimization process
of the models’ cost function.

Fig.4a and 4b show the histogram of the switch and mobile
TTs resolution time distribution. There are peaks in the first
bins of both figures, suggesting that many of TTs are resolved
within first few hours of their creation. That is because the
most common causes of TTs generation in our system are
power outages and fiber breaks. TTs that are created because
of power outages are usually automatically resolved within a
few hours. However, TTs that are generated because of fiber
breaks need more time usually up to 3 days for recovery. TTs
resolved above 3 days might happen because of for example,
planned construction, equipment dismantling, replacement or
other rare causes. Hence, the range of resolution time that we
consider for this study is 1 to 4,320 minutes, equivalent to 3
days. Finally, after taking all feature engineering and cleaning
steps, we are left with 37,807 switch and 19,554 mobile TTs.

Fig.4c and 4d show the distribution of dispatch-need for
switch and mobile TTs. In this case, the target feature is binary
(Yes or No). In both data sets, almost 11% to 12% of the TTs
need on-site work. This indicates an imbalanced distribution
in the data sets for predicting dispatch-needs.

C. Applied ML Models and Model Tuning

We want to build models to predict the resolution time and
dispatch-need for switch and mobile TTs. We train the models
on the set of TTs’ features available at the time of ticket
creation; the target features for prediction are TTs’ resolution
time and TTs’ dispatch-need.

Since the target feature is continuous, we use ML regression
models in the resolution time prediction problem. The regres-
sion models that we use for this prediction are as follows:

o LINear Regression (LINR) [47]

« K Nearest Neighbor (KNN) [48]

« Decision Tree (DT) [49]

« Random Forests (RF) [50]

« eXtreme Gradient Boosting (XGB) [51]

o Fully connected Neural Network (NN) with 3-hidden
dense layers [52]

In the case of dispatch-need prediction, we apply ML
classification models. The classifiers that we use for this task
are as follows:

« LOGistic Regression (LOGR) [53]

« Random Forest (RF)

« Extreme Gradient Boosting (XGB)

o Fully connected Neural Network (NN) with 3-hidden
dense layers

We use three-fold cross-validation with Bayesian search CV
2 [54] (on training set) for tuning the hyper-parameters and
optimizing the results on Mean Absolute Error (MAE) metric
(Eq. 1) for regression and Area Under the Curve (AUC) score
(Eq. 2) for classification [55], that can be computed according
to:

1 < .
MAE:ZZI'”_”' (1)

Where 7 is the number of samples, y; is the actual value, J;
is the predicted value.

AUC = / ROC(¢) dt 2)
Where the Receiver Operating Characteristic (ROC) curve is
the plot that represents the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various threshold settings.
Using Bayesian search CV, we can efficiently explore the
search space of the parameters. To find the best parameter set,
we iterate on the parameter space of each model 50 times on
three folds (default values of the scikit-learn library). Table
I shows the parameter space we consider for tuning each
regression and classification model [51], [56].

IV. NUMERICAL EVALUATION

This section discusses the numerical results obtained after
training and evaluating the models. To this end, in subsection
IV-A and IV-B, we present and discuss the results of, respec-
tively, resolution time and dispatch-need prediction tasks at TT
creation time. In subsection IV-C, we analyze if adding more

https://scikit-optimize.github.io/
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TABLE I: Models’ Search Parameter Space

| MODEL ||

KNN
LINR

Parameter Space ‘

n_neighbors: [2,15]
fit_intercept:[True, False]

Inverse_regularization_strength:[1 04 L1 04],
Penalty: {11, 12}
max_depth:[10,800],
max_features:[0.5,1]
max_depth:[1,100],
n_estimators:[100,1000],
max_features:[0.1,1],

LOGR

DT

RF

max_samples: [0.1,0.99],
learning_rate: [0.01,0.1],
max_depth: [1,100],
n_estimators: [100,1000],
colsample_bytree: [0.1,1]

XGB

subsample: [0.1,1]
nodes:[16, 256],

batch_size: [4, 64],

NN Learning_rate: [1073,1071),

optimizer: (rmsprop, adam, nadam, sgd),

activation_func:(relu, tanh)

data samples will improve the performance of the models. In
subsection IV-D, we will present an approach in order to put
the results into practice. Finally, in subsection IV-E, we will
explain the results of predictions at different time stamps of
TTs’ life cycle.

A. Results of Resolution Time Prediction at Ty

First, we build the models based on all information available
at the creation time of TTs (7). We do this to inform NOC
administrators and customers about the probable time ranges
within which the network faults will be resolved. In switch
TTs, information such as mother TT and the number of
children are updated over time. In mobile TTs, the way the
data is collected about faults differs from switch TTs, and
there is no such updating of information over time. We train
the models on the train set, tune their parameters, and evaluate
them on the test set. Fig. 5 shows the models’ MAE results
on switch and mobile train, validation, and test sets at Ty [55],
[57].

We compare the MAE of our models with MAE of the
Company Baseline (CB), a Naive Baseline (NB), and the
best models in the State Of The Art (SOTA) [40] (Fig. 5).

We consider naive baseline as reporting the mean of the
distribution for all TTs. For switch TTs, all models perform
better than the company and naive baselines with MAEs of
respectively about 430 and 245 minutes on the test set. LR
and KNN with MAE of almost 240 minutes on the test set
show weak performance in predicting the target. Instead, tree-
based models such as DT, RF, XGB, and NN perform well for
this prediction. XGB and NN with MAE of around 85 minutes
on the test set perform almost the same, outperforming other
models and SOTA with MAE of 188 minutes. For mobile TTs,
all models perform better than the baselines with MAE of
respectively, 480 and 295 minutes on test set. KNN performs
better than LR and DT. XGB and NN, with MAE of almost
185 minutes on test, perform the best among other algorithms.

Fig. 6 shows the residual plots of XGB models for switch
and mobile TTs. The model on switch TTs perform better than
the mobile TTs, which can be also observed in Fig. 5. On the
switch dataset, the model predicts about 82% of the resolution
times with absolute value of less than 100 minutes. On the
mobile dataset, the model predicts about 78% of tickets with
absolute residual values less than 100 minutes. Also, it can
be observed that on switch dataset, model performs well on
TTs that have long resolution time. It should be noted that the
number of tickets that have residual values above 1000 minutes
in Fig. 6 in switch and mobile TT data sets are respectively,
around 1% and 6% of test set.

Based on the results from switch and mobile TTs res-
olution time prediction, we can draw several conclusions.
First, various characteristics of access switch and radio base
station faults, which are reflected in both data sets, result in
different predictive performance of the models. Second, we
have improved the MAEs compared to the company baseline
by 80% for switch TTs and 61% for mobile TTs. This is a
proof of concept for the usefulness of these predictive mod-
els in assisting NOC personnel in their daily fault-handling
processes.

B. Results of Dispatch-Need Prediction at Ty

Table II and III show the results of whether dispatch is
needed or not on switch and mobile TT test sets at 7. We
report Precision and Recall of both classes (Eq. 3 and 4), along
with weighted average F1 (Eq. 5 and 6) and AUC scores [55],
[57]. These metrics can be computed according to:

n True Positives
Precision = — — 3)
True Positives + False Positives
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Where C is the total number of classes, n. is the number
of true instances in class ¢, F'1. is the F1 score for class c.

The recall and precision of each class shows how well
the model performs in predicting the TTs of that specific
class, avoiding false prediction. It is worth mentioning that
unnecessary dispatches incur costs and waste workforce time,
while not predicting the correct dispatches results in customer
dissatisfaction. Furthermore, we also report weighted F1 score
which provides a combination of precision and recall across

both classes and is an indicator of overall performance of
the model. The AUC score is another metric that describes
the model capacity in recognizing classes, independent of a
threshold.

For switch TTs, XGB achieves the best W_F1 and AUC
results of almost 88% and 80%, respectively. For mobile TTs,
XGB achieves W_F1 and AUC scores of respectively, 89%
and 80%. This means the models predict well across both the
majority (no dispatch need) and minority (dispatch needed)
classes, while showing high discriminative power across all
possible classification thresholds.

For switch TTs, XGB model predicts almost 99% of the TTs
that do not need dispatch (‘No’ label) with a precision of 90%.
For mobile TTs, 98% of TTs that do not need dispatch are clas-
sified correctly with precision of 92%. High Recall indicates
that most of the no-dispatch TTs are identified correctly. This
reduces the number of false alarms, saving time and resources
by avoiding unnecessary dispatches. High precision for both
switch and mobile TTs indicates that most of the no-dispatch
predictions are accurate, leading to fewer missed no-dispatch
cases. This efficiency is crucial for maintaining operational



reliability and minimizing unnecessary technician dispatches.

XGB model also predicts almost 26% of the switch TTs
that need dispatch (‘Yes’ label) with a precision of 82%.
For mobile TTs, almost 30% of TTs that need dispatch
are correctly classified by XGB model with precision of
65%. Although, we have low recall rate for both switch and
mobile TTs, high precision rate indicates that the model is
efficient in predicting cases where a technician dispatch is truly
needed. This efficiency directly translates to cost savings by
avoiding false positives (unnecessary dispatches), which are
resource-intensive. High precision ensures that the resources
are optimally utilized, and technicians are dispatched only
when necessary, thereby improving operational efficiency.

The low recall rates of all models accross need-dispatch
class are due to imbalanced data set, in which, from every
10 generated TTs almost only one TT need dispatch. This
imbalance makes the models heavily biased toward not-need-
dispatch TTs (see Fig. 4c and 4d. We apply oversampling tech-
niques such as Synthetic Minority Oversampling Technique
(SMOTE) [58] to tackle this problem; however, using balanc-
ing techniques, we observe the trade-off between precision
and recall metrics rates, and the result could not be improved.
Handling the imbalanced nature of the problem could be left
as a reference point for future works.

It is worth noting that although LOGR has the highest
recall score on no-dispatch-need TTs, it does not perform
well in predicting dispatch-need TTs, classifying all samples
as not needing dispatch. DT also has the highest recall rate
on dispatch-need TTs, however; it has lowest precision on
dispatch need samples among all models.

This approach brings considerable value from an industrial
point of view. The NOC routine for handling TTs involves
administrators addressing TTs as soon as they are created,
often engaging in extensive manual handling and monitoring to
determine the network issue and whether dispatch is required.
This process is time-consuming. Our system assists NOC in
two significant ways:

1) Efficiency in non-dispatch Cases: By predicting a high
percentage of TTs that do not require dispatch with
high precision, the system allows NOC administrators
to confidently exclude many cases from needing further
manual investigation, thereby saving time and resources.

2) Timely Identification of Dispatch Needs: Although the
portion of predicted dispatch-required cases is low for
both mobile and switch TTs, this prediction is still
valuable since it is made at the moment of TT creation
when there is limited information available about the
network issue, thus providing early insights.

Even with a relatively lower portion of predicted dispatch-
needed cases, these early predictions are crucial as they
facilitate the process and prioritize the workflow for the NOC
administrators, enhancing overall operational efficiency.

C. Performance by Increasing Training Samples

We aim to improve the results to provide the most reliable
information to NOC and customers. To do so, we investigate

TABLE II: Percentage of metrics on switch test set, PR:
Precision, REC: Recall, W_F1: Weighted F1 score, AUC: Area
Under the Curve, SOTA: State-Of-The-Art

Model Dispatch? | PR | RCL | W_F1 | AUC
N 038 | 90.35

DT (SOTA) ° o o 83.15 | 61.46
Yes 3254 | 3261

LOGR No 87.33 | 9999 | g1 74 | 6585
Yes 66.67 | 0.002

RF No 0007 | 9932 | ¢757 | 7802
Yes 83.09 | 2332

XGB No 9039 | 9919 | 795 | 8028
Yes 82.14 | 26.11

NN No 8885 | 9632 | ¢359 | 67.10
Yes 37.19 15.27

TABLE III: Percentage of metrics on mobile test set, PR:
Precision, REC: Recall, W_F1: Weighted F1 score, AUC: Area
Under the Curve, SOTA: State-Of-The-Art

Model Dispatch? | PR | RCL | W_F1 | AUC

DT (SOTA) No OL19 | 9201 | o775 | 6353
Yes 3517 | 35.10

LOGR No 90.13 | 9940 | o055 | 7650
Yes 70.89 | 11.84

RF No 92.04 | 9778 | g903 | 7941
Yes 63.68 | 31.50

XGB No o198 | 979 | ¢ 0 | 79.77
Yes 64.60 | 30.87

N No 9183 | 9796 | coer | 7601
Yes 64.06 | 29.39

if having more data can improve the performance of our pre-
dictive models. In other words, will collecting more data over
the years result in better predictive performance? To come up
with an answer, we train the models on exponentially growing
numbers of switch and mobile training samples and evaluate
the obtained models on the unchanged sets of test set. Fig. 7
shows the MAE convergence of the models. According to this
plot, the MAEs are decreasing and flattening to some points,
making the changes insignificant. As a result, increasing the
number of training samples will not help improve the models’
performance. We need to search for other solutions to boost
the predictive performance of our models.

D. Resolution time confidence interval for customer satisfac-
tion

Regarding resolution time prediction for the switch and
mobile TTs, we devise an approach to propose approximate
resolution time ranges within which the TTs will be resolved
with a high probability. In other words, to understand the
predictive performance of our best regression model (XGB),
we investigate what percentages of the test sets are underesti-
mated and overestimated by the models and if marginalizing
the predicted values increases the chance of a more reliable
prediction.

Marginalizing the predicted time refers to increasing it with
different values. This can be done in two ways: 1. Adding a
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Fig. 7: MAE changes on the switch and mobile test sets as
training sets are growing exponentially

fixed value (ex. 25 minutes, 50 minutes, etc.) to the predicted
time, or 2. increasing the predicted time by a percentage (ex.
25%, 50%, etc.). Fig. 8a shows the percentages of switch and
mobile TT test samples resolved within their marginalized
predicted time. Based on this plot, there is an insignificant
difference between resolved percentages of fixed and relative
margins for the switch TTs. However, more test samples are
resolved for mobile TTs within the predicted time shifted
by fixed margins. According to Fig. 8b, the MAE changes
for mobile TT test samples are almost the same in both
fixed and relative marginalization cases; however, for switch
TT test samples, the changes in MAE resulted by relatively
marginalizing the predicted values are much more severe.

Based on Fig. 8, we choose 60 minutes as the confidence
interval among different fixed margin values. That is because
of two reasons: 1. increasing the predicted times by 60 minutes
results in the resolution of almost 90% of switch TT test
samples and 80% of mobile TT test samples within the
estimated ranges (Fig. 8a), 2. It also causes the lowest possible
increase in MAEs of XGB predictors (Fig. 8b). This means
reporting a 60-minute marginalized predicted resolution time
to the users at the time of TT occurrence will guarantee QoE.
That is because, with a probability of 90% for switch TTs and
80% for mobile TTs, the network fault will be resolved within
the estimated ranges.

This analysis provides significant advantages over the com-
pany’s current baseline of reporting an 8-hour resolution time
for all TTs due to the following reasons:

o Enhance Efficiency: By predicting closest best time
ranges for TT resolutions, NOC operators can prioritize
their work more effectively, focusing on TTs that are
likely to require manual intervention.

o Automate Decision-Making: This analysis provides au-
tomated and customized time estimates at the time of
TT creation, reducing the need for extensive manual
investigation.

o Improve Customer Satisfaction: By providing more accu-
rate time ranges, we can manage customer expectations
better and ensure that they are informed of the most
probable resolution times.

E. Results at Different Timestamps

As mentioned before, the values of some features are
updated over time in switch TTs. We would like to understand
if this update will result in a better prediction. Thus, we build
the models every 15 minutes on the updated set of features.
As time passes, more TTs are resolved, specifically the ones
that are resolved automatically. Fig. 9 (a) shows the over-time
changes in the number of unresolved TTs and MAE of the
XGB model for the prediction of resolution time. According
to this figure, we observe a drop in MAE value at 77. We
also have a low portion of test samples resolved at this time
(almost 2%). This means because of adding more information
to the system within 15 minutes after TT creation, we get a
57% improvement in resolution time prediction with the least
possible data loss. Additionally, the increase in MAE for the
XGB model after 15 minutes can be attributed to the fact that
TTs with shorter resolution times are progressively resolved
over time, leaving behind those with longer resolution times.
These remaining tickets are more challenging for the models
to predict accurately, which results in the observed increase in
error.

Fig. 9 (b) shows the over-time changes in the number of
unresolved TTs and macro average F1 score for dispatch-need
prediction of switch TTs. In this case, at 77, we have the
maximum value of the macro F1 metric. This indicates that
only after 15 minutes of TT creation, we can predict 95% of
TTs that need dispatch and almost 100% of TTs that do not
need dispatch with significantly the lowest rate of FP and FN
rates.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a proof of concept for an assistant
automated system in the Telco network fault management
domain. Our approach was a pragmatic step towards realizing
autonomous networks, benefiting Telcos’ customer services
delivered through fixed and mobile access networks. We used
thousands of historical TTs coming from fixed and mobile
network domains. Mainly, we investigated the impact of dif-
ferent TTs’ features on two target variables (resolution time
and dispatch-need), considering their life-cycle evolution. For
the first use case, we came up with a 1-hour confidence interval
and succeeded in predicting the correct resolution time ranges
in 90% and 80% of the cases at ticket creation time for,
respectively, switch and mobile TTs. In terms of performance,
we outperformed the best methods in the literature and had
an 80% and 61% improvement over the company baseline.
On prediction of the required dispatching workforce, with
weighted F1 scores of respectively, 88% and 89% for switch
and mobile TTs, our model outperformed the best method in
the state of the art. With these scores, our model is capable of
allocating resources automatically, enhancing customer satis-
faction.

We studied the evolution of the switch TTs over time as
more information was added to them. We realized that adding
more data to TTs within 15 minutes of their creation can
improve their resolution time and dispatch-need prediction by
respectively, 57% and 50%. In the resolution time prediction
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(The time difference between T, and T, is 15 minutes

case, we devised a solution to increase customer satisfaction
by choosing a confidence interval. To address future works,
we consider studying the root causes of network faults based
on performance data and the impacts on target variables.
A thorough research can also be performed to address the
imbalanced nature of the data. We can develop approaches for
correlating performance data with TTs and draw insights for
more autonomous network management.
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APPENDIX

TABLE A1: Switch TTs Features

Feature Name

‘ Description

Data type
CREATED_YEAR TT created year 2019, 2020
CREATED_DAY_NR TT created day 21, 22,23
CREATED_DAY_NAME TT created day name Monday, Tuesday
CREATED_MONTH TT created month number January, February
CREATED_HOUR TT created hour 7,8, 13
CHILD Number of TT children 1,2, 4
MOTHER TT having any child 0,1
DISPATCH TT needing technician dispatch 0,1
POSTCODE Switch location postcode 11111, 22222
LATITUDE Latitude of switch location 11.123
LONGITUDE Longitude of switch location 11.123
LOCATION Switch city STOCKHOLM
SITE_ID Switch site ID 222222, 333333
DHCP_CLIENTS Number of effected DHCP clients 120, 1232
BROADBAND Number of affected broadband connection 20, 140
VOIP_CONNECTIONS Number of affected VOIP connection 110, 450
LAN_SME Number of affected enterprises 10, 103
WEIGHT6_18 Weight of TT created during time 06:00 to 18:00 10, 1004
WEIGHTO0_6 Weight of TT created during time 00:00 to 06:00 10, 1004
WEIGHT18_0 Weight of TT created during time 18:00 to 00:00 10, 1004
TECH Switch technology LAN
MODEL Switch model Model 1, Model 2
AUTO_CREATION Automatic created TT 0,1
RESOLUTION_TIME_IN_MINUTES TT resolution time 24, 328, 1133
TABLE A2: Mobile TTs Features
Feature Name Description Examples
CREATED_YEAR TT created year 2019, 2020
CREATED_DAY_NR TT created day 1,2, 3
CREATED_DAY_NAME TT created day name Monday, Tuesday
CREATED_MONTH TT created month number January, February
CREATED_HOUR TT created hour 7,8, 13
IMPACT 2G, 361,\15412,[)652}02221?:;8; i?:égriiiexsh Odr;f?;ienrtegtriorities 12,3
NR_AFFECTED_SITE Number of affected sites 0,1,2
POSTCODE Switch location postcode 11111, 222222
LATITUDE Latitude of switch location 11.120
LONGITUDE Longitude of switch location 17.230
LOCATION Base station city STOCKHOLM
SITE_ID Base station site ID ID1,ID 2
AFFECTED_NODE Affected node ID NODE 1, NODE 2
WEIGHT6_18 Weight of TT created during time 06:00 to 18:00 10, 1004
WEIGHTO0_6 Weight of TT created during time 00:00 to 06:00 10, 1004
WEIGHT18_0 Weight of TT created during time 18:00 to 00:00 10, 1004
AUTO_CREATION Automatic created TT 0,1
DISTRICT_ID ID of the district ID 1,1ID 2
PLANNING_REGION ID of region planned for maintenance Region 1, Region 2
PROVIDER Hardware provider NOKIA
HARDWARE Broken part of the hardware Rectifier, chasi
ALARM Type of the alarm caused TT creation Threshold exceeds limit
DISPATCH TT needing technician dispatch 0,1
RESOLUTION_TIME_IN_MINUTES TT resolution time 24, 328, 1133
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