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Abstract—The abundance of spectrum in the millimeter-wave
(mmWave) bands makes it an attractive alternative for future
wireless communication systems. Such systems are expected to
provide data transmission rates in the order of multi-gigabits
per second in order to satisfy the ever-increasing demand for
high rate data communication. Unfortunately, mmWave radio
is subject to severe path loss which limits its usability for
long-range outdoor communication. In this work, we propose
a multi-hop mmWave wireless network for outdoor communi-
cation where multiple full-duplex buffered relays are used to
extend the communication range, while providing end-to-end
performance guarantees to the traffic traversing the network.
We provide a cumulative service process characterization for the
mmWave propagation channel with self-interference in terms of
the moment generating function (MGF) of its channel capacity.
We then use this characterization to compute probabilistic upper
bounds on the overall network performance, i.e., total backlog
and end-to-end delay. Furthermore, we study the effect of self-
interference on the network performance and propose an optimal
power allocation scheme to mitigate its impact in order to
enhance network performance. Finally, we investigate the relation
between relay density and network performance under a sum
power constraint. We show that increasing relay density may
have adverse effects on network performance, unless the self-
interference can be kept sufficiently small.

Index Terms—Millimeter-wave; Multi-hop; Moment Generat-
ing Functions; Delay; Backlog.

I. INTRODUCTION

With rapidly increasing demands on network service, wire-
less communications in millimeter-wave (mmWave) bands
(ranging from 24.25 GHz to 300 GHz) becomes a promis-
ing technology to improve the network throughput for fu-
ture communication systems [1]. Compared to conventional
wireless communications in lower frequency bands, i.e., sub
6 GHz, mmWave wireless communications have significant
advantages, including considerably broader bandwidth, lower
cost electronics, and higher gain directional antenna imple-
mentations [2]. These attributes make mmWave a promising
solution for the wireless backhaul [3], since the initial cost of
fiber optic backhaul tends to be quite high and the conven-
tional microwave based backhaul networks cannot support the
throughput requirements of future networks.
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The mmWave technology can be utilized for both indoor
and outdoor communications. A significant amount of exper-
imental results for investigating the indoor mmWave wireless
personal area networks (WPAN) were reported in recent
years [4]-[8]. For outdoor environments, in [9], antennas with
narrow beamwidth were used to measure the path loss in urban
street environments for the line-of-sight (LOS) and non-line-
of-sight (NLOS) scenarios. In [10], a channel sounder was
deployed to estimate the outdoor 60 GHz channel using a
59 GHz horn antenna. Results show that the path loss exponent
for the 60 GHz channel is between 2 and 2.5 for the outdoor
environment, such as airport fields, urban streets or tunnels. In
the recent work [11], the spatial statistical models of mmWave
channels at 28 GHz and 73 GHz were established based on
real-world urban measurements. Also, the small-scale fading
effects were shown to be negligible in mmWave bands due
to the short wavelength [6], [12]. Hence, the channel fading
is dominated by the shadowing effect, which is generally
modeled as a log-normal random variable.

In light of the above, it is clear that, the use of mmWave
bands is limited to short-distance LOS communications, e.g.,
usually below 500 meters. To overcome larger distances
or obstructed paths, especially in outdoor applications for
high data rate transmissions, a strategically placed store-and-
forward relay node may be used to form a multi-hop wireless
network. Thus, it is our claim that multi-hop communications
can be utilized to mitigate the effects of path loss over long
distances and/or the effect of NLOS, while maintaining the
traffic flows’ quality of service (QoS) requirements. In this
case, an understanding of corresponding network performance
in terms of end-to-end delay and loss probability becomes the
key to support real-time missions and critical applications, e.g.,
online banking, remote health, transportation systems opera-
tion and control, and electric power systems. Nevertheless, an
analytical model for the multi-hop network in mmWave bands
does not exist, and its performance is not yet understood.

To improve the network throughput significantly, the full-
duplex relaying technique recently has drawn tremendous
attention [13]. An full-duplex relay can perform simultaneous
signal reception and transmission, thereby providing a better
performance in terms of spectral efficiency than its half-
duplex counterpart. However, it suffers self-interferences at
the receiver from its transmitter. Despite that the presence
of self-interference inevitably deteriorates the system perfor-
mance, the loss can be largely mitigated through the use
of effective interference cancellation techniques [14], [15].
In recent year, thanks to the advances in self-interference



cancellation techniques and hardware designs, the application
of full-duplex relays emerges in mmWave communications. In
[16], [17], it is shown that, the self-interference cancellation
amount can be achieved up to 80 ~ 100 dB via passive
suppression, analog cancellation, and digital cancellation. In
[18], the energy efficiency of mmWave full-duplex relaying
system was comprehensively investigated. Numerous efforts
dedicated to the study of full-duplex relaying for mmWave
applications can be found in [19]-[21].

In this work, we provide a probabilistic end-to-end delay
and backlog analysis of such networks in terms of the un-
derlying channel parameters. This analysis can be used as
a guideline for planning and operating QoS-driven multi-
hop mmWave network. The analysis of multi-hop wireless
networks in mmWave bands poses two main challenges: (i) the
service process characterization for mmWave fading channel,
and (ii) multi-hop network performance analysis. The first
challenge comes from the random nature of the mmWave
fading channel which results in time varying channel capacity,
and the second challenge is a direct result of the limitations
and strict assumptions of the traditional queuing theory, which
is the main tool for network analysis, when applied to queuing
networks. To address these two challenges, we adopt a moment
generating function (MGF)-based stochastic network calculus
approach [22] for the analysis of networks of tandem queues.
Then the service process, which is a function of the instanta-
neous channel capacity, is given in terms of the MGF of the
fading channel distribution. This addresses the first challenge.
Furthermore, we utilize network calculus to address the second
challenge by using the service concatenation property.

A. Methodologies for Wireless Network Analysis

Network calculus is an effective methodology for network
performance analysis. It was originally proposed by Cruz
[23], [24] in the early 90’s for the worst-case analysis of
deterministic networked systems. Since then, the methodology
has been extended to probabilistic settings. Following the
pioneering works in [25]-[27] on MGF-based traffic and
service characterization, in order to model traffic and service
processes with independent increments and to utilize inde-
pendence among multiplexed flows, the moment generating
function (MGF) based network calculus was proposed [22].
Typically, the MGF approach to network calculus employs
a finite-state Markov channel abstraction for the analysis of
wireless fading channels [28], [29]. It is worth noting that
MGF-based approach was used, outside the network calculus
framework, for the analysis of various fading channels and
relaying channels, e.g., [30]-[33]. In contrast, the (min, x)
network calculus approach, proposed by [34], provides prob-
abilistic performance bounds directly in terms of the fading
channel parameters. It does that by transferring the problem
from the ‘bit domain,” where traffic and service quantities are
measured in bits, to the ‘SNR domain,” where these quantities
are described by their SNR equivalence when measured at
the channel capacity limit, using the exponential function.
To apply the (min, x) network calculus to non-identically
distributed multi-hop wireless networks, a recursive formula
for delay bound computation was developed in [35].

To evaluate the performance of our proposed mmWave
multi-hop wireless network, we model a multi-hop path in
the network by a tandem of queues with service processes
that represent the time-varying service offered by the un-
derlying mmWave channel. Then we follow an MGF-based
network calculus approach to compute probabilistic end-to-
end delay and backlog bounds for that network. Without loss
of generality, we use a self-interference coefficient, which is a
discounting parameter for the service offered by the channel,
to characterize the interference at each relaying transceiver.

B. Motivations and Contributions

Although network calculus has been around for some years,
its application to wireless networks analysis is fairly recent.
Furthermore, in the existing related work, the self-interference
factor was not taken into account. To our best knowledge,
the performance guarantees of mmWave multi-hop wireless
networks considering self-interfered channels have not yet
been addressed. Coupled with the importance of mmWave
networks for the next generation mobile communications, it
motivates us to investigate the backlog and delay performance,
as well as the constrained sum power budget and QoS trade-off
corresponding to the self-interfered channel.

As aforementioned, there exist two major difficulties for
our study. More exactly, the (min, x)-based wireless net-
work calculus presented in [34] is not feasible to analyze
mmWave networks. This is because, the prerequisite for apply-
ing (min, x) algebra is the existence of Mellin transform for
stochastic processes. However, in mmWave communications,
the large-scaling fading, i.e., shadowing effect following the
log-normal distribution, plays a dominant role, and the re-
sulting SNR has no corresponding Mellin transform. Thus, an
alternative solution is required to circumvent this intractability.
In addition, regarding the multi-hop performance analysis,
the difficulty mainly lies in generally analyzing the end-
to-end performance guarantees in wide-sense heterogeneous
networks, i.e., the fading characteristics of distinct channels
may be different or identical. In most of previous studies,
homogeneous fading channels are commonly assumed for
multi-hop networks. In the recent work [35], the heterogeneous
network was investigated, and a recursive way for obtaining
the network service curve was explored. As the number of
hops increases, the complexity of recursive method linearly
grows. Thus, a straightforward method may effectively reduce
the complexity, especially when the network size goes large.

Based on the motivation and specific challenges above, the
main contributions of this paper are two-fold: (i) contribution
to the theory of network calculus that is represented by a
simplified closed-form expression for the network service
curve applicable to both homogeneous and heterogeneous
wireless networks, and (ii) contribution to the application
by providing a service process characterization for mmWave
fading channels with self-interference, in terms of the MGF
of the fading distribution. More precisely, first, we devise
a straightforward method to compute the network service
curve, which is generally applicable for both homogeneous
and heterogeneous multi-hop networks, such that the service



characterization can be formulated in an efficient and unified
manner. Second, to address the problem in obtaining the
Mellin transform associated with specific fading distributions
of mmWave channels, we alternatively derived a parameterized
upper bound for the actual MGF of network service curve. The
proposed bound, which is actually a heuristic method to keep
track of service processes, can be utilized for a broad class
of fading distributions in that the Mellin transform for SNR
cannot apply, not limited to the log-normal fading in this paper.
Additional contributions of this work include

« An optimal power allocation scheme, based on the pro-
posed methodology, more precisely, for mmWave multi-
hop networks with independent and identically distributed
(i.i.d.) shadowing under end-to-end delay constraint.

o The insight that, under optimal power allocation, the
end-to-end performance bounds exponentially degrade
with the self-interference coefficient. This suggests that
managing self-interference can be extremely rewarding.

Our work builds on own previous work [36], where a service
characterization for a single-hop 60 GHz system without self
interference was presented.

The remainder of the paper is organized as follows. In
Sec. II, we provide the basics for MGF-based stochastic
network calculus. We construct a model for the mmWave
multi-hop network and derive its probabilistic backlog and
delay bounds in Sec. III. In Sec. IV we propose an optimal
power allocation strategy that results in better performance
bounds. An asymptotic performance analysis of the network
with self-interference is presented in Sec. V. Numerical results
and simulations are presented in Sec. VI, where we discuss the
validity and the effectiveness of our analytical upper bounds
and investigate the impacts of self-interference coefficient
and relay density on network performance. Conclusions are
presented in Sec. VIL

II. PRELIMINARIES

In this section we mainly provide a brief review of network
calculus fundamental results and the MGF-based stochastic
network calculus framework in particular. Due to space lim-
itation, we will not elaborate proofs for the presented funda-
mental results. For better understanding of network calculus
theory, more related details can be in [25], [28], [37]-[39].

A. Model and Notation

Assuming a fluid-flow, discrete-time queuing system with
a buffer of infinite size, and given a time interval [s,t),
0 < s < t, we define the non-decreasing (in t) bivariate
processes A(s,t), D(s,t) and S(s,t) as the cumulative arrival
to, departure from and service offered by the system as shown
in Fig. 1. We further assume that A, D and S are stationary
non-negative random processes with A(t,t) = D(t,t) =
S(t,t) = 0 for all ¢ > 0. The cumulative arrival and service
processes are given in terms of their instantaneous values
during the i*" time slot, a; and s; respectively, as follows

t—1 t—1
A(s,t) = Zai and S(s,t) = Zsi, (D
k=s k=s

B()

A(s,t) Ds,1)

—T

Fig. 1. A queuing model for a store-and-forward node.

for all 0 < s < t. We assume that time slots are normalized
to 1 time unit. We denote by B(t) the backlog (the amount of
buffered data) at time ¢. Furthermore, W (¢) denotes the virtual
delay of the system at time £.

Network calculus is based on (min, +)-algebra, for which
in particular the convolution and deconvolution are important
to obtain bounds on the system performance. More precisely,
given the non-decreasing and strictly positive bivariate pro-
cesses X(s,t) and Y(s,t), the (min,+) convolution and
deconvolution are respectively defined as

(X®Y)(s,t) 2 s%lql'fgt{X(S, T)+Y(7,t)}

and
(X 0Y)(s,t) 2 sup {X(1,t) - Y(7,5)}.

0<7<s

B. Network Calculus Basics

In network calculus, the queuing system in Fig. 1 is ana-
lyzed with the arrival process A(s,t) as input and the departure
process D(s,t) as system output. Input and output are related
to each through the (min,+) convolution of the input with
the service process S(s,t). In particular, we consider in the
following time varying systems known as dynamic servers,
for which for all ¢ > 0 the network element offers a time
varying service S that satisfies the following input-output
inequality [25] D(0,t) > (A®S)(0,t), which holds with strict
equality when the system is linear [38]. One typical example
is a work-conserving link with a time-variant capacity, with
the available service S(s,t) during interval [s, t).

Based on this server model, the total backlog and end-to-
end delay, which are critical measures in system evaluation,
can be studied via network calculus. On one hand, buffer
dimensioning is a major factor to consider when designing
and implementing broadband networks. This is true due to the
space restriction and cost of storage in intermediate network
devices, e.g., routers in high data rate networks. On the other
hand, end-to-end delay is closely related to the quality of
service (QoS) and user experience for many networked ap-
plications, e.g., voice and video services. For a given queuing
system with cumulative arrival A(0,t) and departure D(0,t)
and for ¢ > 0, the backlog at time ¢, B(t) is defined as the
amount of traffic remaining in the system by time ¢. Therefore,

B(t) = A(0,t) — D(0,1). Q)

Likewise, the virtual delay W (t) is defined as the time it takes
the last bit received by time ¢ to depart the system under a
first-come-first-serve (FCFS) scheduling regime. Hence,

W(t) =inf{w > 0: A(0,¢) < D(0,t +w)}. 3)



Substituting D(0,t) > (A® S)(0,¢) in the above expressions
and after some manipulation and using definitions of (min, +)
convolution and deconvolution, we can obtain the following
bounds on B(t) and W (t) respectively, as

B(t) < (Ao 9)(t 1) ©)
and
W) <inf{w >0:(A@95)(t+ w,t) <0}. Q)

A main attribute of network calculus is its ability to handle
concatenated systems, e.g., multi-hop store-and-forward net-
works. This is mainly achieved using the server concatenation
theory, which states that a network service process can be
computed as the (min, +) convolution of the individual nodes’
service processes [38]. More precisely, given n tandem servers,
the network service process Spet(s,t) is given by

Snet(57t) = (Sl X S2 X ® S'IL) (87 t)v (6)

where S;(s,t), for any 1 < ¢ < n, represents the service
process of the i*" server.

C. MGF-based Probabilistic Bounds

Deterministic network calculus [38] can provide worst-
case upper bounds on the backlog and the delay if traffic
envelopes (an upper bound on the arrival process) as well as
a service curve (a lower bound on the service process) are
considered. However, when analyzing systems with random
input and/or service (like wireless networks), due to a possibly
non-trivial probability for the service increment or arrival
increment to be zero, the worst-case analysis is no longer
useful to describe the performance any more. In such cases,
probabilistic performance bounds provide more useful and
realistic description of the system performance than worst-
case analysis. In the probabilistic setting (where the arrival
process A and/or the service process S are stationary random
processes), the backlog and delay bounds defined in (2) and
(3) respectively are reformulated in a stochastic sense as:

P (B(t) > bf’) <¢ and P (W(t) > w) <<’ ()

where b and w®’ denote the target probabilistic backlog
and delay associated with violation probabilities &' and &”
respectively. These performance bounds can be obtained by the
distributions of the processes, i.e., in terms of the arrival and
service processes MGFs [22] or their Mellin transforms [34].
These approaches constitute what we refer to as stochastic
network calculus and they are most suitable for the analysis
of wireless networks.

In general, the MGF-based bounds are obtained by applying
Chernoff’s bound, that is, given a random variable X, we have

P(X >z) <e %E [eex] = e "M (6),

whenever the expectation exists, where E[Y] and My (0)
denote the expectation and the moment generating function
(or the Laplace transform) of Y, respectively, and 6 is an
arbitrary non-negative free parameter. Given the stochastic
process X (s,t),t > s, we define the MGF of X for any 6 > 0

N OROIENN O
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Fig. 2. A multi-hop wireless network with n full-duplex relays.

as [40]
Mx (0,s,t) 2 E [eax(s’t)} .

Moreover, Mx (0,s,t) £ My (—0,s,t) = E[e X(EH] is
also defined in a similar way.

A number of properties of MGF-based network calculus are
summarized in [40]. In this work, we consider a queuing sys-
tem comprised of a set of tandem queues. Using (6), the MGF
of the end-to-end service process, written as Mg, (6, s,t), of
N tandem queues with service processes S;,i = 1,... 1N, is
bounded by

Msnet (97 S, t) £ M~5'1®»5'2®-~®»5'1\1 (9, S, t)

N
=i |f3Xp <_6 . sSulS..l-IguN—1§t {z; Si(Ui_17 UZ)}>]

N
< Z Hmsi(e,uiq,uiﬁ 3

sSur<-Sun-—1<ti=1

where ug = s and uy = ¢, and (8) is obtained via applying
the union bound and independence assumption. In addition, we
denote the MGF of the arrival process by M4 (0, s,t). Then,
probabilistic backlog and delay bounds satisfying (7) above,
can be respectively expressed by [40], [41]

= . ]. /
b = é&%{e (logM(6,t,t) —loge )}, )]
and
W = inf{w : gng{M(ﬁ,t—kw,t)} < s”}, (10)
>

where M(6, s,t) is given as

min(s,t)
M(0,s,t) = Y Ma(0,u,t)-Ms,,, (0, u,s).

u=0

an

Note that, M(6,s,t) is only valid when the arrival and
service processes are independent. Also, we can see that,
M(0, s,t) given by (11) is the key to derive the probabilistic
backlog and delay bounds.

III. PERFORMANCE ANALYSIS OF MMWAVE MULTI-HOP
WIRELESS NETWORK

A. System Model

We consider a multi-hop wireless network in mmWave
bands, as shown in Fig. 2, consisting of a source S, n (n > 1)
full-duplex relays R;, ¢ = 1,2,...,n and a destination D. For
simplifying illustration, we assign the labels O, 1, ..., n + 1



to the ordered nodes. That is, S and D correspond to nodes 0
and (n + 1), respectively. Furthermore, we label the channel
between nodes (i — 1) and i as the i*" hop in the set of hops
Ty, ie.,i €Iy =41,2,...,n+1}, and the distance between
the two nodes by [; (in meter). We denote the channel gain
coefficient of the i*" hop by g;. Given the separation distance
l;, a generalized model of g; (in dB) for the mmWave channel
is given by [42], [43]

gildB] = — (a +1081logyo(l;) + &),

where o and [ are the least square fits of floating intercept
and slope of the best fit, and & ~ N(0,02) corresponds to
the log-normal shadowing effect with variance o2. The values
of the parameters « and 3 greatly depend on the environment
configurations. Our service characterization and performance
analysis are carried out in terms of these two parameters in
order to incorporate all such configurations.

In addition to the (large scale) fading effect, without loss
of generality, the proposed model also considers the self-
interference at each full-duplex relay node. Compared to self-
interference, the interference impact from other neighboring
nodes is small, due to the rapid attenuation of the millimeter
waves, and thus it is ignored. A common approach to model
the self-interference is to use a coefficient 0 < p < 1 that
characterizes the coupling between the transmitter and the
receiver of a full-duplex device. It has been shown that the self-
interference is linearly related the transmission power [14].
In the presence of self-interference, the signal to interference
plus noise ratio (SINR) in the i*" hop, denoted by +;, for the
described channel is expressed as

12)

Vi =K Wi - Ggi,

Ai—1 )
2l ie{1,2,....n
ny { }7
Aie1, i=n+1

where k is a scalar depending on system configuration, i.e.,
the antenna gains of the communication pair, g; is the channel
gain coefficient given by (12), \; £ ﬁo denotes the transmitted
signal-to-noise ratio (SNR) at node ¢ corresponding to transmit
power P; and background noise power Ny.

For the multi-hop scenario, we assume the stochastic pro-
cess of each hop to be stationary and independent in time.
That is, we can use a series of independent random variables

7; to characterize the multi-hop channels, namely, 'y-(k) £ i

in all time slot k, where £ denotes equality in law (i.e., in
distribution). The shadowing effect, which is due to objects
obstructing the propagation of mmWave radios, is considered
in the channel gain coefficient model given by (12). Regarding
the stochastic behavior of different links, generally, shadow-
ing is not spatially independent. Considering the fact that
highly directional antennas are commonly used for mmWave
communications, it is safe to assume that the obstructions of
radio propagation behave independently, which justifies the
independence assumption across hops.

In general, the fading distributions of the subsequent chan-
nels in multi-hop wireless network may not be identical.
Nevertheless, it is worthwhile to decompose the set of hops

s.t., w;= (13)

into subsets of hops with identically distributed channel gains.
More precisely, we decompose the set of hops, Z#, into m
subsets, Xi, k € Iy = {1,...,m}, where, Z; = |J;—; X,
with X; X, = 0 for all ¢,j € Znq such that ¢ # j, where
X 1s defined as the set of indices such that

X ={j € Tu,k € Tng : Fyy(2)=F¥ ()}, (14

where Fx(z) is the probability distribution function of the
random variable X, F(*)(z) represents a unique distribution
function corresponding to the subset of i.i.d. hops denoted by
the index k € Zyq. We emphasize that |Zy| > |Zaq|, where
|| represents the cardinality of the set ), and the equality is
attained when the multi-hop network is fully heterogeneous. In
such extreme case, each subset X}, contains only one element,
i.e., the channel at each hop has a distinct fading distribution.

To address the transmit power allocation problem for the
multi-hop network, we consider a system with sum power
P,ot constraint, i.e., Z?:O P; = P,o. Equivalently, given a
constant background noise power Ny for all hops, the sum
power constraint can be reformulated as

n PO
D A= Ao & 2
=0

=N, s)

B. MGF Bound for the Cumulative Service Process

The performance bounds given by (9) and (10) require the
computation of MGFs of arrival and service processes. For the
arrival process, we consider in this work the (o(6), p(0)) traffic
characterization with parameters () = §, and p(6) = pg,
i.e., we assume deterministically bounded arrival process [25],
[37]. That is, in the statistical sense, for any stochastic arrival
processes, there always exist proper deterministic asymptotic
arrival rate p, and burst parameter ¢, such the MGF of arrival
processes, denoted by M 4 (6, s, t), is upper bounded by

Ma(0, s, 1) < efPalt=o)H00) £ (00 () (G))E=5  (16)

for any 6 > 0, where p,(0) = e?°e.

Regarding the service process, we present in the following a
series of results that apply to a Shannon-capacity type service
process. Given a channel SINR ~, in this model the service
process (in bit per second) of the channel is given by

C(y) =nn(l +7),

where n = % with channel bandwidth W. By (1), the

cumulative service process for hop i, S;(s,t), is given by
t—1 t—1
Si(s,t) = > _ Clvi(k) =n> Wm(1+nk), (17)
k=s k=s

where 7;(k) is the instantaneous SINR in the k" time slot for
the 7P hop given in terms of g; in (12) and w; in (13).

However, associated with the specific fading characteristic
of mmWave channels, an exact expression for the MGF
of this Shannon-type cumulative service process in (17) is
intractable, since the shifted log-normal random variable, i.e.,
(1 +; (k)), has no closed-form inverse moment. Instead, in
the following lemma, we present an upper bound on the MGF
of such Shannon-type service processes S;(s,t).



Lemma 1. Let Fx(x) denote the cumulative distribution
function (c.d.f.) of a non-negative random variable X, for any
6 >0 and 6 > 0 we have

E[(14+X)™?] <Usx(9),

where
Ns(u)

+Za95

where Ns(u) and ag 5(k) are respectively given by Ns(u) =
|4 and ag.5(k) = (1 + (k —1)8)" — (1 + ko) ~°

For the proof of Lemma 1, please refer to [36]. Note that the
tightness of the bound obtained in Lemma 1 depends on the
parameter §, the discretization step size. Technically, a smaller
step size yields a tighter upper bound while leading to higher
computational costs.

Based on Lemma 1, a bound on the MGF of the service
process for any single-server wireless system with service
process increments given by the Shannon capacity is given:

Us x(0) = m>151 (14 6Ns(u VFx (ko) 3,

Theorem 1. Given S(s,t) = 7 ZZ;IG In (1 +~(k)) with
independent positive y(k), an upper bound on Mg(0, s,t) is

given by
t—1

MS(Qv Syt) < H Q(97 k)v
k=s

where q(0, k) = Us ) (n0). Furthermore, if (k) L v holds
for all k, then q(0, k) = q(0) and the above expression reduces
to Mis(6,s,t) < (q(6)) "

Proof: Starting from the definition of Mg(f,s,t) and
using the independence assumption of y(k) in k, we have

Mg (0, s,t) = E [exp (—0 - S(s,1))]
=E | [] exp (—6nIn(1 + v(k)))] =[IE [(1 +(k) "
k=s k=s

Applying Lemma 1 to the right hand side of the expression
above, Theorem 1 immediately follows. [ |
Next, we provide a MGF bound on the network service for
multi-hop wireless networks with heterogeneous, independent
Shannon-type service processes per link. The channel catego-
rization, shown in (14), is used for expression simplifications.

Theorem 2. The network service process Spet(s,t) of a multi-
hop wireless network consisting of n relays and characterized
by the decomposable set of hops T, = \J;-, X; following
(14), where the subset X; is associated with the randomly
varying SINR #; and has a Shannon-type service process

increment In (1 + ), has the following MGF bound

> (" o

Z T, =t—s

Snee (0, 8,1) < (18)

where §;(0) = Us 5, (n8) for all i € Ty

Proof: Using equation (6) and (8), we can bound the MGF

for the n + 1 hops network service process by
n+1

> I Ms, (0,71, 7)

s=71 < <Tpp1=t 1=1

< > (0)gR0)

Z:’:—ll Ti=t—s

- ¥ e

mi=t—s =1

My, (0,5,t)<

4, (6)

oo

i Zkexi Tk=Ti

where the first inequality is obtained by using (8), and the
second inequality is obtained by using the change of variables
T, = T; — T;i—1 and the stationarity of the service processes,
e, Mg, (0,7,_1,7) = Mg, (0,75 — 7,_1), then applying
Theorem 1. The equality in the last line is obtained by
aggregating similar terms, i.e., m; = ZkeXi Tx. Applying the
combinations of multi-sets theory [44], it is known that

Z 1= 7Ti+|Xi|—1
S\ o -1 )

Zkexi Th=T4
where |X;| denotes the cardinality of X, and then the theorem
is concluded. ]
We emphasize that, all results presented so far apply to
general cases of distributions of link SINR ~. Thus, the results
have wide applicability to wireless (and wired) network anal-
ysis, as long as Shannon-type service processes are assumed.

C. Probabilistic Performance Bounds

The general probabilistic total backlog and end-to-end delay
bounds for a multi-hop wireless network are given by (9) and
(10), respectively. Both bounds are given in terms of M(0, s, t)
in (11). Theorem 3 provides an upper bound on the function
M(0, s,t), and hence, probabilistic performance bounds for
multi-hop wireless networks, when the arrival is characterized
by (16) and the network service is provided by Theorem 2.

Let us first define K, , , (x) as

 (n+tl—-—m+rT
w .
n+1l-m

o (IL,n+2—m+7174+ 12),

ICT,TL,m (‘,I:) é

where the Generalized Hypergeometric Function ,F, (a;b; x),
with vectors @ = [a1,...,ap) and b = [b1,...,b,], is given as

o [ IT7- (), a
Fy(a;b;z) £ T R
s 2 (6 5
and (a;)x and (b;) are Pochhammer symbols.

Theorem 3. Let m be the number of subsets of identically dis-
tributed channels, T = max(s—t,0), and V; (0) £ pa(0)G;(6),
a upper bound for M(0,s,t), § > 0, for the (n+ 1)-hop
wireless network is given by

Zwl

whenever the stability condition, mIaX{Vi( )} < 1, is satis-
1€T M

M(,s,t) < Wi HO) K (Vi (0))



fied. Here, {; (0) for all i € {1,...,m} is defined as
[TVie) -v;0)~", m=>2
i

17 m=1

Vi (0) = (19)

Proof: By the definition of M (0, s,t) in (11), we start
with the substitution of (16) and (18) in (11), then we have
M(0, s, )

min(s,t)

< S o Y I re
u=0 :s—ui:1 '

i
3

1

Then using the change of variable u = s — u and rearranging
terms, we equivalently have

M(0, s,t)

606b . u
0 Z PO Z

T

7Ti+‘Xi|—1 o
( | X — 1 )qi ©).

Based on above, by splitting the power u for p¥ (f) into
components in terms of m;, we immediately have

7Ti—|-|Xi|—1
uz;mz H( || -1

Ti=u
i=1

e & X -1
w2 T

Ti=u
i=1

NgE!

i=1

M (0, 5,1) Jvr o)

Jvr o,

where V; (6) £ p,(0)4;(0) and 7 = max (s — ¢, 0) are respec-
tively defined for notional simplicity, and the last inequality is
obtained by pushing s to infinity. Then, we further have

M (0, s,1)

< €% i ut+n+1—m
—ps~ t(&)u:T n+l—m

Pa

£ an

1

» (20)

MS

i

where the following inequality for combinatorics is used, i.e.,
ny nz\  (nm < ny+ng+---+ny
k1) \ k2 kave) — \ki+ko+--+ky

forall n; > k; >0,i€{1,2,...,M}.

From (20) on, we need to consider two situations: (i)
m = 1 for the homogeneous network, and (ii) m > 2, which
represents the heterogeneous scenario.

For m = 1, the expression in (20) directly reduces to

696b > u+n “
M<97s7t)spgt(9)§( N )V ), @

where V' (0) = p, (0) G (6), and § (9) characterizes the homo-
geneous channel gain.

Regarding m > 2, the upper bound of M (0, s,t) can be

formulated as

(Qst)

(UZZT mm) D e (O)VTH0) 2
i=1

= = (utn+l1-—m
Vm 1 9 V(o
> @3 (L.
where ¢; (0) = [],; (Vi(0) — V;(0))~". Here, the inequality
comes from the application of following homogeneous poly-
nomials identity [45], that is,

N+M 1
k1 k2 knvo
§ AR Vs EH (z: — )
ki+-+ky=N JFEITE
for any M > 2 distinct variables, x1,22,..., 2.

Furthermore, we have a closed-form expression in terms of
generalized hypergeometric function for the infinite sum [46]

= k
Z <n;€r )xk:x“(n2u>gF1 (ILn+u+lu+1;2),

k=u

whenever |z| < 1, which subsequently produces the newly
defined K, ., (x). It is worth noting that, the condition
max{V( )} < 1 should be satisfied, for the sake of stability.
i€l

Combmmg (21) and (22) and using (19), then the theorem can
be concluded. ]

In Theorem 3, the stability condition is reduced from the
statement that, V;(6) < 1 should hold for all 1 < ¢ < m. From
the physical perspective, in the sense of long-term stability,
the arrival rate should be less than the service capability
on all hops; otherwise, the hop that violates this condition
becomes the network bottleneck, thereby producing infinite
backlog and delay. The stability condition can be reasoned
as follows. If we take the log of both sides of the expres-
sion, the condition can be stated as, “the difference between
log M4 (6,0,t) and — log Mg, (,0,1) is less than 0,” i.e., for
a given QOS measure 0, the effective capacity (characterized
by — (6t)” " log Mg, (6,0,t) ) must be %reater than the effec-
tive bandwidth (characterized by (6t)” log My (6,0, t)), for
the same 6, for the system to be stable. This intuitive result
was hinted in [25, Ch. 7].

It is evident that, the upper bound of M (6, s,t) by Theo-
rem 3 is suitable for both homogeneous and heterogeneous
multi-hop wireless networks. In contrast to the recursive
method [35], the classification of hops of the network into
m subsets with identical channels, in terms of their channel
distributions, provides a straightforward approach to compute
M (6, s,t), thereby largely simplifying the obtained expres-
sion. From the side of service process each subset of nodes can
be considered as homogeneous sub-network, and the overall
network service process is given by the (min, +) convolution
of the subnets service processes. It is however worth noting
that, although the network service curve expression that we
derived is computationally simpler than the recursive expres-
sion derived in [35], it involves an additional bounding stage
on the MGF of the network service curve which may relax
the bound slightly. Given that the computation of such curve



maybe extremely demanding, we feel that such relaxation
is warranted. Furthermore, simulation results show that the
obtained performance bounds are reasonably tight.

Clearly, the expression provided by Theorem 3 depends on
the generalized hypergeometric function, which is computa-
tional costly. In what follows, we provide a looser but more
simplified upper bound on M (6, s, t) in the homogeneous case
specifically, i.e., m = 1. For that, we first need the following
lemma regarding the upper bound on . ,, 1 ().

Lemma 2. For non-negative integers n and 7, the inequality
Krni (2) < Grn(z) 2 min {Gi(x), G2(z)}
holds for 0 < x < 1, where G1(x) and Go(x) are respectively

given by ( ( N ))
min (1,27 ("""
Gi(z) = (1 — )t
and ) N
B (TN
Ga(z) = (e (n N 1).1? .

Proof: Note that IC; ,, 1 () is explicitly formulated as

= (n+k\
ICT,n,l (i) - /;_ < k ).’E )
then the derivation can be performed from the the following
two cases:
() It is easy to know that, i +k < (i+k —7)(1+ %) holds
for all 7 > 1 and all k¥ > 7, then we have

n+k < n+k—1\[(n+71
k - k-7 n )
Then we have

= k
Krn (2) < a7 (" Z T) 3 ("Z )x‘“, 23)

k=0
where we used the change of variables, ie., k = k — 7. It
immediately gives Gy (x) by applying Newton’s Generalized
Binomial Theorem and by taking 1 as the upper limit into
account as well.
(ii) On the other hand, it is easy to know that

> ()

k=0

T—1
1 1 n+k
S(l_x)nﬂ—ﬂ? Z( k )
k=0

1 n+T T—1
= — T
(1 — )+t n+1 ’

where inequality is true since 0 < x < 1, and the last equality
is obtained by applying a combinatorial property [44]. Then
Gs () is obtained. |

The lemma above allows us to use a simpler expression
to describe the upper bound (compared to Theorem 3) on
M (0, s, t) for homogeneous networks in particular, and it is
shown in the following theorem.

oo

2 (") = -

k=1

Theorem 4. For homogeneous (n + 1)-hop wireless networks

characterized by the MGF service bound §(0), and for any

0 >0, given p, (0) we have

09

M(97 S, t) S Ts—t/n\
Pa t(e)

where T £ max(s — t,0), whenever the stability condition,
pa(0)§(0) < 1, holds.

“Grn (Pa(0)q(0)) ,

Proof: Applying Lemma 2 in (21) whenever 0 <
pa(0)§(0) < 1, then Theorem 4 follows. |
Inserting the results from Theorem 3 (or Theorem 4 for
merely homogeneous cases), in (9) and (10), we obtain the
desired probabilistic bounds on backlog b° and delay w® in
the network, respectively.

IV. POWER ALLOCATION FOR MULTI-HOP NETWORKS

In this section, we study optimal power allocation for a
mmWave multi-hop network, applying the results presented
in the previous section regarding the MGF-based network cal-
culus. For tractability considerations, a sum power constraint
is assumed in particular, and the resulting power allocation
scheme is optimal for the scenarios with identical shadowing.
The cases with per-device power constraint or non-identical
shadowing are more complicated, and thus left for our future
study. Here, more precisely, we are interested in finding the
optimal transmit power allocation of multi-hop network with
independent and identically distributed shadowing per hop,
&, Vi € Iy, assuming that & is stationary. In particular,
we limit our study to the case of homogenous log-normally
distributed shadowing over all links, i.e. we set § = & ~
N(0,0?) for all hops i € Z3. The case with non-identical
shadowing is more involved and is left for future work.

From (9) and (10), it is clearly shown that, probabilistic
bounds on the total network backlog and end-to-end delay
performance are determined in terms of the function M(6, s, t)
defined in (11). This implies that the performance optimiza-
tion, e.g., with respect to transmit power allocation, of a multi-
hop network is equivalent to optimizing the function M(@, s, t),
which, with a given arrival process My, is equivalent to
optimizing Mg, _, . Therefore, in what follows, the optimization
subject is the MGF for the network service process, i.e., Mg, _, .
Since an exact expression for the MGF of network service
process is not attainable, we opt for optimizing a bound on
Ms,,,, given by (8), instead. A power allocation that elevates
the lower bound on network service capacity corresponds to
lower Mg, and thus reduces the probabilistic bounds on
network performance.

Theorem 2 provides an upper bound on Mg, (6, s,t) and
hence a lower bound on the network’s service capability .
Therefore, in order to maximize the lower bound on the service
process, we must minimize the upper bound on Mg, _, (0, s,t).
The function Mg, _, (6, s,t) is related to the power allocation

"More exactly, a higher server capability is associated with a higher channel
capacity of multi-hop network, which therefore gives a smaller Mg, ,
adversely, by the definition of service MGF.



vector P € R, From (8) we have

n+1

>, IIE

Zzz+lﬂ —t—g =1

Mg, ., (0,s,t) <

net

[(L+7) 7)™, @b

where the per node SINR, ~;, Vi € Zy, is given by (17)
and is in turn related to the allocated transmit power for the
corresponding node. Let =,, C Ri“ be the set of feasible
power allocation schemes with respect to n intermediate
nodes. Furthermore, the sum of all allocated power should
be constrained by the total power budget, i.e.,

Py 2 3" P < Py,

1€Ty
where P, is the total power budget. For any power allocation
P 2 {P},.7,, € En, we define P as a feasible power
allocation scheme if the power constraint above is satisfied.

To determine the optimal power allocation strategy, we
need the following two lemmas first. To be more precise,
in Lemma 3 below, we show that, given a feasible power
allocation, the maximal network service capability is achieved
only when the SINRs for all hops are identically distributed.
Next, in Lemma 4 we show the existence and uniqueness of
the optimal power allocation vector P* when Ps> = Pot.

Lemma 3 (Sufficiency). Given the sum transmit power budget
Piot for a (n+ 1)-hop wireless network, a feasible power
allocation P*, where Py~ = Py, that results in identically
distributed SINR over all hops maximizes the lower bound on
network service process whenever such P* exists.

Proof: Note that the network service process is charac-
terized by its MGF bound, M, _, (6, s,t), s > 0. Furthermore,
a lower bound on the service process corresponds to an
upper bound on M__, (6, s,t), which is given by (24). Since
Ps~ = P;o by assumption, the optimization problem can be
formulated as

n+1

¥ e

S mi=t—s

i=1

P =

BWDT” (25)

argmin
P:Py=P,oq

1+7

To prove the lemma, we use the generalized Haber in-
equality [47]. That is, for any m non-negative real numbers
T1,%2,...,Tm, and for all n > 0, we have

> [ () (A5)

i1t tim=n k=1

The above holds with equality if and only if x; = x; for any
1 < 4,7 < m. Using this result, the minimum in (25) can be
achieved by choosing a power allocation vector P* such that

E[(1+7)""] = E[(1+)""]

for all 7, 7 € Znq, which equivalently indicates that the SINRs

are identically distributed across all n + 1 hops, i.e., 7; g’yi ,
for all ¢+ € Z3. The resulting MGF service bound under P*

power allocation is then given by
n+1 t—s
—x t—s+n 1 _o
M 0,s,t) < — E|[(1+-~)"""
S (01 )_< n )(nﬂ; [(+%) ])

:(t o ”) (E[@+4))"" .

n

(26)

The first step is obtained by applying the generalized Haber
inequality, with strict equality under optimal power allocation,
to (24). The last step follows since +y;, Vi € Zy, are i.i.d. under
optimal power allocation, and the fact that a random variable
is uniquely determined by its MGF, and by letting # £ ¥;. W

Lemma 3 shows that the key enabler of optimal multi-hop
network operation is the maintenance of identically distributed
channels’ SINR across all hops. Note that this result applies to
arbitrary networks where the service process is characterized
by a Shannon-type link model, as long as the individual links
are not coupled in terms of interference (only self-interference
is considered). In contrast, in what follows we present an
approach for allocating transmit power 2 to achieve identically
distributed SINR in a mmWave multi-hop network. Given a
background noise power of Ny, we define \; = % Due to the
one-to-one correspondence of A\; and P; and for convenience
we opt to work with \; for the derivations that follows.

For ~;, i € T3, we use

v = k- 1070 ey 0 107016

to rewrite (13). Note that the shadowing effects are assumed
to be homogeneous and log-normally distributed over all hops,
ie & ~ N(0,0?), where the log-normal shadowmg variance
o? is 1ndependent of the transmit power, since wzl depends
on the power allocated to transmitter ¢, then a power allocation
scheme that enables the equality w;l; b = wjl; ? for any i,j €
T4 is sufficient to ensure identically distributed SINR ~;, Vi.
We follow an iterative approach starting from the last hop of
the network, i.e., the (n + 1)th hop, and moving backwards.
Assume that wili_ﬁ = ¢ holds for any ¢ € 73, where c is a
constant. Let ¢ = n + 1, then according to (13), wp41 = An
and therefore, \,, = c- lg +1- Similarly, for ¢ = n, we obtain

A1 = (14 ) - c- 18 =c 10 + Ppp (Inlnsr)”

Then by recursively applying A;_1 = (1 + p;\;) -c- lf, for all

t € Ty, and after some manipulation we obtain

n—i+1 k n—i+1
Ai = Z c* <Mi_+1k H Hitu l?+u> 2 Z vik-c® (27)
k=1 u=1 k=1

forall 0 <¢<n.
With the constraint PZ < P;ot, which corresponds to )\Z £

P

=< Lo 2 £ \iot, We can obtain the value of ¢ using Lemma
No No
3 and by solving the equation Ay~ = Aot subject to

n n—i+1 n+1 /n+l—k
= =1

k=1 =0

where the last equality is obtained by collecting terms con-

2The power is assumed to be infinitely divisible during the power allocation.



taining ¢* for 1 < k < n + 1. Then % can be expressed as

4 =k-1070H+) ¢ (29)

Lemma 4 (Existence). Given a (n+ 1)-hop wireless network
operating under transmit power budget P, there always
exists a unique optimal power allocation P* such that Py~ =
Piot, among all feasible P € E,, in terms of maximizing a
lower bound on network service process.

Proof: The proof consists of two parts: (i) the existence
and uniqueness of the power allocation scheme given Py~ =
Piot, and (ii) the optimality. The notations in derivations below
follow the fashion we used previously.

(1) To show that there is exactly one real root ¢ that meets
the constraint on Ao, we first construct f(z) as follows

n+l /n+l1-—k
flz) = Z ( Z Vzk) ¥ — Aot (30)
k=1 =0

Due to the facts that f(0) = —Aiot < 0 and f(+00) = +o0,
since f(x) is continuous, by the Intermediate Value Theorem,
there is a positive ¢ such that f(¢) = 0, which means that
equation f(x) = 0 has a root. Furthermore, to prove the
uniqueness of the root, we assume equation f(z) = 0 has at
least two positive roots x1 and xo. Suppose that z; < x5 such
that f(z1) = f(z2) = 0. Note that f(x) is continuous on the
closed interval [z1, 23] and differentiable on the open interval
(z1,x2), it is easy to find that the three hypotheses of Rolle’s
Theorem are simultaneously satisfied. Thus, there should be a
number z* € (z1,x2) such that f/'(z*) = 0. However,

n+1l /nt+l1—k
f(z)= Z < Z ui,k> kxh=1 >0

k=1 \ i=0
holds for any point = € (0, +00), which contradicts the initial
assumption and hence we conclude that 1 = z2 which proves
the uniqueness of the root for the equation f(z) = 0 and hence
the uniqueness of the optimal power control vector.

(ii) To prove the optimality of P*, we assume that the op-
timal solution is obtained with the sum power P’Z that relates
to the power allocation vector P’, where Pé; < P/i = Piot.
In other words, we can obtain 4’ associated with P’, such that

E[1+4)"] <E[1+5%)7%], 31

where 4* similarly relates to P*. For notational simplicity, by
using (29), we define

glc) 2E[(1+ ’Ay)*en] =E [(1 + /flOfO'l(o“LE)c)*e"} .

Let us consider all possible power allocation schemes P
such that Py~ < P,. It is evident that, the derivative of g(c)
over Ps~ gives

dg(c de dPs-\ !
g(c) _ g’(c) ) _ g’(c)- >
dPZ dPZ dc
10~0-1(e+8) N,
——0y-E i | < 0. (32)
(1+ £10-0-Lat0c) F | f/(c)

which indicates that g(c) monotonically decreases in Ps-.
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Since c is uniquely determined by Ps~ as shown above and
because of (32), we conclude that

E[1+4)7%] >E[1+4%)"%],

which contradicts the initial assumption in (31). Thus, the
optimal solution is achieved only when PZ = Piot 1s satisfied,
which completes the proof. ]

Lemma 3 shows that allocating power in such a way that
it results in ii.d. SINRs across the hops is optimal, while
Lemma 4 states that utilizing all the available power for
transmission is optimal since it provides the best network
performance. The intuition behind these results is that avoiding
bottleneck is the best strategy, while utilizing more power
for transmission enhances network performance. Furthermore,
Lemma 3 and Lemma 4 provide the minimization on the
MGF bound of the service process rather than minimizing
the actual process. Nevertheless, such minimization results in
maximizing the lower bound on network service which in turn
enables the computation of better network backlog and end-to-
end delay bounds and more efficient resource allocation and
network dimensioning when based on the computed results.
In light of the above, we have the following theorem to show
the exact power allocations.

Theorem 5. Given the total power budget Py, i.e., Py~ <
Piot, and the background noise power Ny, for the mmWave
channel described in (12), and let x* denote the positive
solution for the algebraic equation

n+l /nt+l—k . Ptot
z(z ) - T

k=1 =0

with v; i, given by
k
Vik = ,Ui_Jrlk : H Mt lﬁrua
u=1
where ; and l; are the model parameters defined in Sec. I,
then, there exists a unique optimal power allocation strategy
P* € B, such that
n—i+1
P = Ny Z Vi,k'(x*)kv Jor i€ Iy.
k=1
Proof: Using Lemmas 3 and 4, the theorem immediately

follows by applying the mapping between the transmit power
and the SINR, i.e., Ptot = )\totNO and PZ = )\'LNO |

V. SELF-INTERFERENCE IMPACT IN MMWAVE NETWORKS

To investigate the impact of self-interference on network
performance, we consider a particular case, where the separa-
tion distances between adjacent nodes are assumed to be equal
to l, e.g., l; =1 for Vi € 7, and all relays have an identical
self-interference coefficient u. Closed-form expressions for the
network performance can be obtained under these assumptions
which provide more insights to the network operation.

In the following analysis, we assume that the optimal power
allocation scheme proposed in Theorem 5 is used. Under this
power allocation, we have ¢ = w;l; B for Vi € T+ . Note that ¢



in this case is a measure of the SINR of channels, and hence it
directly influences the network performance. (13) shows that,
the parameter w;, and therefore the function c, are functions of
w. Therefore, in this section we represent this measure by the
function ¢ (1) = w;(w)l; P, Applying (28) under the proposed
power allocation scheme as well as the conditions Py~ = Pyt
and p; = p, the optimal \; in (27), denoted by ¥, reduces to

n—i+1

’f _1 Z /,LZ/B

lﬁ n—i+1 -
c(u)i’- (C (/i)(ii) /zlﬂ E— if () pl® #1 “
) 22Xt — i+ 1) G

n+1)(n+2)’

In the above, we used the geometric sum to obtain the first
case. It is easy to find that, the case ¢ (i) ul® = 1 corresponds
to a particular situation for the self-interference coefficient p,
ie., p=(2Mot)” " (n+1) (n+ 2), which immediately gives
the optimal ¢ (1) as ¢ () = 2Aeot [(n + 1) (n 4 2) 1°] by ap-
plying ¢ (u) = (ulﬂ)_l. It is worth noting that, ¢ (u) ul? = 1
here corresponds to a very special case that rarely occurs
in realistic scenarios, since p, which is only related to the
relay implementation, is independent from A,4 and n. In this
sense, for most cases 1 = (2Aior) + (n+ 1) (n +2) is not
satisfied. Therefore, from the perspective of generality, our
interest mainly focuses on the case ¢ (u) ul® # 1.

According to the assumption of optimal power allocation
that gives Py~ = Pyt according to Lemma 4, we have

ﬂ ~ n—i
Amt_zxf— W_lz(mmm )
o )zﬁ c(p) )" -1
:c(u)zw <C(M)Mgﬂ( (l;ul)ﬁ—l n1>, (34)

where we use the change of variables ; =n — ¢+ 1 and then
apply the geometric sum formula in the last step.

otherwise.

For notational simplicity, we set t = c(u)ul® with ¢ # 1,
then (34) can be written as

t
,U)\tot:t_l (t'

which subsequently gives

thrl _

t—1

—m+@,

t" (04 2 + phior) 2+ 14 2uM o) £ = phior. (35)

Recovering ¢ to ¢(y)ul? and dividing both sides of (35) by
i, in terms of ¢(u), we immediately obtain

a1 ()™ () + az(pu)e® (p) + as(p)e (p) —

where a; (1), ¢ = 1,2,3 are respectively given by

Atot = 0, (36)

ai(p) = Mn+2l(n+3)6,

az(p) = —(n+2+ M)\tot)/llw7
ag(p) = (n + 1+ 2pAeor 1.

To this end, the Descartes’ Sign Rule [48] can be applied to
determine the number of positive roots of (36). The rule states
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that, when the terms in a polynomial are ordered according to
their variable exponent, then the number of positive real roots
of that polynomial is either the number of sign changes, say
n, between consecutive non-zero coefficients, or is less than
that by an even number, i.e., n,n—2,n—4,.... Clearly, (36)
has one or three real positive root(s), if there exist real positive
solutions. In addition, we can see that, there are two repeated
positive roots ¢; (1) = ¢o (n) = (ulﬁ)fl. By excluding the
two repeated roots that violate the condition ¢ (u) ul® # 1,
we are left with one unique positive solution ¢ () # (ul?) ™
for (36), under optimal power allocation, which coincides with
the claim in Lemma 4.

For the arbitrary positive integer n, there is no explicit
generic analytical solution of (36) for ¢ (u). Hence, in order
to keep track of c¢(u) with respect to p, we compute the first
derivative over p on both sides of (36), then we have

0 =al ()" (1) + (n + 3) ax (n) " (u)c (1)
+ ab ()P (1) + 2az(p)c(p)c (1)
+ az(pu)e(p) + az(u)c (1),

which gives

d (n)=— al ()3 () + ab(u)c® (p) + as(p)e (p)

(n+ 3)ar ()2 () +2az(p)e (p)+as(p)

The asymptotic behavior of ¢(y) in the two cases, i.e., when
u — 0 and n — oo, respectively, is of particular interest,
which will be investigated in what follows.

1) For u — 0: Note that ¢ (1) is bounded by
Evll-&-l C(u)lB — 711-&-1
be expressed by

(37

(njfﬁ, since
w; <Y o A = Atot. Then, (37) can

(n+2)1P ¢ (1) — 2Menl’c (1)

lim ¢ (u) = <0.
Jimy e (1) (n+1)IP =
In the sense of asymptote, we obtain
2Q\¢otl 77
c(u) = o (38)
(1 + exp ( ni‘:iﬂ)) 42
by applying the initial condition ¢(0) = (n/)ﬁﬁ
2) For n — oc: Defining D £ pi)\io; and ¢ (1) = ¢ () ul?,
the derivative (37) can be written as
¢ (u) = ) (n?+ (D +3)n+2)t(u) — (n+2)D
W 2+ (D+3)n+2+D)t(n) — (n+3231%)

It is evident that, when Ao is fixed, n — oo yields n D —
0. Dividing the numerator and denominator of (39) by n?, we
then have

lim /() = — 24,
n—oo ’u,
which immediately gives
c(p) = Kp™t, (40)

where K > 0 is a constant scalar.

Following the notation in (29), we denote by 4*(u) the
SINR with respect to the optimal power allocation proposed
by Theorem 5 as a function of self-interference coefficient



1. Regarding the two asymptotic cases above, we have the
following theorem and corollaries to address the relationship
between network service capability under optimal power allo-
cation and the self-interference coefficient.

Theorem 6. Assuming the optimal power allocation in The-
orem 5, in the two extreme cases discussed above, the maxi-
mized lower bound of network service capability decreases as
L grows.

Proof: Recalling that the lower bound of network service
capability is characterized by E [(1 + A* (u))_en
that

d e o] d
aiE [+ 5G] = m

i| , W€ can see

E[(1+5 )" ¢ ()

£1070-1(a+8)
——0n-E »
! (1 + mc(u)10—o.1(a+5))1+an (1)
. )
B R I -7 B
(L4 () " c(p)

since it has been shown that ¢/(u) < 0 for asymptotic
situations, e.g., when p — 0, which corresponds to case that p
is extremely small, or n — oo, which corresponds to the case
that n is sufficiently large. This indicates E | (1 + ’y*(u))_en

monotonically increases with p, which equivalently shows the
degradation of the maximized lower bound of network service
capability. Thus, the theorem is concluded. ]

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical results for the total
backlog and end-to-end delay bounds for mmWave multi-hop
wireless network discussed in Sec. III and validate them by
simulations. Moreover, in the presence of self-interference, the
performance of optimal power allocation presented in Sec. IV
and V is demonstrated and further discussed.

Here, in particular, the 60 GHz band (ranging from 57 GHz
to 64 GHz) is selected for our mmWave multi-hop network,
and the common system parameters, including the parameters
specifically associated with 60 GHz channels, are summarized
in Table I. In addition, we assume the following regarding the
network configuration:

o Deterministic arrivals with a constant rate p,, and a burst
51, = 0;

« All relays have identical u, and are uniformly deployed
along the path from source to destination;

« Sufficiently large (or infinite) buffer size at each relay,
i.e., overflow effects are neglected;

o A time-slotted system with time intervals of 1 second are
assumed.

Under this scenario, we investigate the following:

1) We first validate the derived upper bounds for probabilis-
tic end-to-end delay and total backlog from Theorem 3.

2) Secondly, based on the validated bounds, we investigate
the impact of optimal power control, self-interference
and relay density on the probabilistic performance of
mmWave multi-hop networks.
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TABLE I
SYSTEM PARAMETERS

Parameters ‘ Symbol ‘ Value
Bandwidth w 500 MHz
Antenna Gain Scalar K 70 dBi
Power Budget Piot 50 Watt
Noise Power Density | No/W | —114 dBm/MHz
Hop Length l 0.5 km
Path Loss Intercept o 70
Path Loss Slope B 2.45
STD of Shadowing o 8 dB

Violation Probability e

10° 10°
End-to-End Backlog b (Gb)

Fig. 3. Violation probability € v.s. targeted theoretical backlog bounds b%,
compared to simulations for different p, = 1, 1.5 and 2 Gbps, with n = 10,
and 6 = 10~2 and § — 0, respectively.

For the sake of simplicity, in what follows the analytical
bounds for homogeneous scenarios are all illustrated by The-
orem 4, while heterogeneous counterparts are provided by
applying Theorem 3.

A. Bound Validation

We start with considering a tandem 60 Ghz network con-
sisting of n = 10 relays that have identical self-interference
coefficient ;4 = —80 dB. From Table I and the power constraint
formulated in the form of (15), we determine Ao,y = 134 dB.
Figs. 3 and 4 show the total backlog and the end-to-end delay
bounds respectively, compared to their corresponding simu-
lated values. Recall that the SINR distributions are identical
per hop due to applying the optimal power allocation policy
from Theorem 5, resulting in m = 1 of Theorem 3.

In Fig. 3, given a violation probability €, we observe that
the simulated total backlog (the curve without marker) rises
as the arrival rate increases from 1 Gbps to 2 Gbps due to
an increasing utilization of the system. Clearly, the simulated
violation probability of backlog asymptotically approaches the
analytical upper bound (the curve with marker) as the target



—Sim.
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pa=2 Gbps E
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End-to-End Delay w* (s)

Fig. 4. Violation probability € v.s. targeted theoretical delay bounds w*®,
compared to simulations for different p, = 1, 1.5 and 2 Gbps, with n = 10,
and 6 = 10~2 and § — 0, respectively.

end-to-end backlog b° increases. The plot furthermore contains
the information on the accuracy of bound provided by Lemma
1, as we compare in the plot the corresponding analytical
bounds for a granularity of 6 = 1072 as well as for letting
6 — 0. We observe that the two curves are quite close together,
which confirms also our findings in [36] that the MGF bound
provided by Lemma 1 is close to the true MGF of the service
process for reasonable granularities 4. The only exception
occurs for the end-to-end delay violation probability with a
higher traffic load of p, = 2 Gbps, indicating that the step
size might be required to be adapted in certain scenarios. In
addition, regarding the end-to-end delay w® with respect to
the violation probability € in Fig. 4, we find that the end-to-
end delay is not linearly dependent on the arrival rate, while
the delay violation probability bound becomes less accurate
as the the utilization approaches the saturation point 3. This
is due to the fact that, we use a parameterized bound to
characterize the Mg, _,, the discretization errors introduced by
the parameterized bound will get enlarged, since the feasible
set of € to meet the stability condition correspondingly shrinks.
Therefore, the precision decays. Despite this, asymptotically
the simulated system behavior and the the bounds show the
same slope, concluding our validations for derived bounds.

B. Impact of Optimal Power Allocation

Fig. 5 demonstrates the merit of adopting the optimal power
allocation, with respect to its impact on the end-to-end delay.
We consider a network that consists of n = 10 relays, the self-
interference coefficient is ;4 = —80 dB, and the arrival rate is
fixed to p, = 1 Gbps. We use a uniformly allocated powers
{P}, = %W as a baseline for comparison. From the figure,
it is evident that, the upper bound associated with the optimal
power allocation (referring to Theorem 4 for the homogeneous

3The “saturation point” can be understood as the maximum p, such that
max;ez,,{Vi} = 1, which reflects the upper limit of network without
yielding infinite backlog and delay.
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=-=-Sim.
-¢--U.B. 3
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.\‘
% ]
®
Q\‘
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\'\ \9‘\
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End-to-End Delay w* (s)

Fig. 5. Violation probability € v.s. targeted theoretical delay bounds w*®,
compared to simulations for two power allocation strategies, with n = 10,
pa =1 Gbps and § = 10~ 2,

0 1 2 3 4 5
End-to-End Delay w* (s)

6 7 8 9 10

Fig. 6. Violation probability € v.s. targeted theoretical delay bounds w*®, for
two power allocation strategies, with 4 = —80 dB, —90 dB and —100 dB,
respectively, where n = 10, p, = 1 Gbps, and § = 102,

case) is asymptotically tight, while its counterpart (here apply-
ing the result for m > 2 in Theorem 3, since the non-optimal
power allocation yields the heterogeneity) is not. The slackness
of bounds for the heterogeneous scenario comes from produc-
ing the binomial coefficient of (20) in Theorem 3, where the
upper bound is generalized in a simplified and unified manner.
In other words, compared to the recursive approach by [35],
the tightness of our proposed method is sacrificed for gaining a
lower computational complexity for the heterogeneous cases.
Fortunately, the asymptotic tightness can be guaranteed for
both homogeneous and heterogeneous scenarios, and this
allows us to keep track of realistic performance behaviors.
Furthermore, under a sum power constraint, we can see that,
the network performance without the optimal power allocation
suffers severe degradation, in terms of the end-to-end delay.
It is evident that, the bound performance degradation is also
significantly exacerbated as p grows, e.g., comparing e.g., the
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Fig. 7. c(p) v.s. p for different relay densities characterized by n = 1, 2,
10, 20 and 50, respectively, with L = 5 km, P;ot = 50 W.

gap between optimal and uniform power allocations schemes
with ¢4 = —80 dB and that with ¢ = —100 dB. This obvious
deterioration indicates the great importance of adopting the
optimal power allocation by Theorem 5, especially when the
self-interference is significantly greater than the noise, i.e., the
interference-limited system.

Given different self-interference coefficients, i.e., u = —100
dB, —90 dB and —80 dB, in Fig. 6, we furthermore investigate
the impact of self-interference on the network performance
bound through the optimal power allocation. Clearly, in the
situation ¢ = —80 dB, the optimal power allocation scheme
enables a remarkable improvement in terms of performance
bounds, while this benefit diminishes when p decreases, as
shown from the gaps for 4 = —90 dB and p© = —100 dB.
Despite the slackness of upper bound for the heterogeneous
cases (with respect to the observations from Fig. 5), we are
still able to conclude that the optimal power allocation is more
important in case of high interference coupling, or low SINR
scenarios, in general.

C. Impacts of Self-Interference and Relay Density

In the following, we further investigate the performance of
60 GHz networks operated by optima power allocation while
varying the self-interference coupling coefficient p. Here, the
separation distance between source and destination is fixed to
L = 5 km, and an arbitrary number of relays with a sum
power constraint is uniformly placed between the source and
destination nodes. As we deploy more relays, the separation
distance between adjacent nodes decreases as | = ni“

From Lemma 3, we know that the SINR per link, deter-
mined by ¢ (p) = w* (u) 177, yields the service performance,
where w* (1) denotes the optimal w; (1) for Vi € 7y, obtained
by applying the optimal power allocation. We study hence the
impact of p on ¢(u) by this relation, rather than straightfor-
wardly to aim at the probabilistic backlog and delay violation

probability bounds. The behavior of ¢(u) with respect to the
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(s)

Probabilistic Delay Bound w®

Number of Relays n 0

-120
Self-interference Coeff. 1 (dB)

Fig. 8. Probabilistic delay bound w® v.s. n and p jointly, with e = 1076,

varying self-interference coefficient y for different relay densi-
ties is shown in Fig. 7. For all curves, there exists a “waterfall”
tendency with regard to c¢(u) as p increases, i.e., dividing
the curve into a “flat” and “falling” stages, respectively. We
find that, the point from which on this transition happens
depends on the node density n. Taking the scenario n = 50
as an example, more precisely, when p is below p. ~ —120
dB, ¢ (u) remains flat by increasing p. Keeping on elevating
, however, ¢ () will encounter a dramatical decay once p
exceeds u.. This behavior relates to the fact that, the system
switches from a noise-limited one to an interference-limited
one as u grows, such that the self-interference becomes the
dominant factor restricting the level of ¢ (u). We also observe
that, generally speaking, a higher relay density will result in a
higher ¢ (u). However, when the self-interference coefficient
is significant and the system being limited by interference,
i.e., 4 > —90 dB, a sparser relay deployment is surprisingly
able to provide a higher ¢ (u). From Fig. 7, we summarize
that despite improving ¢ () by means of increasing n, the
overall performance improves only if  relates not to a strongly
interference-limited system. Hence, optimizing the network
performance by changing the node density must take the
self-interference coefficient into account, since higher relay
densities do not always imply higher performance.

In Fig. 8, the probabilistic end-to-end delay bound w®
with respect to a varying self-interference coefficient p and
a varying number of relays n is further demonstrated. For
more noise-limited systems, the delay bound is barely sensitive
to different number of relays (in fact a higher number of
relays has a beneficial impact on the delay bound, which
is not significantly visible in this plot), while for strongly
interference-limited systems, e.g., when = —70 dB, either a
low or a higher number of relays outperforms relay densities in
between significantly. Recall that as the node density increases,
the link distances get shorter while the transmit power per
relay also decreases. Still, as the results for noise-limited
systems demonstrate, the resulting SINR improves as the
relay density increases if the self-interference coefficient is



small. When the self-interference coefficient increases, the
performance degrades as long as the emitted transmit power
per relay creates a significant self-interference with the own
receiver. This happens precisely for medium number of relays,
while for a larger relay density, the resulting self-interference
per node drops below the noise level (asymptotically), thereby
leading to a better system performance.

VII. CONCLUSIONS

We investigate stochastic performance guarantees, i.e., the
probabilistic end-to-end backlog and delay, for mmWave
multi-hop wireless networks with full-duplex buffered relays,
by means of MGF-based stochastic network calculus. Accord-
ing to specific propagation features of mmWave radios, a cu-
mulative service process characterization with self-interference
is proposed, in terms of the MGF of its channel capacity. Based
on this characterization, probabilistic upper bounds associated
with overall network performance are developed. In addition,
we propose an optimal power allocation scheme in the pres-
ence of self-interference, aiming at enhancing the network
performance. The analytical framework of this paper supports
a broad class of multi-hop networks, in terms of homogeneous
and heterogeneous, where the asymptotic tightness of com-
puted upper bounds has been validated. Results reveal that,
the self-interference coefficient plays a crucial role in improv-
ing network performance. Another interesting and important
finding is that, given the sum power constraint, increasing the
relay density does not always improve network performance
unless the self-interference coefficient is sufficiently small. We
believe that approaches developed in this paper will have a
variety of applications in designing and optimizing networks
for next generation wireless communications, in terms of
performance guarantees and enhancements.
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