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Abstract

The noticeably increased deployment of wireless networks for battery-limited
industrial applications in recent years highlights the need for tractable perfor-
mance analysis methodologies as well as efficient QoS-aware transmit power
management schemes. In this work, we seek to combine several important as-
pects of such networks, i.e., multi-hop connectivity, channel heterogeneity and
the queuing effect, in order to address these needs. We design delay-bound-based
algorithms for transmit power minimization and network lifetime maximization
of multi-hop heterogeneous wireless networks using our previously developed
stochastic network calculus approach for performance analysis of a cascade of
buffered wireless fading channels. Our analysis shows an overall transmit power
saving of up to 95% compared to a fixed power allocation scheme in case when
the service is modeled via a Shannon capacity. For a more realistic set-up, we
evaluate the performance of the suggested algorithm in a WirelessHART net-
work, which is a widely used communication standard for industrial process au-
tomation applications. We find that link heterogeneity can significantly reduce
network lifetime when no efficient power management is applied. Using exten-
sive simulation study we further show that the proposed bound-based power
allocation performs reasonably well compared to the real optimum, especially
in the case of WirelessHART networks.
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1. Introduction

In recent years, wireless networking solutions are increasingly being deployed
to many new domains such as vehicular networks, machine-to-machine (M2M)
communication, home automation, industrial settings and the smart grid. Ap-
plications in these areas often require novel combinations of delay and relia-
bility constraints, while on the other hand relying on battery-driven wireless
systems. One area where these aspects are especially important is the area
of wireless industrial networks, in particular, process automation. Process au-
tomation comprises the area of process sensing, control and diagnostics. Target
application areas can be found, for example, in refineries, food and chemical
industries. Typical process automation applications have Quality-of-Service
(QoS) demands with deadlines in the order of hundreds of milliseconds and
maximum outage probabilities (with respect to the deadlines) in the order of
1073 to 1074 [1]. At the same time, many of these applications correspond to
factory sites which can span over quite a wide range of distances, varying from
few meters up to few kilometers. Battery-driven wireless sensors and actuators
are mainly applied in these scenarios due to their flexible placement possibili-
ties. Of particular relevance to this work is the tendency of modern industrial
solutions to deploy multi-hop topologies in order to bridge larger distances with-
out necessarily shortening the lifetime of battery-powered nodes. This poses a
significant challenge to existing research efforts to determine the optimal trans-
mit power allocation in such networks. Due to the fact that transmit power is
one of the main energy consumers in a wireless device [2], an adaptive transmit
power management has the potential to improve battery lifetime in addition to
other techniques, such as hardware design, load balancing and transceiver state
management [3].

Nevertheless, when it comes to dependable industrial and machine-to-machine
applications, transmit power management is challenging as it has to factor in
not only the time-varying transmission rate of the wireless channel due to fad-
ing, but also latency and reliability constraints. This necessitates a trade-off
between power consumption at each node and the physical channel transmit
rate, which potentially (due to time variability) leads to a queue build-up at
that node. Although transmit power management under QoS requirements has
been addressed for single-hop communications [2, 4, 5, 6], power management
under stochastic queuing constraints for heterogeneous multi-hop wireless net-
works remains, to date, an open problem. Solving this problem is the focus of
this work. In order to do so, we first need to mathematically express the queu-
ing performance of the wireless network in terms of the transmit power, the
fading environment and the used transmission technology /protocols. We then
pursue towards solving this expression for the optimal power allocation under
given latency and reliability constraints. Unfortunately, an ezact expression for
the performance of heterogeneous multi-hop wireless networks is not tractable
so far. Nevertheless, recent advancements in stochastic network calculus [7, 8]
enable us to derive probabilistic delay bounds for heterogeneous networks.

Based on this insight, in this work we develop an analytical model for the



performance of heterogeneous multi-hop wireless networks. Using an approach
that we developed previously [8], we provide a closed-form expression for the
end-to-end probabilistic delay bound. Using this analytical expression, we pro-
pose a bound-based optimal power allocation algorithm that minimizes transmit
power while maintaining a bound on the delay performance. It is worth noting
that optimizing the bound may result in a different operating point (in terms
of power allocation per link, for instance) than the true system optimum. How-
ever, since up to date no tractable analytical model which optimizes the real
operating point of a system exist, we opt towards a bound-based alternative in
order to provide an analytical solution of the above described problem.
Taking this into account, we will answer the following essential questions:

1. Is it feasible to provide a bound-based optimal power allocation along a
multi-hop path consisting of heterogeneous wireless fading channels under
statistical delay constraints? If so, under which conditions?

2. How would such power allocation scheme look like?

3. How good is such bound-based optimal power allocation scheme and how
well does it perform compared to the real optimum?

In this paper, we study the structure of the derived end-to-end delay bound
and prove some of its important properties for optimization such as convex-
ity and monotonicity of the delay kernel, which we define in Section 3. This
addresses the first question and enables us to develop a power minimization
algorithm for optimal power allocation in a wireless multi-hop path under sta-
tistical end-to-end delay constraints.

To address the second question, we use the derived closed-form solution from
[8] for the end-to-end delay bound for heterogeneous multi-hop wireless networks
to develop two optimization algorithms: (i) a bound-based power-minimization
algorithm and (ii) a bound-based network lifetime maximization algorithm. The
first algorithm determines the minimum required transmit power at each hop,
such that a given statistical delay bound (which encompasses both latency and
reliability) is not violated. The second algorithm determines the allocation of
transmit power among all transmitters along the respective path such that for
given initial energy levels (e.g., battery charge per intermediate transmitter),
the network lifetime is maximized given that the designated statistical delay
constraint is not violated. While the first algorithm is suitable for energy ef-
ficient networks where energy levels can be replenished (i.e., recharging their
batteries is possible), the second is more useful for wireless sensor network ap-
plications, especially, for remote area deployment where battery recharging is
not possible. This motivated the development of the two separate algorithms.
Although the two algorithms may result in the same power allocation scheme
for the homogeneous case (assuming identical fading distribution and same ini-
tial energy levels for all hops), this is obviously not the case for heterogeneous
networks, which are the point of our interest.

To address the third question, we first recognize that optimizing a statistical
bound on the delay may differ from optimizing the exact expression for the delay
violation probability. Nevertheless, due to the lack of such exact expression at



the time being (and for the foreseeable future, due to the intractability of the
analysis in this case), we opt to use the (more tractable) statistical delay bound
for our analysis and optimization instead. In this case, it is important to quantify
the optimality gap in energy efficiency of the bound-based algorithms compared
to the real optimum, which we obtain by simulations. In Section 5 we provide
an extensive numerical study to address this point. We show that in many cases
of link heterogeneity our algorithm provides a sufficient estimate on the optimal
transmit power per node, at the same time avoiding the need for extensive and
time-consuming system optimization using simulations.

In the remainder of this section, we present a literature survey of related
work, and then list the main contributions of this work. We first discuss related
work with respect to general end-to-end transmit power management schemes,
then we discuss research papers that deal with end-to-end queuing performance.

1.1. Transmit Power Management

Power management under simplified end-to-end throughput constraints has
been often addressed before [9, 10, 11, 12, 13]. However, none of these works
considers queuing effects. For instance, [9] describes a cross-layer design frame-
work, minimizing the total transmit power subject to a minimal end-to-end
payload rate valid for all links and maximal bit error rate (BER) requirements
per session. The authors use heuristics to determine the transmit power per
node. [10] minimizes the total average transmit power under the constraint
of providing a minimum average data rate per link. The authors propose an
algorithm for optimal link scheduling and power control policy. They also ex-
tend this to a routing algorithm, which uses the algorithms’ output as a routing
metric. They show that the optimal power policy chooses one of two actions,
transmitting at peak power or not transmitting at all. Transmit power control
in multi-hop networks with respect to the best possible video quality at the
receiver is presented in [11]. For this purpose, the authors maximize the peak
signal-to-noise ratio and minimize the end-to-end video distortion, which is a
function of the end-to-end bit error probability. Results show that power control
does not degrade the video quality significantly.

With respect to power management and end-to-end multi-hop performance,
two works are perhaps closest to our contribution. First, [14] presents a tradeoff
between the average transmit power and a corresponding queuing-delay bound
for a multiuser cellular network, multi-hop and point-to-point communication.
The authors propose a resource allocation scheme to minimize power consump-
tion subject to statistical delay QoS, given as a queue-length decay rate, jointly
determined from the effective bandwidth of the arrival traffic and the effective
capacity of the wireless channel. The numerical analysis shows that it is possible
to achieve stringent QoS guarantee with little power increase compared to the
power needed for loose delay constraints. However, the discussed multi-hop sce-
nario assumes an amplify-and-forward scheme, and therefore does not consider
queuing at the intermediate nodes. Second, in [15] the authors present a joint
routing and power allocation policy for a wireless multi-hop network with time-
varying channels that stabilizes the system and provides bounded average delay



guarantees. The optimal power allocation in both proposed schemes, defined as
distributed and centralized control algorithm, is determined under pre-defined
stability condition, i.e., for input rates which are strictly inside the network
capacity region. It is shown that the derived delay bounds grow asymptotically
in the size of the network and a parameter that describes the distance between
the arrival rates and the capacity region boundary. The numerical results illus-
trate the advantage of exploiting channel state and queue backlog. The work,
however, covers queuing by focusing mainly on a stability condition and does
not consider quantiles on the end-to-end delay.

1.2. Queuing Analysis of Wireless Networks

From a queuing-theoretic perspective, significant problems arise when try-
ing to characterize quantiles on the end-to-end delay performance of a wireless
multi-hop network. Classical models for queuing networks typically only allow
the analysis of the average delay. In contrast, the theory of network calculus en-
ables an analysis of delay quantiles via bounds on the arrival and service rather
than focusing on the average behaviour. In particular, stochastic network calcu-
lus [16] has shown to be especially useful for characterizing traffic arrivals and
network service of wireless multi-hop networks. While there are many works
addressing performance guarantees over wireless fading channels using this the-
oretical framework [17, 18, 19, 20, 21, 22, 23, 24], none of them resolve the
question on end-to-end delay bounds over heterogeneous fading channels. At-
tempts in that direction are presented in [21] and [18]. However, while the first
one does not provide a closed-form expression for the end-to-end service curve
for wireless fading channels, the complexity of the MGF-based framework pre-
sented in [18] grows very fast when considering a heterogeneous multi-hop path
and results in mathematically intractable expressions. Furthermore, the usage
of the Gilbert-Elliott two-state channel model in [20] limits the accuracy of the
fading model description.

In [25] a tight end-to-end delay and backlog bound for multi-hop vehicular
ad hoc networks which extend the single hop results obtained in [26] are derived.
To do that, the authors model the service process offered by the fading channel
as a Markov modulated process, with the service rate at each state given by the
Shannon capacity limit. The bounds for three scheduling schemes of delay toler-
ant and delay sensitive arrival flows are then obtained using stochastic network
calculus and by utilizing supermartingale inequalities. To enable tractable solu-
tions, the authors consider only homogeneous service curves along a multi-hop
path. However, power allocation strategies usually result in a heterogeneous
service process along an optimized communication path. Hence, the homogene-
ity assumption in addition to the lack of explicit representation of the channel
gain distribution (or equivalently the SNR at the receiver) for a given allocated
transmit power of the wireless link, make the mentioned approach not suitable
for power optimization solutions.

Moreover, a version of the deterministic network calculus developed to an-
alyze the performance of wireless sensor networks is the sensor network calcu-
lus [27]. This mathematical framework analyses networks represented as sink



trees. The SensorNC provides concepts for in-network processing, called scal-
ing elements. Although this network calculus version can by widely applied,
e.g. for sink and node placement strategies, power management in video sen-
sor networks [28] or energy-efficient trajectories for mobile sinks under delay
guarantees [29], it lacks a more precise representation of the fading channel
and therefore prohibits direct correlation between the service characterization
and the transmit power, disabling transmit power adjustment under end-to-end
statistical delay constraints.

However, a recently developed theoretical framework has enabled a new an-
alytical toolset for performance analysis of wireless multi-hop fading channels
[7]. By means of (min, x)-calculus, bounds on the delay and the backlog are
expressed in terms of fading channel gain distribution, working directly in the so
called SNR domain. In this domain, multi-hop descriptions of fading channels
become mathematically tractable. Based on this work, we have made first at-
tempts to determine the minimal required SNR on a single link in order to meet
pre-defined statistical delay requirements [30]. However, [7] addresses only inde-
pendent and identically distributed (i.i.d.) wireless channel gains, which limits
the applicability of the results to general scenarios.

1.8. Contributions and Paper Organization

This paper builds on the power minimization algorithm that we proposed
in [30] and extends it to multi-hop buffered wireless links with heterogeneously
distributed channel gains. Motivated by the discussion above, and the need for
energy-efficient heterogeneous multi-hop wireless networks for future industrial
applications, we present in this paper the following main contributions:

e Based on the previously derived closed-form expression for the end-to-end
statistical delay bound for a multi-hop path consisting of independent,
but heterogeneously distributed channel gains, presented in [8], an iter-
ative bound-based power-minimization algorithm for wireless multi-hop
heterogeneous networks is developed. We present two variations of the
algorithm: (i) minimizing the total transmit power along the path, and
(ii) maximizing the network lifetime. A numerical evaluation of the per-
formance of the two variants is performed.

e A proof for the convexity of the delay bound is provided and an evalua-
tion of the bound-based power minimization compared to simulation-based
power optimization, i.e., using the exact delay process instead of a delay
bound, is presented.

We conduct our analysis and evaluation using two different channel capacity
models, (i) an ‘ideal’ Shannon-capacity-based model, and (ii) a more realis-
tic WirelessHART (IEEE 802.15.4e)-based link model. The results that we
obtained for power gain (using Shannon-based capacity) and network lifetime
extension (assuming an IEEE 802.15.4e-based link capacity) offer significant in-
sights into multi-hop network design, considering heterogeneity of both channel
gain as well as battery charge state (i.e., initial energy level).
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Figure 1: Illustration of the system model

The remaining paper is organized as follows: Section 2 presents the system
model and the problem statement. In Section 3 we present the closed-form of
the end-to-end delay bound for heterogeneous wireless networks. These results
are the basis for the power minimization algorithms presented in Section 4.
We discuss the numerical evaluation of the algorithms in Section 5. Finally,
Section 6 concludes the paper.

2. System Model and Problem Statement

We consider the communication between a source node r and a destination
node d within a multi-hop wireless network (see Fig. 1). Let the multi-hop path
in question, illustrated with solid lines in Fig. 1, be given with an ordered set of
buffered links, i.e., L = {1,.., N}, where N is the number of links constituting
path L. We assume a time-slotted system where every link is assigned a time
slot of fixed length T'. The nodes propagate the packets originating at node r
along the path every time they are allocated a transmission time slot, according
to a given scheduling algorithm. As soon as a packet reaches the destination
node, it is passed to its application layer without any additional delay.

Each wireless link j € IL is assumed to be a block-fading channel with an av-
erage channel gain |ﬁ?| This means, the random instantaneous channel gain hi j
of link j at time slot ¢ remains constant within the time interval T, but varies
independently from slot to slot. This assumption is valid for a low mobility
environment where the channel gain remains constant within one transmission
interval. Furthermore, the frequency-hopping wireless technology is one example
where the channel gain varies independently from one transmission interval to
the other [31]. Due to the assumptions as block-fading and frequency-hopping,
different links are assumed to have statistically independent channel gains while
we consider heterogeneously distributed channel gains. Moreover, the instan-
taneous channel gain consists of two components: the instantaneous random
fading component hfc and the constant path-loss hf), the latter depending on the
distance between the nodes and the path-loss exponent, i.e., hfj = hzi i hf,j.

Although interference is not considered in this paper explicitly, we provide an
additional approach, using the concept of leftover service curve, to model in-
terference from cross-flows in the network. Together with the transmit power



setting p; ; and the noise power o2, this yields the instantaneous SNR of link j
in time slot ¢ as: 2
Pij - g

g =gt (1)
Given the instantaneous SNR +; ;, the resulting service per link j is given by the
link’s capacity at time slot .. We denote the capacity of link j during time slot ¢
by the function C'-log, g(7i,;), where C' is the number of symbols that fit within
one time slot. The function g(v; ;) defines the instantaneous channel capacity.
Hence, by modifying the transmit power we change the channel capacity and
therefore, influence the service of the link. Using a Shannon capacity channel
model, this function usually takes the form g(v; ;) = 1+ ~; ; or some weighted
version of it [32]. We assume that transmitter j knows only the channel state
information for the ;" channel (corresponding to one of the (up to) N trans-
mission slots within a transmission frame), but not for the other N —1 channels.
Furthermore, we define 5 and § as the vectors of average SNRs and transmit
power of the links, i.e., nodes along the path, respectively.

At the application layer, we consider a monitoring process generating a mea-
surement value at a regular interval. Therefore, as a model for the arrival flow
we consider packets of size r, bits arriving per interval R, - T" with R, € N.
However, the application has strict latency and reliability constraints. These
are modeled by the QoS pair {w®, e} where w® represents a maximum tolerable
delay that can be violated at most with probability €. This target delay in-
cludes all processing steps below the application layer, therefore including also
any queuing delay along the multi-hop path. Since we observe constant data
rate arrival, the delay that a packet experiences along the path, depends mainly
on the service provided by the links. As discussed above, the service is a random
variable, since it depends on the instantaneous capacity, which in turn owns its
randomness to the fading present on the link. Hence, random fading is the
main source for the delay in the presented system model. Therefore, shaping
the links’ capacity, i.e., the end-to-end service by smartly adjusting the transmit
power on every link will influence the target statistical delay, given as a QoS
requirement by the application.

In this paper, we are interested in the trade-off between the energy con-
sumption of the network - mainly driven by the transmit power per node p; ; -
and the resulting delay and delay violation probability. In this context, we are
particularly interested in the following two things:

e The minimization of the sum of the transmit power along the path (from
now onward referred to as total transmit power) under a given QoS pair
{w®, e}, and

e The maximization of the network lifetime given a battery state vector B
consisting of battery states per node!, Bj, as well as an energy consump-
tion model, under a given QoS pair {w®,e}.

n this model, node j refers to the transmitter node preceding link j.



In the following, we will develop algorithms that determine the correspond-
ing transmit power settings per node under the desired QoS constraints. These
algorithms are based on an analytical expression of the network performance
(i.e., latency and reliability) in terms of the underlying physical channel prop-
erties, which includes the power allocation scheme. Hence, the first step in our
efforts is to define the analytical model of the end-to-end delay performance in
a wireless multi-hop network in terms of transmit power allocation, which we
address in the next section. Then, we develop the two mentioned algorithms in
Section 4.

3. End-to-End Delay Bound over Heterogeneous Links

In this section, we derive the end-to-end performance bounds based on
stochastic network calculus for heterogeneous, multi-hop communication paths.
For wireless fading channels, end-to-end probabilistic bounds have only been
obtained for concatenated i.i.d. service processes (i.e., for multi-hop wireless
links all having independent and identically distributed fading processes) [7]. In
order to apply these results to heterogeneous networks, we generalize the avail-
able results to arbitrarily distributed random service processes. At this point we
stress, that arbitrarily i.e., heterogeneously distributed service processes charac-
terize not only with random channel gains following different distributions, but
also with channel gains represented by random variables drawn from the same
distribution, however, with different mean values.

For reader’s benefit, we first recap some network calculus basics before pre-
senting the theoretical basis for the development of our algorithms.

3.1. Stochastic Network Calculus

Stochastic network calculus considers queuing systems and networks of sys-
tems with stochastic arrival and departure processes, where the bivariate func-
tions A(r,t), D(r,t) and S(7,t), for any 0 < 7 < ¢, denote the cumulative
arrivals to the system, departures from the system, and service offered by the
system, respectively, in the interval [7,¢). Recall that we consider a discrete
time model, where time slots have a duration 7" and i > 0 denotes the index of
the respective time-slot. Hence, ¢, 7,1 € Z.

A lossless system with service process S(7,t) satisfies the input/output re-
lationship D(0,t) > A ® S (0,t), where ® is the (min, +) convolution operator
defined as

z@y(r,t)= inf {z(r,u)+y(ut)} . (2)
T<u<t

In this approach, we are generally interested in probabilistic bounds of the
form Pr [W(t) > w®] < ¢, which is also known as the wviolation probability for a
target delay w®, under the following system stability condition:

A(0,t S(0,t
lim A1) < lim M (3)

t—o00 t t— o0 t



Modeling wireless links in the context of network calculus however is not a
trivial task. A particular difficulty arises when we seek to obtain a stochastic
characterization of the cumulative service process of a wireless fading channel,
as also witnessed in the context of the effective service capacity of wireless
systems [33]. A promising, recent approach for wireless networks has been
proposed in [7] where the queuing behavior is analyzed directly in the “domain”
of channel variations instead of the bit domain [34, 20, 35, 36, 18, 33]. This can
be interpreted as the SNR domain (thinking of bits as “SNR, demands” that
reside in the system until these demands can be met by the channel) and the
type of network calculus is called (min, x) calculus.

The cumulative arrival, service, and departure processes in the bit domain,
i.e.,, A, D, and S, are related to their SNR domain counterparts (represented in
the following by calligraphic capital letters A, D, and S, respectively) through
the exponential function. Thus, we have A(7,t) £ eA(™t) D(r,t) £ ¢P("1) and
S(7,t) £ eS| Due to the exponential function, these cumulative processes
become products of the increments in the bit domain. In the following, we
will assume A (7,t) and S (7,t) to have stationary and independent increments.
We denote them by « for the arrivals and g () for the service. For instance,
assuming a single-hop wireless system with a point-to-point channel, where the
channel capacity is expressed through the well-known Shannon capacity, the
service increment is defined as follows

s; = log(g (7i)) = Clogy (14 i), (4)

where s; is the random service in bits offered by the system in time slot i, C
is the number of transmitted symbols per time slot and -; is the instantaneous
SNR. Then, we can obtain the cumulative service in the SNR domain as

t—1 t—1 t—1
Si _ C
S(T»t):HG —Hg(%)—H(l‘f")’i) ; (5)
where C = C/log2. Furthermore, in case of first-come first-served order, the
delay at time t is obtained as follows

W(t) = W(t) = inf{i > 0: A(0,£)/D(0,t + i) < 1}. (6)

An upper bound ¢ for the delay violation probability Pr [W(t) > w®] can be de-
rived based on a transform of the cumulative arrival and service processes in the
SNR domain using the moment bound. In [7] it was shown that such a violation
probability bound for a given w® can be obtained as ;r;t(") {K(s,t+w=,t)}.

We refer to the function K (s, 7,t) as the kernel defined as
min(7,t)

K(s,mt)= > Ma(l+s,i,)Ms(1 - s,i,7), (7)

=0

where the function My (s) is the Mellin transform [37] of a random process,
defined as
MX (S,T, t) = MX(T,t) (S) =E [XS?I (T7 t)] ) (8)
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for any s € C, whenever the expectation exists. We restrict our derivations in
this work to real valued? s € R. Introducing the Mellin transform in the perfor-
mance analysis of wireless fading channels results into tractable mathematical
expressions when computing network calculus bounds, which in turn results in
scalable closed-form solutions. The motivation for the usage of Mellin trans-
forms comes from their property to allow analytical solutions for the quotients
or products of random variables. These quotients and products represent the
performance bounds in the (min, x) calculus. Although our results base on the
Mellin transforms, due to their neat properties when working with fading chan-
nels, we stress that the MGF-based network calculus presented in [18] can also
be used for performance analysis of wireless fading channels. However, the form
that the end-to-end delay bound, presented below, takes using Mellin trans-
forms, is more convenient to work with, when analyzing multi-hop networks.
Using the assumption of stationary increments of the arrival and service pro-
cesses, their Mellin transforms become independent of the time instance, and
hence we write My (s,t — 7). In addition, as we only consider stable queuing
systems in steady-state, the kernel becomes independent of the time instance ¢
and we denote K (s,t 4+ w®,t) 22K (s, —wf).

The strength of the Mellin-transform-based approach becomes apparent when
considering block-fading channels. The Mellin transform for the cumulative ser-
vice process in the SNR domain is given by

t—1
Ms (s,7,t) = H./\/lg(w) (s) = M;@T) () =Ms (s, t—1), 9)
=T
where M) (s) is the Mellin transform of the stationary and independent ser-
vice increment ¢ () in the SNR domain. The second step in Eq. (9) is possible
due to the mutual independence of the service processes, which in turn, is guar-
anteed by the assumption on block-fading channels and the frequency-hopping
scheme. The function g (-) is associated with the channel capacity of a point-
to-point fading channel as defined by Eq. (4). However, it can also model more
complex system characteristics, most importantly scheduling effects. It is im-
portant here to note that, g (-) can represent any service capacity, as long as
it is being represented in the SNR domain. In this work we focus, however, on
wireless fading channels.

Assuming the cumulative arrival process in the SNR domain to have station-
ary and independent increments, we denote the corresponding Mellin transform
by My (s,t —7) = Hf;i M (s) = M,""7(s). Substituting these two cumula-
tive processes in Eq. (7), for the general form of the steady-state kernel for a

2We note that by definition of X(7,t) = eX(™%) the Mellin transform My (s,7,t) =
E [e<571)X("*t)] after substitution of parameter s = 6 + 1 implies also a solution for the
moment-generating function (MGF), that is the basis of the effective capacity model [33] and
of an MGF network calculus [18].

11



communication channel we get
_ Mgy (1~ )
1- M, (1 —+ S) Mg(’y) (1 — 8)

K (s,—w) (10)
for any s > 0, for which the expectation defined in Eq. (8) exists and whenever
the following stability condition holds,

Mo (1+9) Mg (1-s)<1. (11)

The minimal value of Eq. (10) over all s > 0, i.e., infsso{K(s, —w)}, repre-
sents the bound on the delay violation probability for a given target delay w.
Shaping any of the M, or M, or in other words shaping the arrival to and/or
the service of the communication channel, allows manipulation of the kernel, s.t.
for a given target delay violation probability e, infs~o{K(s,—w)} < e. In this
work, we aim towards meeting the statistical delay constraints by changing the
service of the wireless channel by adjusting its SNR, i.e., transmit power of the
node.

An asymptotic lower bound, which coincides with the upper bound when
w — 00, can be obtained using the large-deviation theory [7].

3.2. Recursive Formula for the End-to-End Delay Bound

A further advantage of network calculus is the ability to capture a cascade
of service processes into a joint service curve using the server concatenation
theory. This property is especially useful for performance analysis of multi-hop
networks. Similar to the (min, +) algebra, the joint service curve is obtained
through the end-to-end convolution according to the (min, x) network calculus.
For a path L, consisting of links with random service processes S;,j € {1,.., N},
it is defined as follows:

SErt) =81 @8 ® ... @ Sy(r, 1), (12)

where 81 & 82 (7’7 t) = inf‘rgigt{sl (T, Z) . 82 (i, t)}

A Mellin transform of the (min, x) convolution is not available. Instead, we
define a bound on the Mellin transform of the end-to-end service based on the
server concatenation defined above and using the union bound 3, also known as
Boole’s inequality.

Let Si(7,t) and Sa(7,t) be two independent non-negative bivariate random
processes representing the service processes of link 1 and 2, respectively. For
s < 1, the Mellin transform of the (min, x) convolution of &; and Ss, denoted
by 81 ® Sa(7,t), is bounded by

t

Ms,gs,(8,7,t) < ZM& (s,7,1) - Ms,(s,1,t) (13)

1=T

3Note that in case of dependent random variables, i.e., service processes, the bound can
be derived using the Holder’s inequality [7].
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Note that in Eq. (13) the union bound is applied in order to obtain an an-
alytical expression of the joint service curve of two random service processes.
This analytical representation has to be “paid” with a rather loose bound on
the actual joint service curve. A sharper stochastic bound on the delay distri-
bution can be obtained by using so called service-martingales [26]. However,
this approach has not been extended to multi-hop networks up to date.

Hence, the corresponding Mellin transform of path L can be bounded by [7]:

t t t
MS]L<S7T7t)S Z Z Z M, (’il—i0>~/\/l32 (ig—il)...MgN (Z'N—iNfl)

t N
-5 T, <14>

with 7 = ig < i3 < --- < iy = t. Notice that Mg, (s) denotes the Mellin
transform of the (stationary) SNR service increments of link j.

As one may notice from Eq. (13), this results in a cumbersome computation,
especially for links having different channel gain distribution, since N convolu-
tion processes have to be computed, each of them depending on ¢. A significant
simplification of Eq. (13), representing a mathematically easier-to-grasp analyt-
ical solution was presented in our previous work [8]. The derived formula for the
delay bound avoids the tedious task of performing N nested sums in Eq. (14).
Hence, we define K" as the kernel for a path L containing N links, similar to
Eq. (7), where we replace Ms(1—s,i,7) with Mg.(1—s,4,7) for S defined in
Eq. (12). Once that Mellin transform can be determined, a probabilistic end-
to-end delay bound for path L can be computed using Eq. (7) that satisfies the
following inequality [7]:

;Izlg {K(s,—w)} <e. (15)

Let m and N refer to the m'™ and N*" link of path L, respectively. For a
given path L\ {N} of links with independent and heterogeneously distributed
service processes, with kernel K'\MN} the KU can be obtained in terms of
KN} as follows

Mgyn) (1-s)

M(yny (1= 5) = My(y,,) (1 = 5)
My(y,) (1= 5)

M(y) (1= 8) = Mgy (1= 5)

KY (s, —w) = K™Y (5, —w)
(16)

- KN (5, —w)

for any m € {1,2,..., N — 1}. The proof of the closed-form solution for the
end-to-end delay bound given with Eq. (16) can be found in [8].

A direct consequence of Eq. (16) and Eq. (15) is that the delay bound for
path L can be obtained from recursively computing the kernel according to the
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theorem. In this recursion, the number of summands increases with the number
of hops. For an N-hop path there are 2V~! summands, as each geometric sum
results into two summands. Furthermore, the stability condition in Eq. (11)
needs to hold for every individual link 5 € {1,.., N}, i.e.;:

max (Mg (1+5) - Mg,y (1—s)) <1
J

has to be fulfilled. Note that the links m and N have to be chosen in such
way, such that their average SNRs are not equal, avoiding the denominator
Mgy (1 =5) = Mg(yy) (1 = s) to be equal to 0. In case several links along
the path characterize with equal average SNR, the joint service curve of these
sub-paths with homogeneously distributed channel gains can be computed using
the following equation [7]:

N—-1+t—71

t—71

Mo (8:7:1) < ( > (M ()7

Finally, note in particular that in principle Eq. (16) can be generalized to any
link j and the path L\ {j}. This allows an efficient recomputation of the kernel
in case that any of the links of the path change their primary distribution, for
instance due to a changed propagation environment. In contrast, in case of using
Eq. (14), if a single link changes its distribution, a complete recomputation of the
joint service curve characterization has to be performed, which is significantly
more complex.

We show next that the kernel described by Eq. (16) is convex in s > 0. The
following theorem states this convexity.

Theorem 1. The steady-state kernel K(s,—w) for a communication channel,

_ M) 1 —5)
1—- M, (1—"—5)./\/19@) (1-s)’

K (s, —w)

is convex in s,¥s > 0 for which the stability condition My, (14 5) Mgy (1 —5) <1
holds. Furthermore, the end-to-end kernel K“(s, —w) for a multi-hop path LL is
convez in s, for every s within the stability interval.

The proof of Theorem 1 is given in Appendix B.

The convexity of the kernel confirms the existence of a unique optimum and
motivates us to specify bound-based algorithms for optimization, i.e., transmit
power allocation along the path which reaches the optimum. These are presented
in Section 4.

What is particularly important about the presented results is that, both
Eq. (16) and Theorem 1 hold for any kernel for a communication channel,
whose service is defined in the SNR domain. In this paper, however, we focus
our analysis on wireless fading channels and two kernel types - namely the ones
specified for a Shannon- and a WirelessHART-based service.
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8.8. Heterogeneous Path with Cross-Traffic

The proof of Eq. (16), given in the appendix, shows that the recursion ob-
tained for the end-to-end delay bound results from the recursion in the Mellin
transform of the joint service curve. As a result, the stepwise construction of
a multi-hop path’s service curve will further simplify the computation of other
elements in (min, x) network calculus, such as the delay bound. We demon-
strate this by providing the leftover service curve for the considered path when
cross-traffic is present, i.e., additional flows other than A(7,t) are sharing the
intermediate links in the path that the through-flow traverses. Let the SNR
arrival processes of the cross-traffic at each intermediate link be i.i.d. and de-
noted by A.(7,t) = (=) where we assume a constant arrival rate of k. bits
per time slot. Assume further that the arrivals from the original through-flow
and the cross-traffic as well as the service processes at each link are indepen-
dent. We can then compute a bound on the Mellin transform of the end-to-end
service process offered to the through-flow, i.e., the leftover service curve using
the following result:

Theorem 2. Consider a flow traversing a cascade of wireless fading channels.
The service at each node is shared by the through-flow and an independent cross-
flow characterized by the SNR arrival process A.(r,t). Let S.“(r,t) denote the
end-to-end leftover service provided to the through-flow. Then, Vs < 1,

M) (8)
g(vn) (8) = Mg, (s)

Mg(4,n) () L\{N} )
+ o -M s,7,t) |,
(Mmm)(@ ~ My M 5T

L\{m
M%C(S,T,t)<(M ,/\/l$>{ }(S,T,t)>

(17)

t—71

foranym e {1,2,...,N — 1} and ./\/l:{slc}(s,r, t) = (ekc(l_s) 'Mg('Yl)(S)>

Proof 1. According to Lemma 1 in [7] we obtain the Mellin transform of the
leftover service curve for a single channel:

M«.{S'i}(svTv t) = MS/AC (S,T, t)
= MQ('YI)(S7 7, t) Mg, (2 — 8, T, t) (18)

< (ekc(l—s) 'Mg(%)(S))tiT’

since the Mellin transform of a quotient of two independent random variables
X andY is given by Mxy(s) = E[X* 1 E[Y'5] = Mx(s) - My (2 —s).

Substituting ekc(l_s)Mg(WN)(s) Jor My, in the joint service curve deriva-
tion, the expression given by Eq. (17) follows by applying the recursion to the
leftover service curve of path L, ./\/l]f,gc(s7 T,t).
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4. Bound-Based Power Minimization Algorithms

As already mentioned, an essential aspect of industrial wireless networks,
besides the importance of QoS-awareness, is their energy-efficient operation.
Especially for battery-powered network devices, often attached to machines in
order to control them or measure their functional status, it is important to
prolong network partitioning time by extending nodes’ battery lifetime. Since
the radio chip is usually one of the largest consumers of energy in low-power
networks [38], one way of providing energy efficiency is to minimize the transmit
power, as one of the easily modifiable parameters in wireless transceivers. In
addition, minimizing transmit power not only increases energy savings, but
also reduces potential interference to neighboring transmissions. In a multi-hop
setting, power optimization mainly needs to take two issues into account. On
the one hand, heterogeneous link statistics can be exploited to reduce power
consumption.

On the other hand, heterogeneous battery states (i.e., energy levels) affect
the transmit power setting. Thus, in this section we develop and present algo-
rithms that take these effects into account in order to minimize transmit power
or maximize network lifetime under statistical end-to-end constraints as rep-
resented by the above presented bound. The proposed algorithms are run on
a central node in the network, which is provided with a constant power sup-
ply and enough computing power, so that their performance is not jeopardized.
This node contains all necessary information to run the algorithms, such as the
target QoS requirements by the application, the size of incoming packets and
the average channel gain information of all links in the network. The algorithm
is executed offline, as soon as the channel statistics was collected using con-
trol packets and prior application data has been sent. In order to be able to
provide well-timed reaction to environment and QoS requirements changes, the
algorithm can be executed in specific time intervals during network operation
as well.

4.1. Transmit Power Minimization Algorithm

We initially raise the following question: What is the optimal average SNR,
i.e., minimal sum transmit power needed on all links along a path to meet a
target end-to-end delay w® with probability 1 —e? This question is difficult to
answer, as for the violation probability € no accurate analytical model exists
(to date) that can relate it precisely to the average SNRs. The only option
is to resort to system simulations to determine the corresponding SNRs. In
contrast, we propose to base system optimization on the multi-hop delay bound,
as presented in Eq. (16). Hence, we are interested in the solution of the following
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optimization problem for a given multi-hop path L = {1,.., N}:

N
min ij,

j=1
St inf{KE(s, —w)} <
s. t ;I>10{IC (s,—w®)} <e

max (Mg (1+5) - Mg,y (1—5)) < 1.
J

Due to the complexity of the kernel function and the stability condition, no
analytical solution for the bound-based optimal SNRs can be derived (see e.g.
the complex forms of the kernel for Rayleigh-fading wireless channel (Eq. (20))
and for a WirelessHART system (Eq. (22)) from Section 5.1.1 and Section 5.2.1,
respectively). Instead, we propose a binary search algorithm in two dimensions
(along s > 0 and along the SNRs) to solve the given minimization problem (see
Algorithm 2 in Appendix A). Notice that minimizing 7, leads to minimization
of the transmit power per hop, since 7; = »i-Ihj|/o>.

As already stated in Theorem 1, the kernel described by Eq. (16) is convex
in s for Vs € (0,b), where b is the last point for which the stability condition
in Eq. (11) holds. Further, for Vs € (0,b) the Mellin transform, defined as in
Eq. (8), exists. From this it follows that the proposed algorithm results in a
global bound-based minimum. Figure 2 illustrates the kernel of several links
with different average SNR, where the instantaneous channel capacity is given
by Eq. (4). The figure shows that the delay bound function of a single link
K(s,—w) is convex in s and monotone in 4. For the computation of the kernel
in the figure, we assumed a block-fading wireless link with constant arrival rate
and random service increments that are characterized by the Shannon capacity.
We further notice that, as the SNR either increases or decreases, the optimal s*
(which minimizes the delay bound function) moves to the right or to the left,
respectively.

For any given transmit power vector p = {p1,...pn} and resulting fixed
SNR vector ¥ = {71,...9n}, the value s* for which KY(s, —w) is minimal, is
determined by performing a binary search along the interval (0,b). The main
idea here is to cut the interval (0,b) into four areas through fixing five points
(see Fig. 3), where s, is the middle point of (0,b). Based on this partition,
the algorithm traces the gradients and splits the range where the minimum of
KE(s, —w) is located. The function is called recursively until the smallest size
of an interval has been reached, defined with the input parameter A ;,. At this
point, the middle point sy, of the last considered partition is returned as s*, i.e.,
as the point s for which K% (s, —w) reaches its minimum. The pseudo code for
the binary search of s* is given in Algorithm 1 in Appendix A.

For the search in the second dimension along the 7 dimension (see Algo-
rithm 2 in Appendix A), we start by allocating a predefined maximal transmit
power pmax to each node along the path. In each iteration, the gradient of
the end-to-end kernel K™(s*, —w) is computed for every link on the path, i.e.,
Vj € {1,.., N}. The smallest gradient defines the link j whose transmit power is

17



10°
107t ¢ E
102 ¢ E
’%\
-3 L -
510
S
5]
E T e RS T S E
Q)
I~
-5 L 4
10 SNR = 10 dB
SNR = 13 dB
SNR = 15 dB
10 ¢ SNR = 18 dB E
———e=10"
107 . . . . . .
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Figure 2: The delay bound function K(s, —w) is convex in s. It is obtained for r, = 50
bits per time slot and target delay w = 5 time slots. Its minimum is marked with a
cross and shifts to the right as the average SNR on the link is increased. The target
delay violation probability ¢ is presented with a dotted line.
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respectively, while Sstart and send represent 0 and b, respectively.
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going to be changed in that iteration. ':y‘j is the vector of average SNRs per link
in which the j-th SNR is replaced by the SNR obtained when p; is decreased for
some predefined Ap (line 11 in Algorithm 2, Appendix A). In each iteration a
new kernel is computed (denoted with €). In case the newly computed kernel is
bigger than the target violation probability ¢, Ap is halved, so that a further de-
crease of the transmit power is possible. p; is halved until it reaches a predefined
minimal value App,in. Although this approach results into smaller decreasing (or
increasing) steps of the transmit power, it enables better proximity of the final
kernel to the target delay violation probability, i.e, it leads to higher precision
of the quasi-optimal solution. Since the power minimization algorithm is meant
to be executed on a central node equipped with a high performance CPU, the
running time of the algorithm and its performance optimization is out of the
scope in this work. We rather concentrate on the correctness of the achieved
solution. Hence, we trade the performance of the power minimization algorithm
(expressed in total number of iterations needed to reach an optimal solution)
in order to obtain higher optimization success, i.e., obtain an almost-optimal
solution, as close as possible to the actual optimum.

The algorithm returns the current vector p’ as the optimal one, either when
all links are assigned with the minimal possible transmit power or the smallest
possible Ap has been reached and the transmit power along the links cannot be
further reduced. It may happen though, that the target delay cannot be met.
In this case, the returned optimal transmit power vector equals p = Pmax. In
the optimal case the algorithm exits when the obtained kernel has approached
the target violation probability very close from below, i.e., £ € [e — A_, €] for
some predefined A..

The obtained bound-based solution for 4 and p is quasi-optimal, since the
binary-search algorithm approaches to the optimal s* and the target €. Nev-
ertheless, the input parameters A., Apmin and pmax can be used to make a
trade-off between the algorithm’s precision and its performance, i.e., the needed
number of iterations to reach the quasi-optimal solution.

4.2. Network Lifetime Mazximization Algorithm

For industrial automation applications, reducing the transmit power results
into lower interference with neighbouring networks, which leads to better coex-
istence of multiple wireless technologies within the same area. Furthermore, it
increases the energy-efficiency of the wireless network, which is crucial for appli-
cations where battery-powered devices are used. Early battery exhaustion will
cause a shorter overall network lifetime as well as a potential premature network
partitioning. Therefore, extending battery lifetime is another important aspect
in the performance analysis of industrial wireless applications.

In applications where network lifetime is more important than pure energy
saving, the bound-based power-minimization algorithm defined in the previous
section may not be ideal. It is worth noting that in the case of heterogeneous
multi-hop networks, the proposed algorithm may result in an unequal depletion
of the battery energy levels at different hops, which may result in shorter network
lifetime. An alternative approach is to allow nodes with lower energy levels to

19



use lower transmit power, which may result in an increased delay, while other
nodes pick-up the slack by increasing their transmit power to compensate for the
extra delay introduced by that node. We therefore propose a separate algorithm
for network lifetime maximization, which is a modification of the bound-based
power-minimization algorithm defined in the previous section.

In this work, we assume a network (or a path) is no longer useful when
any of the nodes’ battery is fully depleted. Nevertheless, the algorithm can
also be used, with few modifications, to handle more resilient wireless networks
design. The difference from the previous algorithm is mainly related to the
decision regarding whose link’s transmit power to decrease in each subsequent
iteration of the algorithm. In the new algorithm, it is redefined into choosing
the transmitter that has the least charged battery at that moment of time.
For this purpose we look at the battery full states (denoted by the vector ]§)
of the nodes along the path L. The goal is to maximize the minimal battery
lifetime or duration of battery operation 6,,j € {1,.., N}, among all batteries
(the vector of battery durations is denoted by 5) Each relay node can be in one
of the following states: idle, send and receive. In this work we don’t differentiate
between an idle and sleep state and consider both of them as idle state. The
battery consumption during the idle and the receive phase is dependent on
the transceiver, while the energy consumption in the sending state is mainly
dictated by the transmit power. Notice further, that the source node cannot be
in receive mode, while the destination does not send packets and is therefore
excluded from the decision process. Having a time slotted system with slot
length T', the rest of the time slot assigned to a node, in which it neither sends
nor receives the packet, is spent in an idle state.*

To handle the effect described above, we formulate the following bound-based
network lifetime maximization problem:

B,
pj-T

max min {0;},0; =
) : L -
s.t. ;I;%{K: (s,—w)} <e

max (Mg (1 +s) - Mgy, (1= s)) < 1.
J

In comparison to the transmit power minimization algorithm presented in Sec. 4.1,
the network lifetime maximization algorithm selects the node with the mini-
mal battery duration as a candidate whose transmit power will be reduced in
that iteration. The assigned transmit power can be selected in the interval
(Pmin, Pmax ), both depending on the chosen hardware. Similar to the gradient-
based algorithm, the transmit power is reduced in steps of Ap until the resulting

4Even if the proposed battery model is rather simplistic, it is a widely used model for
evaluating the communication-related energy consumption behaviour in wireless sensor net-
works [39, 40]. Other radio states such as preparing the transmitter and the receiver to send
and receive data, respectively, or switching between Tx and Rx state, will proportionally scale
the power consumption per time slot and won’t add any significant insight to our analysis.
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delay bound function (computed using Eq. (16)) is bigger than the target one.
Each time this is the case, Ap is halved until some predefined Apn;, has been
reached. The pseudo-code of the network lifetime algorithm is given in Algo-
rithm 3 in Appendix A. Among the above mentioned parameters, the QoS
requirements w and ¢, together with the payload size r, and the maximal frame
size k,, that can be sent per time slot on the channel, are input parameters to
the algorithm.

5. Numerical Evaluation

In this section, we present numerical evaluations of the power minimization
algorithms based on the end-to-end delay bound over heterogeneous links. In the
following subsections we then focus on the power minimization algorithms. In
Sec. 5.1 we evaluate our suggested algorithm for various path compositions. In
Sec. 5.2 we present results that correspond to network’s lifetime maximization,
considering a more realistic transceiver node model in a WirelessHART network
based on the IEEE 802.15.4 standard [41]. All presented results rely on Eq. (16),
which was validated via simulations. In [8] we show that the provided closed-
form solution for the end-to-end delay bound is indeed an upper bound of the
simulated delay violation probability for various multi-hop scenarios, observing
a gap of approximately one order of magnitude. It is important to note that, the
decay rate of the computed delay violation probability is exactly the same as the
one obtained via simulations, which suggests that the bound is asymptotically
tight. We refer the interested reader to [8] for a detailed description of the
validation.

5.1. Ewvaluation of the Power-Minimization Algorithm

We now turn to the evaluation of the bound-based transmit power minimiza-
tion algorithm presented in Section 4.1. Recall that the algorithm minimizes the
total transmit power over all links of a multi-hop path based on the analytically
determined end-to-end kernel according to Eq. (16). The target end-to-end de-
lay violation probability ¢ and delay w are the QoS parameters passed to the
algorithm.

5.1.1. Methodology

Through analytical evaluations, we benchmark the minimum total transmit
power algorithm for various different scenarios, characterized by different path
compositions. We consider Rayleigh-fading links with different mean SNRs ;.
Assuming Rayleigh fading, i.e., an exponentially distributed SNR with average
7 at the receiver and a Shannon-based channel capacity, the Mellin transform
of the service process results into [7]

My (s) = e77° I (s,771). (19)
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where I'(z,y) = f;o t*~le~tdt is the incomplete Gamma function. Substituting
this in Eq. (10), the steady-state kernel for a Rayleigh-fading wireless channel

is given by
(¢ amr(-52))
T1- Mq (1+s)e/77=5T (1 — s, %) ’

for any s > 0 and under the stability condition in Eq. (11). The arrival flow
in this investigation is fixed to r, = 20 bits per time slot. We express link
heterogeneity for a path L consisting of N links using the norm of the vector
1= (ly,...,ly), denoted by R* and given by:

N N
RL:Z Z |lj_lm|’ (21)

j=1m=j+1

K (s,—w)

(20)

where [; denotes the length of link j, which reflects the path loss of the cor-
responding link and hence its service. Obviously, higher norm reflects higher
link heterogeneity and vice versa. In the following, we consider 3-hop (N = 3)
paths with various node placements between a source and a destination located
60 m apart. Table 1 shows the exact scenarios (from almost homogeneous to
strongly heterogeneous in ascending order) and their respective path norms used
in the evaluations. These scenarios are deliberately chosen to highlight the ef-
fect of link heterogeneity and relative distances between intermediate nodes on
network performance and the power gain obtained using the proposed power
minimization algorithm compared to a naive power allocation. Since in this
work we focus only on heterogeneous wireless networks, no path with norm 0
is considered. Note that in the following we refer to the link with the longest

Table 1: Considered Path Compositions

Link lengths in [m] Path norm R

[20,19, 21] 4
20, 30, 10] 40
[5, 28, 27] 46
20, 35, 5] 60
(5,40, 15] 70
[5,50.5, 4.5] 92

distance as the critical link (the link characterized with the highest path-loss).

In order to evaluate the efficiency of our algorithm, we are in particular
interested in the total power reduction it can achieve in comparison to other
approaches. For this, we consider two different comparison schemes that allocate
a uniform power value to all links:

e (QoS-agnostic: Each node along the path is assigned the same transmit
power without considering QoS. In the numerical evaluation we use for this
value the maximum available transmit power value of an IEEE 802.15.4
low-power transceiver [42], which equals pyax = 4 dBm.
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e (QoS-aware: In this scheme, the transmit power is iteratively reduced
equally for all nodes - starting from the maximal transmit power ppax
- until the obtained delay violation probability is larger than the target
one (¢). Hence, as in the previous case with the QoS-agnostic scheme
every node is assigned the same transmit power, however, the allocated
transmit power per node is typically lower than pyax.

In both chosen power allocation comparison schemes, we apply the same trans-
mit power per node. Note that due to the different path loss per link, this
results into different SNR along the path. Scenarios characterized with equal
throughput among the links would implicitly require having the same average
SNR along the path, which would result into homogeneously distributed chan-
nel gains. These are, however, out of the focus for this work. For all considered
scenarios, we compute the minimum total transmit power as obtained from our
algorithm, and compute afterwards the saving ratio or the power gain (in per-
cent) that can be obtained in comparison to the QoS-agnostic scheme or the
QoS-aware scheme. A saving of 50% indicates that through our power mini-
mization algorithm the total transmit power is half of the value resulting from
the comparison scheme.

5.1.2. Numerical Results

The presented results in this section are obtained via numerical computa-
tions using the algorithm presented in Section 4.1. In Fig. 4 we present the
absolute required total transmit power in [mW] of our proposed algorithm for
the discussed path scenarios over an increasing target delay when fixing the
target delay violation probability. As the target delay is increased, the required
total transmit power decreases. In addition, note that the total transmit power
is higher for higher link heterogeneity. This is due to the critical link which
dominates the total transmit power consumption on the path and for which
the delay can only be compensated by other links up to a certain point. Note
that with a maximum transmit power of 4 dBm per node, the total transmit
power along the path equals 7.5357 mW. In case when even applying the max-
imal possible transmit power per node does not fulfill the target delay violation
probability, we mark this with a straight horizontal line, as e.g. for the path
with the higher heterogeneity norm.

We next present the saving gains - in Fig. 5 in comparison to the QoS-
agnostic scheme and in Fig. 6 in comparison to the QoS-aware scheme. For both
figures we consider the same path compositions as above and vary the target
delay while keeping the target delay violation probability fixed at ¢ = 1073, In
Fig. 5 we observe initially that all saving gains increase for an increasing target
delay. This is a direct consequence from Fig. 4, as those values are compared to
a fixed value of 7.5357 mW in order to determine the saving gain. Hence, it is
also not surprising that the saving gain increases for more homogenous paths.
In absolute terms, the saving gains are in the range of 70% to 90% which shows
the potential of the proposed algorithm. If we switch over to the saving gains in
comparison to the QoS-aware scheme, different observations can be made (see
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Figure 6: Saving gain of the proposed power minimization algorithm in comparison to
the QoS-aware scheme for an increasing target delay for various 3-hop path composi-
tions. The target delay violation probability is fixed at ¢ = 1075,

Fig. 6). Now the total power consumption varies as well for the comparison
case, i.e., it drops in general for the larger target delays, while it also drops for
paths with more homogenous link compositions, as otherwise the critical link
in strongly heterogeneous paths dominates the power consumption and delay
behavior. Therefore, in comparison to a QoS-agnostic comparison scheme, our
algorithm now provides better saving gains in case of strongly heterogeneous
path compositions, as only they can be significantly exploited by the proposed
algorithm. In absolute terms, this leads to saving gains in the range of 10% (in
case of strongly homogeneous links) up to 70% in case of strongly heterogeneous
links. Again, the power gain increases as the target delay grows, but only to
some particular value, since a minimal possible transmit power threshold has
been reached.

Finally, in Fig. 7 we present the saving gain in comparison to the QoS-
agnostic scheme in case of an increasing target delay violation probability for a
fixed target delay of w = 10 time slots. We notice the same trend as in Fig. 5: the
smallest saving gain is around 75% for various . The bigger the target violation
probability, the bigger is the saving gain. Also, the more heterogeneous are the
paths, the smaller is the saving gain. The path with the highest norm meets
the target delay for £ > 10~* with a power gain of approx. 70%. Note that
whenever the target delay or its respective violation probability could not have
been fulfilled, a power gain of 0 % was obtained, represented with a horizontal
line in the previous three figures (mostly for the path with R = 92).
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Figure 7: Saving gain of the proposed power minimization algorithm in comparison
to the QoS-agnostic scheme for an increasing target delay violation probability for
various 3-hop path compositions. The target delay is fixed at w = 10 time slots.

5.1.3. Bound-Based vs. Simulation-Based Power-Minimization

Although the proposed power minimization is first of its kind, it only pro-
vides a suboptimal solution. This solution is obtained by optimizing a delay
bound instead of the exact expression for the end-to-end delay violation prob-
ability, which is unfortunately unattainable. Therefore, the performance gap
between the obtained bound-based power allocation scheme and the real opti-
mum, which can only be obtained using simulation, becomes relevant for our
investigation. In this section, we conduct an extensive simulation study to in-
vestigate this gap. We simulate the application in question and determine a
‘simulation-based’ optimal power allocation. We then plot the gap between the
two resulting power allocations.

For this purpose, we run Algorithm 2 with parameters r, = 30 bits, C' = 20
symbols per time slot and for a target delay violation probability € = 1073. The
resulting power allocation is set as an initial value at each simulation. Similarly
as above, we observe paths of different heterogeneity with norm R € {4,46, 60, 70}.
In each iteration the delay violation probability was obtained by a simulation.
The simulation follows the same approach as defined in the algorithm: by com-
puting the minimal gradient of the simulated delay violation probability (as in
line 12 in Algorithm 2), the link whose transmit power has to be reduced in
each iteration by a certain Ap is determined. Whenever no further reduction
of the transmit power on any of the links is possible, i.e., the resulting delay
violation probability is bigger than the target one, Ap is halved. This is done
maximum 15 times, i.e., Ap is reduced by a factor of 2'°. The initial value of
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Figure 8: Required total transmit power along all nodes of various 3-hop paths. The
dotted lines represent the total transmit power in case when the optimal point of
network operation under given target delay constraints is obtained via simulations.
The target delay violation probability is fixed at € = 1073,

Ap = 0.01 mW?.

In this way, we continue reducing the transmit power on the links along
the path, beyond the one suggested by the algorithm. This approach enables
us to characterize the gap between the total transmit power computed by the
proposed bound-based power minimization in comparison to the total trans-
mit power obtained via simulations of the analogous process, s.t. the resulting
simulated delay violation probability is close to € from below. We illustrate
this additional power saving in Fig. 8 and Fig. 9. The former figure depicts
the difference between the total transmit power obtained by the algorithm and
the one obtained with simulations in absolute terms. A total transmit power
of 7.5357 mW represents the cases for which applying even the maximal pos-
sible transmit power of 4 dBm (approx. 2.5 mW) per node does not result
into meeting the desired target delay. We notice that, in absolute terms, the
additional decrease of the total transmit power while performing system-based
optimization is rather small for all scenarios, which highlights the efficiency of
our proposed algorithm. We further notice that in some link heterogeneity sce-
narios the simulation fulfills the target delay sooner than the forecast analytical
approach (see e.g. the path with R = 70: For w = 5 the simulation achieves the
target delay violation probability of 1072 with total transmit power smaller than

5We stress again that, by applying small Ap steps we make sure that the obtained power
vector (and its resulting kernel) lies very close to the actual optimal transmit power solution
for the considered scenario.
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Figure 9: Additional decrease of the total transmit power suggested by the bound-
based algorithm when performing simulations. The target delay violation probability
ise=10"%.

7.5357 mW, while the analysis fails to achieve the demanded QoS for the same
target delay even with the maximal transmit power). This behaviour results
from the gap between the analysis and the simulation.

Fig. 9 represents the additional power gain w.r.t. the total transmit power
obtained from the described approach. An additional power decrease of 0 %
means that obtaining the optimal transmit power by simulations does not lead
to any additional power savings in comparison to the proposed algorithms. In
cases of strict QoS requirements applying even a maximum power of 4 dBm
per link will not satisfy the target statistical delay constraints for both the
simulation and the analytical approach. In all other cases the simulation meets
the target delay violation probability. As it can be seen, while the power gain
is as big as 47% for paths of low heterogeneity and small target delays, it
converges to around 15% for longer delays for diverse path heterogeneity. This
means, that for looser delay constraints, the actual system optimum, if obtained
by simulations, will enable an additional 15% decrease in the total transmit
power in comparison to the bound-based power minimization. This power gap
is generally significantly smaller for more heterogeneous paths.

Note however, that, even if a further decrease of the total power by more
than 15% is observed for various scenarios, the proposed bound-based power-
minimization algorithm can be used as a good estimate on the system perfor-
mance, providing at a same time delay guarantees. Moreover, applying the sug-
gested transmit power allocation by the algorithm leads to an improved perfor-
mance, due to the lower resulting delay violation probability. Such bound-based
optimization is especially important for applications with strict QoS demands,
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introducing a so called safety gap in the actual system performance.

5.2. Ewvaluation of the Lifetime Mazimization Algorithm

We evaluate in this subsection the second proposed algorithm from Sec. 4.2,
which takes the battery state of the nodes into account and maximizes the life-
time of the network by modifying the transmit power settings per node. As this
scenario and objective is more relevant in practice, we also consider a more prac-
tical channel capacity function in this section and resort to the WirelessHART
industrial standard [43], widely used for process automation applications with
battery-powered devices. In order to apply our proposed algorithm, we use the
provided corresponding kernel given in [44], defined according to the physical
layer description and BER stated in the IEEE 802.15.4-2006 standard [41]5. In
the following subsections we first explain our methodology and then discuss some
numerical results presenting insights on how QoS-aware power management can
improve network lifetime under both link and battery state heterogeneity.

5.2.1. Methodology

Let N4 be the number of time slots within a superframe, while a time slot
lasts for T' = 10 ms according to WirelessHART. We hence present the delay
in number of superframes, where a superframe lasts for T'- Ny ms. We assume
a round-robin link scheduling fashion, where the j-th time slot within one su-
perframe is assigned to the j-th link along the path, while the channel gain
varies randomly in each time slot, i.e., we assume block fading. The subsequent
channel gains along the path are, however, independent on each other, due to
the frequency-hopping applied on the MAC layer in WirelessHART.

The kernel of a single-hop WirelessHART system is given by [44]:

(L+ (e* —1)Q()"

Mo m0) = T o T e — Dem) )

under the stability condition
et (1+ (e — 1)Q()) < 1

Er, < _élog (14 (e7** = 1)Q®)),

(23)

where k, represents the maximal number of bits that can be transmitted in a
WirelessHART time slot (or the MAC frame size), r, is the size of the payload
generated at the beginning of each superframe by the application and Q(%) is the
probability of successful MAC frame transmission over the wireless link, given
as a function of the BER and the average SNR [41]. The result in Eq. (22) is ex-
plicitly derived in [44] and serves as basis for the following numerical evaluation.
The end-to-end kernel is obtained when the single-hop kernel is substituted into
Eq. (16).

SNote that this is no longer the active standard, since the 802.15.4-2015 is the newest
version. However, the WirelessHART radios comply with IEEE 802.15.4-2006.
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5.2.2. Numerical Results

In the following, we are mainly interested in the network lifetime extension,
represented in %, obtained when applying our bound-based lifetime maximiza-
tion algorithm (Algorithm 3 in Appendix A) in comparison to the QoS-agnostic
scheme. The lifetime is obtained as the minimal time duration a node can
be operated by its corresponding battery among all node lifetimes for a given
multi-hop path. The investigation is done for different target delays (in terms
of superframes). We set k, = 127 byte and the payload size r, is 10 byte ”. The
arrival rate at the source node is one payload per superframe.

To parametrize the transceiver model, we turn to the low-power Atmel
IEEE802.15.4-based transceiver AT86RF233 [42]. This transceiver is either in
idle, send or receive mode and we obtain the power consumption in these modes

from the given data sheet®. Other system parameters are summarized in Ta-
ble 2.

Table 2: System Parameters

Name Value
Total distance 60 m
Payload size 10 bytes
Frame size 127 bytes
Delay violation probability 1073
Maximal transmit power ppax 4 dBm

Current consumption in idle mode 0.2 pyA
Current consumption in Rx mode  11.8 mA

Time slot duration 10 ms
Time spent in Tx mode 4.256 ms
ACK duration 0.8 ms

For the evaluations, we again consider different multi-hop path compositions
as in Table 1. However, as the battery state is another important parameter
regarding the performance of the lifetime extension algorithm, we consider in ad-
dition three settings of the battery states. In the equal case, the battery of each
node is fully charged at the moment of algorithm execution. The proportional
case assumes a proportional battery full state distribution among the nodes
regarding the path loss on the link, i.e., the link with the highest path-loss is
assigned the most charged battery. We finally consider the inverse proportional
battery state allocation, where the link with the highest path loss is allocated
the least charged battery. All presented results refer to a target delay viola-

7Small packets are typical for process automation applications.

8Note that transceivers can offer only discrete transmit power values. Moreover, the pro-
vided data sheet contains current consumption data only for three power thresholds. For this
reason, we perform polynomial curve fitting in order to obtain higher resolution consumption
data and get more abstract results, not necessarily matching the transceiver capabilities in
total. However, we do stay in the offered transmit power span.
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Figure 10: Network lifetime extension for different target delays and path composi-
tions. An equal battery state charge is assumed among all links.

tion probability of 10~2 and are compared to the QoS-agnostic power allocation
scheme.

Fig. 10 shows the gain of the network lifetime extension algorithm for dif-
ferent delay target w considering the above discussed 3-hop path scenarios with
various path norm R. Note that for 3-hop paths, the superframe duration is 30
ms. In this plot, we consider the equal battery state charge among all nodes.
For lower delays there is small gain in the network lifetime when using the
algorithm in comparison to the QoS-agnostic scheme. As the target delay is
increased, the gain in network lifetime increases. As we notice in Fig. 10, the
more heterogeneous the links are, the less one can benefit from the proposed
bound-based algorithm. The path with the least lifetime gain is the path with
the biggest path norm.

Fig. 11 illustrates the gain in network lifetime in case of proportional ini-
tial battery state distribution. We now notice a different trend: The paths
with higher link heterogeneity benefit more from the lifetime maximization al-
gorithm than paths with lower norm. This is due to the fact that the links
with lower path loss (the better links) have a lower battery state and therefore
are given advantage in the power-minimization decision, resulting finally with
lower assigned transmit power and longer network lifetime. Note however, that
the lowest lifetime extension is obtained for the path [5,28,27], with the third
link being the critical one (consuming the most energy, since it both sends and
receives packets) and not the first one.

Fig. 12 shows the network lifetime extension considering the same path sce-
narios for an inverse proportional initial battery state allocation, where the node
in front of the weakest link is allocated the least battery capacity. We now no-
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for 2-, 3-, and 4-hop paths. An equal battery state charge is assumed among all links.

tice the same trend as in the case of equal battery state allocation, namely that
more homogeneous paths result with a larger lifetime extension. This is ex-
pected, since in both cases the algorithm prefers the links which consume more
energy (i.e., the higher path loss links) when making the decision which link’s
transmit power to decrease.

Finally, in Fig. 13 we show the network lifetime extension for 2-; 3- and
4-hop paths, each of them having low, moderate and high path norms. The
initial battery allocation is equal among all nodes. We notice that the lifetime
extension increases with the number of hops, however, still yielding the best
one for paths with almost equal link path loss, similar to the observations in
Fig. 10 and Fig. 12. Hence, as the path length grows, an optimal transmit power
allocation under delay constraints becomes more necessary, even for rather low
link heterogeneity.

The motivation behind the proposed investigation is the following: Knowing
how the power minimization influences the network lifetime extension depend-
ing on the battery full-state allocation, will enable better network design i.e.,
node placement decision. The algorithm is usually executed at the beginning of
network operation, when all batteries have equal full-state. For example, know-
ing that paths consisting of homogeneous links (links with similar average SNR)
benefit more from a power management scheme, a network designer will make
sure that the wireless industrial network he is planning contains primarily ho-
mogeneous paths. After the network nodes have been running for a while, their
batteries get depleted, which changes the battery full-state allocation along a
given path from equal to inversely proportional one (the links with the high-
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est path loss incorporate the least charged battery). This transition from one
allocation to the other is expected if the data load is equal between all nodes
in the network. Here again, paths with smaller degree of heterogeneity bene-
fit more from the power minimization scheme. Therefore, more homogeneous
paths should be preferred in routing decisions which are being constantly made
during network operation.

Finally, as a result to a routing algorithm, it might happen that a route
between two nodes is changed, s.t. we now observe proportional battery allo-
cation along the respective path. In this case, performing power minimization
while considering the proportional battery full-state allocation will extend the
network lifetime especially in case of highly heterogeneous paths. Hence, such
paths should be preferred by the routing algorithm, since they will significantly
maximize the network lifetime in comparison to the rather homogeneous paths.
Thus, combining these insights obtained by the battery allocation evaluation
within a routing algorithm or a network design phase, will lead to power-efficient
network performance while at the same time providing end-to-end delay guar-
antees in a wireless multi-hop industrial network.

5.2.3. Bound-Based vs. Simulation-Based Lifetime Mazximization

Similarly as in Section 5.1.3, we now provide a quantitative illustration of the
gap between the bound-based and the simulation-based lifetime maximization.
The simulation is started with a power allocation resulting from Algorithm 3,
using the same system parameters as given in Table 2. In each iteration, the
node whose transmit power is going to be reduced is chosen as the node with the
least remaining battery lifetime. We are interested by how much the network
lifetime can be additionally increased if using a simulation-based approach in
comparison to the network lifetime provided by the bound-based method. In the
presented results, we make sure that the simulation fulfills the target delay vio-
lation probability, except for the cases when even applying the maximal possible
transmit power od 4 dBm does not suffice. This is marked by a horizonthal line
in the figures. We first take a look at the absolute values of the minimal battery
duration of both schemes for lifetime maximization, shown in Fig. 14. The same
link heterogeneity of 3-hop paths, as in Section 5.1.3, is considered. We notice
that the minimal battery duration provided by the bound-based algorithm lies
very closely to the one provided by simulations.

Fig. 15 shows the additional gain in network lifetime if simulation-based
instead of bound-based power optimization is applied. In comparison to the
total transmit power minimization, in the WirelessHART case study we observe
much smaller additional gain in the network lifetime (not bigger than 7 %) when
conducting simulations. This verifies the usefulness of the proposed algorithm
for lifetime maximization, which at the same time provides performance guar-
antees of wireless networks employed in practice. Since the power consumed in
transmit mode is only one of the factors influencing the whole battery energy
consumption, the optimal power allocation for a WirelessHART multi-hop net-
work can be very closely estimated by a solution based on the end-to-end delay
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bound. This holds especially for paths with higher degree of link heterogeneity,
as shown in the figure.

6. Conclusion

This paper presents a novel bound-based algorithm for transmit power al-
location with two variants: (i) total power minimization, and, (ii) network life-
time maximization, in wireless industrial networks. These algorithms are based
on theoretical results that we developed for the performance of heterogeneous
(where both channel gain and battery full state heterogeneity are considered)
multi-hop wireless networks using a stochastic network calculus approach. We
provide numerical evaluation of the performance of these algorithms and com-
pare them to simulation-based power optimization.

We consider two wireless channel capacity models: (1) an ‘ideal’” Shannon-
capacity-based model, and, (2) a ‘realistic’ WirelessHART-based model, the
latter of which is widely applied in real industrial systems used for process
automation. The numerical analysis of our proposed bound-based power opti-
mization shows a power gain of up to 95% for almost homogeneous multi-hop
paths and more than 70% even for paths with highly heterogeneous links using
the ideal capacity model (1) above. It also shows that the power gain is high
even for stricter delay violation probability requirements. A second group of
numerical results, pertaining to the capacity model in (2) above, shows network
lifetime extension of up to 25% for various link heterogeneity and types of initial
battery allocation strategies. We conclude that for nodes having equal battery
capacities, the paths with higher link homogeneity benefit more of the proposed
battery-lifetime maximization approach. However, in case of a different battery
allocation strategy, higher lifetime extension is obtained for multi-hop paths
with higher degree of link heterogeneity.

Finally, to evaluate the accuracy of the proposed bound-based optimization,
we provide a quantitative evaluation of the gap between the optimal power
allocation resulting from the bound-based approach and the one obtained via
simulation of the application in question. Although the gap between the bound-
based and the simulation-based optimum is non-negligible for smaller target
delays in case of total transmit power minimization, there is an insignificant dif-
ference between the two approaches in case of network lifetime maximization.
Hence, we strongly believe that the presented algorithms for bound-based opti-
mal transmit power allocation based on stochastic network calculus principles,
being first of their kind, offer a useful analytical framework for the design of
wireless multi-hop networks under statistical delay constraints. Furthermore,
the recursive nature of the devised end-to-end delay bound together with the
power minimization algorithms presents a solid basis for the development of
energy-efficient, delay-aware routing algorithms for future wireless multi-hop
heterogeneous networks.

An important extension of this work relates perhaps to the analysis of net-
works being exposed to multiple flows, as in meshed networks. Our presented
approach is applicable even for such networks as long as flows utilize orthogonal

36



resources which can be reserved per node, as is realized in WirelessHART or
through approaches like Time-Sensitive Networking. Otherwise, if the routing
path is not determined, and also no resources are reserved for the flow under
consideration, we provide a worst-case bound on a single flow being exposed
to cross-traffic. This result nevertheless has to be extended towards multi-path
routing, which constitutes a next step in the evolution of the framework pre-
sented here.

APPENDIX
Appendix A. Pseudo Codes of the Bound-Based Algorithms

In this appendix we present the pseudo-code for the bound-based power-
minimization algorithm (Algorithm 2) and the bound-based network lifetime
extension algorithm (Algorithm 3). The function search_s (Algorithm 1) is an
auxiliary function called in both algorithms.

Algorithm 1 Search s* € (0,b) for which KU(s*, —w) is minimal

1: function SEARCH_S (0, b, 7, Amin, Ta, W)
Ensure: Find s*
Compute s, $m, sr € (0,b)

Sstart = 0, Sena = b; use for simplicity K (s, —w) £ K (s)

2
3
4: if s, — 81 > Anin then
5 Find out in which interval lies s*
***Case 1: s* € (Sstarts Sm)

if K(sena) > K5(s0) > K¥(sm) > K¥(s1) then
: s = SearCh—S(Sstart7 Sm; 7, Amin7 kt57 U))

*rkCase 2: s* € (Sm, Send)

N

8: else if KY(sgpart) > K¥(s1) > KY(51) > KE(s,) then

9: s* = search_s(Sm, Send, Vs Amin, Kts, W)
***Case 3: s* € (51, 8r)

10: else if KX (sena) > KE(s;) > K (sm)

11: AND K (sgart) > KE(51) > K5 (51,) then

12: s* = search_s(sy, Sy, 7, Amin, kts, W)

13: end if

14: else

15: $* = sm

16: return

17: end if

18: end function
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Algorithm 2 Transmit Power-Minimization Algorithm

Require: |77/2 ‘, Ap, Pmax; APmin; Tas W, €, Ag
N
Ensure: min}_;_, p;, s.t. K(s,—w) <e

D = Pmax; 7 = min{;yimax} = min[f(pmaxa |i7'2|]7 ]C]L(Sa _w) £ ’C]L(Svﬁ)

1:

2: Find ¢/, Vs € (0,5), s.t. Eq. (11) holds for ¥

3: Compute ﬁtxmim s.t. channel capacity > r,

4: Compute current delay bound é = K% (s, p)

5: if (¢ > ) then return fail

6: else

7: while (£ ¢ (¢ — A, ¢)) do

8: while (¢ > ¢) AND (Ap > Apmin) do

9: Choose smaller Ap : Ap = Ap/2

10: end while

11: p_; = p; p; is transmit power vector where p; = p;- —Ap

12: Find the smallest gradient: j = argminvViC; = |%(ps’ﬁj)\
N

13: p; =pP; — Apa assure p; > pminj; f? = f(ﬁ7 |h2|)

14: s* = search_s(Sstart, 0, 7> Amin, Ta, W); cOmpute é = ICH"(S*,];/)

15: ﬁ:ﬁ

16: end while

17: return p’

18: end if

Algorithm 3 Network Lifetime Maximization Algorithm

Require: |B2 ‘7 Ap, pmax; APmin; Ka, Ta, W, €, Ac, B
Ensure: maxmin{6;},0, € 0,0 = %, KE(s,—w) < e
J

: P = Pmax; V= min{’_ymax}

: Find ¢/, s.t. Vs € (0,5") stability condition Eq. (11) holds for ¥

. Set Piymin to transceiver capabilities; & = K% (s, —w)

: Same approach as in Algorithm 2, only replace line 11 and 12 with
M =Vy: {arg;nin{ﬁj}}, Vi€ M:p;=pj— |Aﬁp\v assure p; > Pmin

TR W N =
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Appendix B. Proof of the Delay Bound Convexity

Proof 2. As shown in Eq. (10), the kernel has the following form:
Mg 1 —5)

I =My (1+5) Mgy (1—5)

_ (Ms(l — 5,7, t))w

1= Ma(l+s, 7, )Ms(1—s,7,t)

where M 4(1+ s,7,t) is the Mellin transform of the arrival process in 1+ s and
Ms(1—s,7,t) is the Mellin transform of the service in 1 —s. From its definition
it follows that, M 4(1 + s,7,t) is strictly increasing and Mgs(1—s,T,t) is strictly
decreasing in s. Note that we limit in the following the scope of the parameter s
to the stability region, i.e., s € (0,b). In order to prove that Eq. (B.1) is conver,
we will first show that M4 (1+ s,7,t) - Ms(1 — s,7,t) is convex. We will then
use this fact to proof the convexity of the whole kernel.
Let us consider the following functions:

K(s,—w) =
(B.1)

Ma(l+s,7,t) = (Efe*]) 7
Ms(1—s,7,t) = (Ele=*))" ",
where a and B are the random arrival to the link and service offered by the link,
respectively. Note here that, (E[e‘sﬁ])t_T <1 for s € (0,b), i.e., the Mellin
transform of the service reaches its maximum for s = 0. In the following we
will prove that (E[es*])"™7 - (E[e‘sﬁ})t_T is convex in s for the range of s for
which the stability condition holds.
We start by rewriting the product as

(B.2)

(E[e*)) " - (Ble*#]) ™" = (Ele—**))" " <1, (B.3)

where we substitute v = B — a and use the independence of a and 3. In order
for (E[e=*])'"" to be conves, it has to hold for any 0 < § < 1:

(E[67(651+(176)52)m]>

Let us apply Holder’s inequality [45] to the left-hand side of Eq. (B.4).
Holder’s inequality states that

t—7

<O (Ele™*) T+ (1-06) (Ble="])"7.  (B4)

E[X - Y]] < (E|IX[?)" - (E[Y]2)"" (B.5)

for ¥'p, q for which % + % = 1. Hence, for % =4 and % =1—0, we have:

(E[€7(551+(176)32)x]>t77- _ (Eﬂeﬂsslx .67(175)52x|])t7

< (51 ,gslxr/a)“‘”‘s (Bfje= (-0 5])“_7)(1_6) (B.6)
= (B[
o (E

e~ 512 )(t 7)o (E[e—SQx])(t_T)(l_é)

(Ble™)) ™7 + (1 - 8) (Ble™)) "7

IN

39



In the last line we use the fact that
w70 < du+ (1 —0)v,¥ € [0,1], (B.7)

which holds because of the following: Let us define f(8) = v —du— (1 —98)v.

The second derivative of f(J) results to:

F(8) = uPv' = (log (u) — log (1))? = 0, (B38)

Vv € [0,1] and u,v < 1. Since f(0) = f(1) =0 and f"(6) > 0, it follows that
f(8) reaches a local minimum for § € [0,1]. Hence, f(d) < 0,Vé € [0,1] and
therefore Eq. (B.7) holds. Therefore, we show that M (1 + s, 7,t)Ms(1 — s,7,t)
is convexr. Having shown this, it follows that the function
1=Ma(l+s,7,t)Ms(1l —s,7,1) is concave and positive, since
Ma(l+s,7 t)./\/ls(l — 5,7, t) <1 due to the stability condition. Hence, the re-
ciprocal is convez, i.e., T irs Tt)MS(l 77 is conver [46].

We now turn to the second part of the proof, namely, we consider the entire

kernel. In order to show that the kernel given with Eq. (B.1) is convez, it has
to hold:

(E[e—<681+<1—6>sz>ﬂ])“*T)w
1— (]E[e(ésﬁ(ké)w)a] .E[67(651+(176)52)B])t7
(E[efslﬁ})(tf‘r)w (E[efszﬁ])(ti‘r)w

i 1-96)- ’
1— (E[ema] .E[efsﬂﬂ)t*"— + ( ) 1— (E[esza} .E[efszﬁ])th

(B.9)

<6

Vs1,82 € (0,b) and 0 < § < 1. Since 1_MA(1_‘_8,7;),]\45(1_877@ is conver, we

know:

1
1_ (E[e(651+(1—6)52)a] .E[e—(651+(1—6)52)6])t_

1 1
<4 — +(1-9)- —.
1 — (Elesre] - Ele==18])" " =0 1 — (Efes2o] - Ele~28])" "

(B.10)

Multiplying the left- and right-hand side of Eq. (B.10) by (E[e_(‘551+(1_5)s2)5]) (th)w,
we obtain:

(Efe—Gs1+1=8)s2)87) =7
1— (E[e(631+(1—6)32)a] ,E[e—(ésl-l-(l—é)gQ)BDt—T

(E[e—(@ni+(1=0)s2)5)) (=D

_ _ (t—7)w
(E[e (0s1+(1 6)sz)ﬂ])
+(1-9)-

L= (Elen] - Ele=#) 1= (Efer] - Ele=?)"
(B.11)

<d-
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Now, using again Hélder’s inequality for % =0 and % =1—0, we obtain:

(t—7)w

(E[€7(651+(175)52)6]) _ (E[|€76515‘ . |67(175)526”)(t—‘r)w

(E _5513|1/5 )(t—‘l')wé. (E[‘e_(l_é)”ﬂl/lié])(f,—T)wu—a)

IN

(B.12)
s (t—7)wd s (t—7)w(1-9)
Elle™>7])) - (Eflem7))

IN

)

= (E
(Bfle=>2)) 7" - (mfjes=2) T

since (E[|e‘sﬁ\])(t_ﬂw > 0. Hence, the following inequality holds for the right-
hand side of Eq. (B.11):

(E[e*(581+(1*5)82)6])(t_T)w (]E[e*@sﬁ(lfé)sm])(t—f)“’

’ t—r1 + (]‘ - 6) : t—r
1 — (E[es1¢] - E[e~*15]) 1 — (E[es22] - E[e=528])
B Ef|e—b)) om518]] | g—s2B17) =T
<5 (Elle”*?1] - Efle—*2"])) -4 (Elle”*?] - Efle—*2"])) _
1 — (Eles:@] - E[e—*15]) 1 — (E[es22] - E[e=528])
—s1 (t—m)w sy (t—7)w
<5 (Efle=>"])) -, (E[le=*27])) .
1-— (E[es1a] .E[efslﬁ]) 1— (E[GSQO‘} _E[efszﬁ])
(B.13)
(t—7m)w

since 0 < (E[e*”ﬁ]) < 1 and the Mellin transform of the service is de-
creasing within the stability interval (0,b), reaching the mazimal value of 1 for
s =0,k € {1,2} and (t — 7)w € Z, guaranteed by the discrete time-domain as-
sumption done in Sec. 8.1. It follows that Eq. (B.9) holds which concludes the
delay bound convexity proof.

To prove the second part of Theorem 1, we observe that Eq. (16) defines
KE (s, —w) in terms of a recursion starting with the single hop kernel, which is
convex in s according to the first part of the proof above. As My, (1 —5) > 0,¥s > 0,
the theorem follows since any positive linear combination of convex functions is
also convez [47].
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