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ABSTRACT

Cluster structure in cognitive radio networks facilitates cooperative spectrum sensing, routing and other functionalities.
Unlicensed channels, which are temporally available for a group of cognitive radio users in one area, consolidate the group
into a cluster. More available unlicensed channels in a cluster make the cluster more likely to uphold against the licensed
users’ influence, making clusters more robust. This paper analyses the problem of how to form robust clusters in a cognitive
radio network such that cognitive radio systems benefit from collaboration within clusters despite intense primary user
activity. We give a formal description of the robust clustering problem, prove it to be NP-hard and propose both centralized
and distributed solutions. The congestion game model is adopted to analyze the process of cluster formation, which not only
contributes to the design of the distributed clustering scheme, but also provides a guarantee on the convergence to a Nash
equilibrium and the convergence speed. The proposed distributed clustering scheme outperforms state-of-the-art related
works in terms of cluster robustness, convergence speed and overhead. Extensive simulations are presented supporting the
theoretical claims. Copyright (© 2018 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cognitive radio (CR) is a promising approach to mitigate
the increasing scarcity of radio spectrum [1] arising from
the common practice to license radio frequencies in a
de-facto exclusive manner. In CR, licensed users can
access the spectrum allocated to them at any point in
time, while unlicensed users may access the spectrum
when it is not utilized. This can be realized by so-called
opportunistic spectrum access, i.e., unlicensed users access
the spectrum only after validating that the channel is
currently unoccupied. In the context of cognitive radio,
licensed users are also called primary users (PU), while
unlicensed users are often referred to as secondary users
and constitute a cognitive radio network (CRN)". For
CRN, accurate spectrum sensing is critical, and the rate of
false negatives, i.e., the likelihood of misdetecting active
primary users, needs to be minimized [2]. It has been
shown that cooperative spectrum sensing, which relies
on the consensus of CR users within a certain area, can
significantly decrease the rate of false negatives despite the
presence of receiver noise and wireless channel fading [3,

*The terms user and node appear interchangeably in this paper. In particular,
user is adopted when its networking or cognitive ability are discussed or stressed,
while we refer to nodes typically in the context of the network topology.
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4]. Thus, clustering of secondary nodes is regarded as
a necessary condition to realize cooperative spectrum
sensing [5] for opportunistic spectrum access.

Clustering is the process of logically grouping certain
users in geographic proximity. As to wireless networking
in general, and in particular with respect to wireless ad-
hoc, mesh or sensor networks, clustering is known to
decrease the power consumption [6], improve routing
performance [7], and improve the network lifetime
and coverage [8]. For cognitive radio networks, apart
from improving the sensing accuracy, clustering also
improves spectrum utilization among several cognitive
radio networks by allowing for coordination in particular
when CRNs have to vacate channels [9], while also been
known for reducing the interference between cognitive
clusters [10], and improving routing [8].

In CRNs, formed clusters maintain a set of unlicensed
channels which are validated by every CR node in that
cluster, meaning that the channel is perceived as not
being occupied by a primary user. In the following we
refer to these maintained unlicensed channels as common
channels (CC). The availability of CCs within a cluster is
elementary for the cluster, i.e., if no CCs are available then
the corresponding cluster can not operate any longer as
CCs ascertain both control and payload data transmission
within the cluster. However, due to primary user activity,
over time the list of maintained CCs of a cluster varies



randomly as it is generally unknown to secondary nodes
when primary users appear on different licensed channels.
Being able to maintain a sufficiently large list of CCs
ensures the robustness of the cluster despite primary user
activity, i.e. it provides a longer uninterrupted operation of
the cluster.

On the other hand, the larger the cluster size is,
the lower is in general the set of CCs that all nodes
of a cluster observe as unoccupied by primary users.
This is due to the fact that in general, secondary nodes
at different spatial locations will be able to sense the
activity of different primary users due to different channel
characteristics. Thus, a trade-off arises for the formation
of robust cognitive radio clusters: On the one hand, a
low number of nodes in a cluster is desirable, as it
generally provides more nodes with a common observation
of primary user activity on different channels, and thus
leads to a larger set of CCs, ultimately increasing the
robustness. On the other hand, a too low number of nodes
in a cluster compromises the sensing accuracy, in particular
if only one or two nodes are members of a cluster [11]. One
therefore needs to strike a balance between the size of a
cluster and the number of common channels per cluster, to
balance robustness and sensing accuracy. Cluster size plays
furthermore a role in transmit power consumption, i.e., the
cluster size affects the transmit power consumption under
certain routing schemes [12, 13].

In this paper, we analytically study the above mentioned
trade-off which we term in the following the CRN
robust clustering problem. We show it to be an NP-
hard problem under certain assumptions, and furthermore
study centralized as well as distributed algorithms. We
propose an alternate metric to measure cluster robustness
in contrast to previous works [14] and [15]. We claim
that cluster robustness can not be indicated merely by the
average number of CCs of a cluster, but by the ability of
the cluster to uphold over time despite random primary
user activity. Our proposed distributed scheme extends our
previous work ROSS (Robust Spectrum Sharing) [14] by
additionally incorporating control over the size of a cluster.
Throughout this paper, we call these newly proposed
distributed schemes variants of ROSS.

The rest of the paper is organized as follows: In
Section 2, we review related work in particular with respect
to clustering techniques in CRN. We also discuss in more
detail the relation between the contribution in this paper
and our previous work in [14]. Our system model as well as
the problem statement with respect to the robust clustering
problem are presented in Section 3. The main contribution,
the centralized and distributed solutions are introduced
in Section 4 and 5 respectively. Extensive performance
evaluation is given in Section 6 before we conclude our
work in Section 7.

2. RELATED WORK

In the following we first review the state-of-the-art
regarding clustering in CRN in general, and then focus
on robust clustering in particular. With regard to forming
clusters in CRN, deciding on the common channel
within each cluster is the foremost question to answer.
[16, 17, 18] propose different clustering schemes and
enforce that every cluster possesses at least one CC. The
clustering scheme in [11] looks for a network partition
which improves the accuracy of spectrum sensing without
considering robustness. In [19] clusters are formed by
deciding on the cluster heads, where the transmit power
for the long-haul transmission between the cluster heads
is minimized. [12] proposes a cluster structure which
imprroves energy efficiency. Furthermore, [20] proposes a
strategy on how to decide on the CCs and access multiple
CCs within clusters. An event-driven clustering scheme
is proposed for cognitive radio sensor networks in [21].
However, none of the above mentioned schemes provide
robustness of the clusters against random primary user
activity.

The authors of [22] propose a clustering algorithm
which aims at speeding up the process of re-clustering
in case that primary user activity eliminates all CCs.
However, this work does not consider cluster robustness
in the first place, but rather focuses on reactive measures.
[23] presents a heuristic method to form clusters. Although
the authors claim that robustness is one goal to achieve,
only the minimization of the number of formed clusters
is studied. A distributed clustering scheme referred to as
SOC is proposed in [15], targeting at cluster generation
with multiple CCs per cluster. In the first phase of SOC,
every secondary user forms clusters with some one-hop
neighbor. In the second and final phase, each secondary
user seeks to either merge other clusters or join one of
them. The product of the number of CCs and cluster size
is adopted as the metric by each secondary user in every
phase. The authors compare SOC with other schemes
in terms of the average number of CCs of the formed
clusters, where SOC outperforms other schemes by 50%-
100%. Nevertheless, the drawbacks of this scheme are
as follows: Although the adopted metric considers both
the cluster size and the number of CCs, cluster formation
can be easily dominated by only one factor. For example,
a node which accesses abundant channels may form a
cluster solely by itself, a so called singleton cluster. In
addition, this scheme leads to a high variance of the cluster
sizes, which is not desirable in certain applications as
discussed in [12, 20]. In [14] we propose a distributed
clustering scheme ROSS (Robust Spectrum Sharing) under
a game theoretic framework. Compared with the clustering
schemes introduced above, the clusters are formed faster
and the clusters possess more CCs than in case of being
formed by SOC. However, as all the other clustering
schemes, this scheme does not have control over formation
of very small or very large clusters, being not desirable
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as discussed above. Summarizing, our own previous work
and SOC deem cluster robustness just to be the number
of CCs per cluster. However, this potentially can lead to
a significant number of singleton clusters being formed,
which leads to lower sensing accuracy and has also other
downsides as for example an increased routing overhead.
In the following we focus on striking the balance between
cluster size and cluster robustness.

3. SYSTEM MODEL AND PROBLEM
FORMULATION

We consider a set of CR users NV and a set of primary users
distributed over a given area. A set of licensed channels
is available for the primary users. The CR users are allowed
to transmit on channel k£ € KC only if no primary user is
detected to be occupying channel k. CR users conduct
spectrum sensing independently and sequentially on all
licensed channels.” We adopt the unit disk model [24] for
both primary and CR users’ transmission. Thus, if a CR
node ¢ locates within the transmission range of an active
primary user p, % is not allowed to use the channel which
is being used by p. We assume the primary users to change
their operation channels slowly, thus we omit the time
index when denoting spectrum availability. As the result
of spectrum sensing, K; C K denotes the set of available
licensed channels for CR user ¢. As the transmission range
of primary users is limited and CR users have different
locations, different CR users have different views of the
spectrum availability, i.e., for any i,5 € N, K; = K;
typically does not hold. The resulting network of CR nodes
is represented by a graph G = (N, E), where £ C N X
N such that {4, j} € E if and only if K; N K; # () and
d;,; < r, where d; ; is the spatial distance between nodes
¢ and j, and r is the radius of CR user’s transmission
range. Among the CR users, we denote by Nb(i) the
neighborhood of %, which consists of the CR nodes located
within ¢’s transmission range.

We assume there is one dedicated control channel
which is used to exchange signaling messages during the
clustering process. This control channel could be one of the
ISM bands or other reserved spectrum which is exclusively
used for transmitting control messages.” Over the control
channel, a secondary user ¢ can exchange its spectrum
sensing result &; with all its one-hop neighbors Nb(z).

We next focus on a single CR cluster. A cluster C'is a set
of secondary nodes in an area, and there is a set of common

TWe assume that every node can detect the presence of an active primary user
on each channel with certain accuracy. The spectrum availability can be validated
with a certain probability of detection. While we do argue that too small cluster
sizes lead in general to a loss of sensing accuracy, a study of the detailed spectrum
sensing/validation accuracy is out of the scope of this paper.

i:Actually, the control messages involved in the clustering process can also be
transmitted on the available licensed channels through a rendezvous process by
channel hopping [25, 26], i.e., two neighboring nodes establish communication
on the same channel.
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channels which are available to each node belonging to
the cluster. One of the nodes belonging to the cluster is
furthermore the cluster head h(C). The cluster head is
able to communicate with any cluster member directly.
The number of nodes belonging to C' is denoted by |C/.
When the cluster head of a cluster is 7, we denote that
cluster by C'(¢). K(C') denotes the set of CCs of all nodes
in cluster C, i.e. K(C) =), K. Table I summarizes
all parameters and their assumed relevance in our system
model. The locations of the first appearances are provided
for some notations.

Table I. Notations

Symbol Description

N set of CR users in a CRN

N number of CR users in a CRN, N = | V|
K set of licensed channels

Nb(7) the neighborhood of CR node i

C(i) a cluster whose cluster head is 4

K; the set of available channels at CR node %

K(C(i)) the set of available CCs of cluster C'()

h(C) the cluster head of a cluster C

0 the desired cluster size

S a set of claiming clusters, each of which
includes debatable node ¢ after phase I

F () the number of CCs of a cluster C in the
problem description (Sec. 3.1)

S the collection of all the possible clusters
in NV (Sec. 4)

M the cardinality of S (Sec. 4)

C; the i-th cluster in S (Sec. 4)

p the weight with respect to cluster’s size (Sec. 4)

d; individual connectivity degree of CR node ¢

gi neighborhood connectivity degree of CR node ¢

n the number of debatable nodes

m the number of claiming cluster heads

J the new value of d; for the CR node after it

becomes a cluster member (Sec. 5)

3.1. Robust Clustering Problem in CRN

Robustness of a cluster is its ability to uphold
communication among the cluster members despite the
influence of the active primary users. Thus, to achieve
better robustness, a clear component of an optimization
metric needs to be the amount of CCs among each formed
cluster. However, this can lead in an extreme situation to
a large amount of singleton clusters, if the size of the
clusters is not controlled simultaneously. As discussed,
a large amount of singleton clusters reduces spectrum
sensing accuracy through cooperative sensing, as well
as being not desirable from different other perspectives
(routing, coordination with respect to channel vacation).
Thus, we essentially propose to include this trade-off in



the optimization process of building clusters, captured in
the following definition:

Definition 1. For a set of CR nodes N, the CRN robust
clustering problem is to determine a set of clusters T,
where:

1. The intersection of any two clusters in T results in the
empty set.

2. The union of all clusters in T results in N.

3. For all clusters with size within the range [61, 62], with
61,02 € Z% and 6, < 6, the number of CCs per cluster
is f(C) = K(C), i.e. it is given as the number of jointly
available CCs for all nodes of that cluster. The desired
size 0 is within [61, 62], which is pre-decided based on the
capability of the CR users and the tasks to be conveyed.

4. When the cluster size is larger or smaller than the range
[517 62], f(C) is defined as 0, i.e. singleton clusters may
be formed but does not contribute to the objective function.

5. The sum over f(C) for all clusters C' € T is maximal.

Note that in the above definition, we distinguish
between the real number of CCs per cluster, which is
given as K (C), and the contribution of each formed cluster
towards the objective function, which is given by function
f(C). If the cluster size is within range, the two parameters
are the same, but otherwise the distinction is enforce a cost
for building clusters that are out of range.

The decision version of this problem is to determine
whether there exists a set of clusters, say 7T, so that
UcerC =N, and Y .+ f(C) =X where X is a
positive integer number. We have the following theorem
on the problem’s complexity.

Theorem 3.1. The robust clustering problem in CRN is
NP-hard, when 61 = 2 and 62 is oo.

The proof is given in Appendix C.

4. CENTRALIZED SOLUTION FOR
ROBUST CLUSTERING

We now turn to algorithms that can solve the CRN robust
clustering problem, despite its complexity. We initially
consider a centralized solution for this problem. Assuming
some global knowledge of the CRN to be given at
some point in the network, i.e., the locations of primary
users and their working channels, and the locations of
secondary users and available channels on them, we can
propose a centralized scheme. We obtain the set of S
which contains all the clusters which satisfy the definition
of cluster in Section 3. S is basically a powerset of
N, which nevertheless is restricted by connectivity and
spectrum availability in the network. With |S| = M, there

isS = {C1,C3,...,Cn} °. Then the problem as defined
in Definition 1 can be formulated as a binary linear
programming problem.

SM (2 - | K(C)|

max
T4

—zi - p(||Ci] = 4]))

SM (zi-ey) =1 forVje{l,...,N}

M
x4 € {1,2,---M} is a set of binary optimization
variables. Being either 1 or 0, x; denotes whether the i-
th cluster C; in S is chosen or not. e;5,7 € {1,2,--- M}
and j = {1,..., N} is a set of constants which indicate
whether the CR node j resides in the cluster Cj, i.e.,
e;; = 1 means node j resides in the cluster Cj, e;; = 0
indicates j doesn’t belong to that cluster .

The constraint regulates that for any node j, the sum
of z; - e;; over all the clusters in S is 1. This constraint
has two implications. First, the sum being larger than zero
indicates that every node should be involved. Second, the
sum equals 1 means a node can only appear in one cluster,
which prevents the chosen clusters from overlapping.

As to the objective function, the sum of the first term in
the bracket over all clusters in S is the sum of CCs of the
clusters which constitute the CRN. For the second term in
the bracket, p is a positive increasing function with respect
to the the difference between C;’s size and the desired
size . When z; is 1 (C; is chosen) but |C;| doesn’t equal
to the desired cluster size ¢, the second item is negative,
which contradicts the direction of the optimization. Thus
the second item discourages the appearance the clusters
whose sizes deviate from the desired cluster size d.

Note here we adopt the desired cluster size in stead
of the upper and lower bounds for cluster sizes which is
described in Definition 3.1. With § and the deviation from
it, we actually have a large range of cluster sizes, which
guarantees the feasibility of the problem as we allow the
singleton cluster to exist, meanwhile a better control of the
resulted sizes by setting weights for the formed clusters
based on their deviations from the desired size.

The difficulty of implementing this method is obtaining
the set S. In the worst case, i.e., if every CR node can
communicate directly with any other node, then the CRN
forms a full connected graph and therefore the size of the
powerset S is TN, (V) =2V — 1.

subject to

5. DISTRIBUTED CLUSTERING
ALGORITHM: VARIANTS OF ROSS

In this section we introduce our distributed clustering
schemes. With the variants of ROSS, CR nodes form
clusters based on their own available channels, as well as
the available channels of the nodes in their neighborhood.
This is clarified and conducted through a series of
interactions on the control channel. All variants of ROSS

8The subscript  means the i-th cluster in S.
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consist of two cascaded phases: Cluster formation and
Membership clarification, as shown in Figure 1. In the

Phase |

Determine cluster
heads and forming
clusters

&

Guarantee the
existence of common
channels

u Phase Il
Cluster size control l:>

Membership
clarification

Figure 1. Processing steps of ROSS

first phase, clusters are initially formed such that every
CR user becomes either cluster head or cluster member.
During this phase, size control is already realized, however,
memberships might not be efficient with respect to
robustness while also not being necessarily unique. This
is addressed in the second phase, where non-overlapping
clusters are formed in a way that the CCs of the involved
clusters are predominantly increased.

5.1. Phase | - Cluster Formation

Before conducting clustering, we assume spectrum
sensing and neighborhood discovery have been completed.
Furthermore, neighboring nodes have exchanged already
their channel availabilities via the dedicated control
channel. As a result, every CR node is aware of
the available channels of themselves and their one-hop
neighbors. Next, cluster heads are determined after a
comparison series among neighbors. Two metrics are
proposed to characterize the channel availability in the
proximity of each terminal, which subsequently are used
to decide the cluster heads.

o Individual connectivity degree d;: d; = ZjENb(i) KN
Kj|. d; is the total number of pairwise CCs between
node ¢ and each of its neighbors. Be aware that it
does not reflect the amount of jointly common channels
among all neighbors of <.

e Neighborhood connectivity degree g;: In contrast, g;
is the number of CCs which are jointly available for
i and all of its neighbors, thus gi = |(; cxpiyus K-
It therefore represents the ability of 7 to form a robust
cluster with its neighbors.

Individual connectivity degree d; and neighborhood
connectivity degree g; together form the connectivity
vector (d;, gi). The connectivity vector is determined by
every secondary user and is then broadcasted. Figure 2
illustrates the computation of the connectivity vectors
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for a CRN, where a dashed edge indicates one end
node is within the other’s transmission range, while the
number along the dashed line is the number of common
channels between the two end nodes. In this example,
the sets of available channels on the nodes are: K4 =
{1,2,3,4,5,6,10}, Kp = {1,2,3,5,7},

Kc =1{1,3,4,10}, Kp = {1, 2, 3,5},

Kg =12,3,5,7}, Kr = {2,4,5,6, 7},
Kq={1,2,3,4,8}, Ky = {1,2,5,8}. Figure 2 shows
in particular the resulting connectivity vector per node.

B 7
e, e (E)
& - @7 e
. 4 T N /3
| (B S
A }{( (CRVE (FY

Figure 2. lllustration of the resulting connectivity vector (d;, g;)
for each node of an example CRN.

5.1.1. Determining Cluster Heads and Forming
Clusters

Given the connectivity vector per node, the procedure
of determining cluster heads is as follows. Each CR
node decides whether it is a cluster head by comparing
its connectivity vector with all neighboring connectivity
vectors. When CR node 7 has lower individual connectivity
degree than any of its neighbors except for those which
have already been identified as cluster heads, node ¢
becomes a cluster head. If there is a CR node j in i’s
neighborhood, which has the same individual connectivity
degree as 4, i.e., d; = d; while the connectivity degree of j
is lower than for all other nodes in its neighborhood (except
for nodes that already declared themselves as heads)
then out of ¢ and j the node with higher neighborhood
connectivity degree will become cluster head. If g; = g,
as well, the node ID is used to break the tie, i.e., the
one with smaller node ID becomes the cluster head. The
node which is identified as cluster head broadcasts a
message to notify its neighbors of this status update. As
a consequence, all neighbors - which have not become
cluster head themselves - become cluster members of
this cluster head. In this step, nodes can become member
of multiple clusters, depending on how many neighbors
declare themselves as cluster heads. ¥ During the whole
phase I, whenever a CR node becomes cluster head, or the
cluster composition changes, the cluster head broadcasts
new/updated information about the cluster structure, in
particular the new/updated sets of available channels
regarding itself and all its cluster members. Pseudo code

9 The issues arising out of cluster heads in the neighborhood of a newly formed
cluster head are addressed in Section 5.1.2 and 5.1.3



regarding this process, i.e. the cluster head decision and
the initial cluster formation, is in Algorithm 1 in appendix.

After a CR node, say 1, receives notification that there is
a new cluster head in its neighborhood, ¢ sets its individual
connectivity degree to a positive number J > |K| - N, and
broadcasts the new individual connectivity degree. When
node ¢ is associated with multiple clusters, i.e., ¢ has
received multiple notifications from different cluster heads,
d; is still set to be J. The manipulation of the individual
connectivity degree of the cluster members accelerates the
decision on the cluster heads.

5.1.2. The Existence of Common Channels

After executing Algorithm 1, several formed clusters
may not possess any CCs. As decreasing the cluster size
usually increases CCs within a cluster, the next step is
to decrease the cluster size accordingly. This is done by
the following sequence of removing nodes according to an
ascending list of nodes regarding their number of common
channels between them and the cluster head. In other
words, the cluster member which has the least common
channels with the cluster head will be removed first.
When there are multiple nodes having the same amount of
common channels with the cluster head, the node whose
elimination results in more common channels will be
removed. In case of a tie, it can be broken by removing
the node with smaller node ID. It is possible that cluster
heads remove all their neighbors to obtain CCs, which
results in a singleton cluster. The pseudo code for this
procedure is given as Algorithm 2. As for the nodes which
are removed from a cluster, they restore their original
individual connectivity degrees, then execute Algorithm 1
and become either cluster heads or get included into other
clusters, see also Theorem 5.1.

5.1.3. Cluster Size Control in Dense CRN

Both analysis and simulation [27] show that with ROSS,
when network density increases to a certain level, the
number of formed clusters becomes constant. This means
if the network density keeps on increasing, the cluster size
increases linearly with the network density. Thus, it is
necessary to control the cluster size when CRN becomes
denser, and this task falls upon the cluster heads.

To control the cluster size, cluster heads remove their
cluster members when cluster sizes are larger than a
threshold. The threshold should be larger than the desired
size J, because there are overlaps between neighboring
clusters. We set the threshold as ¢ - §, where the constant
parameter ¢ is dependent on network density and CR
nodes’ transmission range. We adopt ¢ to be between 1 and
the ratio of the average neighborhood size and the desired
size. When ¢ is smaller, e.g., t = 1, the formed cluster in
phase I is . For a cluster which has members included by
other clusters, the size of that cluster will be smaller than
¢§ after the membership clarification phase. If ¢ is chosen
large, e.g., t - § equals the size of the neighborhood, cluster
size control will not work any more.

The cluster head removes the cluster members
sequentially according to the above explained principle.
The removed nodes restore their original individual
connectivity degrees. This process ends when each
cluster’s size is smaller or equal to ¢ - §. As this procedure
is similar with that in Section 5.1.2, Algorithm 2 can also
be applied.

@ 8.2) (14,0)
©
(B) L)
[CA) 19,1

®

@ ocuster Head

Figure 3. Cluster formation after phase | of ROSS. Nodes
A, B, D are debatable nodes as they belong to multiple clusters.

We have the following lemma to show every secondary
user will eventually be either integrated into a cluster or
become a cluster head.

Lemma 5.1. Given a CRN where any secondary user
is able to communicate with any other secondary
user through the other nodes, then after the phase of
cluster head selection and initial cluster formation, every
secondary user either becomes cluster head, or gets
included into at least one cluster.

The Proof is given in Appendix B.

Lemma 5.2. When a secondary user becomes cluster
head, it will not become cluster member again.

Proof

A secondary node, say i, becomes cluster head when its
individual connectivity degree is smaller than any of its
neighbors. Afterwards, the individual connectivity degrees
of its neighbors becomes J. If certain nodes are removed
from the cluster due to guaranteeing CC or size control,
these nodes may become either cluster members of another
cluster head, or cluster heads themselves. In both cases, i’s
individual connectivity degree is still smaller than the one
of the respective other nodes. Note that when the removed
node becomes cluster head, it will not include its former
cluster head ¢, so that ¢ doesn’t become cluster member and
so its individual connectivity degree doesn’t change. [

Lemma 5.3. In the process of cluster head selection and
initial cluster formation, the maximum number of times
that a secondary node becomes cluster head is N.

This lemma follows from Lemma 5.2 considering that
N is the number of all the secondary users in the CRN.
Based on the above lemmas, we have:

Theorem 5.1. Assuming the time for a secondary user
to update the information about cluster heads in its
neighborhood is T, then it takes at most N xI" to finish
the process of cluster head selection and initial cluster
Sformation.
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Phase I ends when no more secondary users become
cluster heads. Based on Lemma 5.1 and Lemma 5.3,
Theorem 5.1 follows directly. Note that as Algorithm 1
is executed concurrently by different secondary users, the
required time is typically considerably lower.

If we apply Algorithm 1 to the example CRN in
Figure 2, the outcome results to the representation in
Figure 3. Node B and H have the same individual
connectivity degree, i.e., dp = du. As gy =2 > gp =
1, node H becomes the cluster head and cluster C'(H) is
{H, B, A,G}.

5.2. Phase Il - Membership Clarification

After running phase I of ROSS, we notice that nodes
A, B, D are included in more than one cluster as shown
in Figure 3. We refer to these nodes as debatable nodes
as their cluster affiliations are not uniquely decided. All
clusters which include debatable node ¢ are called claiming
clusters of node 7, and the set of these clusters is denoted
as ;. Nevertheless, debatable nodes need to be exclusively
associated with only one cluster and be removed from
the other claiming clusters. We refer to this procedure as
cluster membership clarification.

5.2.1. Distributed Greedy Algorithm (DGA)

When a debatable node i decides to join the cluster
C € S;, the guiding idea is that its decision should result in
the greatest increase of CCs in all its claiming clusters. As
the node ¢ has been notified of the spectrum availability on
all the nodes in each claiming cluster, node ¢ can calculate
how many more CCs will be generated in S; if it chooses
a claiming cluster and leaves the other claiming clusters.
In case of a tie between two claiming clusters, ¢ chooses
to stay in the cluster whose cluster head shares the most
CCs with ¢. When a tie still exists, node ¢ chooses to stay
in the claiming cluster which has the smallest size. Node
IDs of cluster heads will be used to break tie in the end
if necessary. The pseudo code of this algorithm is given
by Algorithm 3. After deciding its membership, debatable
node ¢ notifies all its claiming clusters.

The autonomous decisions made by the debatable CR
nodes raises the possibility of an endless chain effect
during the membership clarification phase. A debatable
node’s choice is dependent on the composition of its
claiming clusters, and the members of these claiming
clusters can be changed by other debatable nodes’ moves.
There is the possibility that this process may go on forever.
However, by formulating the process of membership
clarification into a game, we can show that an equilibrium
is reached after a finite number of best response updates
made by the debatable nodes. Thus, the membership
clarification phase is guaranteed to terminate.

5.2.2. Formulation of ROSS-DGA to Congestion
Game
Game theory is a powerful mathematical tool for
studying, modeling and analyzing the interactions among
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individuals. A game consists of three elements: a set of
players, a selfish utility for each player, and a feasible
strategy space for each player. In a game, the players
are modeled as rational and intelligent decision makers,
which are related through one explicit formalized incentive
expression (the utility or cost). Game theory provides
standard procedures to study potential equilibria [28]. Over
the last decade, game theory has been extensively applied
to problems in communication and networking [29, 30].
Congestion game is an interesting game model which
describes the problem where participants compete for
limited resources in a non-cooperative manner. It has the
good property that a Nash equilibrium can be achieved
after finite steps of best response dynamic, i.e., each player
chooses the strategy to maximize/minimize its utility/cost
with respect to the other players’ strategies. The framework
of the congestion game has been used to model server
selection in distributed computing platforms [31], or users
downloading files from cloud, etc.

To formulate the debatable nodes’ membership clar-
ification into a congestion game, we see this process
from a different perspective. In particular, for a debatable
node, instead being in all its claiming clusters, now it
is not included in any claiming cluster and it needs to
decide on one cluster to join. When a debatable node ¢
joins one cluster C, the decrease of CCs in cluster C'
s Yees, AK(O)| = Yees, (K(O)] - |[K(CUD)).
Then, node 7 chooses the cluster C, where the decrease
of CCs in cluster C' is smaller than the decrease if ¢ would
have joined any other claiming cluster in \S;. The relation
between the debatable nodes and the claiming clusters is
shown in Figure 4.

Claiming

Figure 4. lllustration of debatable nodes and claiming clusters

In the following, we show that the decision of debatable
nodes to clarify their membership can be mapped to the
behaviour of the players in a player-specific singleton
congestion game when proper cost function is given. The
game to be constructed is represented with a 4-tuple I =
(P, R, >, iep: p) with the following elements:

e P, the set of players in the game, which are the
debatable nodes in our problem.

e R =US;,i € P, the set of the resources for players to
choose. In our problem, S; is the set of the claiming
clusters of 4, and R is the set of all claiming clusters.

o Strategy space »,,i € P, >, is the set of the claiming
clusters S;. As debatable node ¢ is supposed to choose
only one claiming cluster, only a single resource will be
allocated to .



e The cost function p(C') regarding resource C. p(C) =
A|K*(0)|,C € S;, which represents the decreased
number of CCs in cluster C' when debatable node
i joins C. As to cluster C' € S;, the decrease of
CCs caused by accepting the debatable nodes is
D iCes; inC A|K*(C)|. i — C means i joins cluster
C. Obviously this function is non-decreasing with
respect to the number of nodes joining cluster C.

When the utility function is decided purely by the
amount of players accessing the resource, the game
is a canonical congestion game [32]. In our game, as
the channel availability on debatable nodes (players) is
different, the loss of CCs (cost) caused by a debatable node
could also be different. Hence, this congestion game is
player specific [32]. In this game, every player greedily
updates its strategy (choosing one claiming cluster to
join) if joining a different claiming cluster minimizes
the decrease of CCs 3, . A|KY(O)
strategy in the game is exactly the same with the behaviour
of a debatable node in the membership clarification phase.

As to singleton congestion game, there exists a pure
equilibrium which can be reached with the best response
update, while the upper bound for the number of steps
before convergence is n? % m [32], where n is the number
of players, and m is the number of resources. In our
problem, the players are the debatable nodes, and the
resources are the claiming clusters. Thus, the number of
steps can be expressed as O(N?). In fact, the upper bound
for the number of steps which are involved in this process
is much smaller than N3. The percentage of debatable
nodes in the network is shown in Figure 11, which is
between 10% to 60%. On the other hand, the number
of cluster heads is dependent on the network density
and the CR node’s transmission range, as mentioned in
Section 5.1. The simulation in [33] shows that the cluster
heads account for from 3.4% to 20% of the total CR nodes
with increasing network density. Furthermore, as the game
is played locally and in parallel i.e., a debatable node can
only interact with a few claiming clusters, the execution
speed is significantly reduced.

5.2.3. Distributed Fast Algorithm (DFA)

On the basis of ROSS-DGA, we propose a faster
version ROSS-DFA which differs from ROSS-DGA in the
second phase. With ROSS-DFA, debatable nodes decide
their respective cluster heads only once. The debatable
nodes consider their claiming clusters to include all
their debatable nodes, thus the membership of claiming
clusters is static and all the debatable nodes can make
decisions simultaneously without considering the change
of membership of their claiming clusters. As ROSS-DFA
is quicker than ROSS-DGA, it is more suitable for CRN
where the channel availability changes frequently. To run
ROSS-DFA, debatable nodes execute only one loop of
Algorithm 3.

Now we apply both ROSS-DGA and ROSS-DFA to
the network in Figure 3 after phase I of ROSS is

complete. In the network, node A’s claiming clusters are
cluster C(C), C(H) € S4, while the respective members
are {A,B,C,D} and {A, B, H,G}. The two possible
strategies of node A are illustrated in Figure 5. In Figure
5(a), node A stays in C(C') and leaves C'(H) which brings
2 more CCs to Sa, which is more than that brought by
another strategy, as shown in 5(b). After similar decisions
are made by the other debatable nodes B and D, the final
clusters are formed as shown in Figure 6.

/fx //@ ’/@\ Py /@

\/ \///@\
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(a) Node A stays in cluster C'(C'), (b) Node A stays in cluster C(H ),
quits C(H), A|K(C(C)|+ quits  C(C), A|K(C(CO)|+
AlK(C(H))| =2 AlK(C(H))| =1

Figure 5. Membership clarification: possible cluster formations
caused by node A’s different choices

{13,410}

Figure 6. Final formation of clusters. Common channels are
shown as well as the corresponding clusters.

6. PERFORMANCE EVALUATION

Taking the final clustering result of ROSS into account
for our toy example shown in Figure 6, we can compare
the outcome with our centralized scheme proposed in
Equation 1 as well as the state-of-the-art algorithm
SOC [15]. Those corresponding results of the latter two
schemes are shown in Figure 7. We observe for this
example case that ROSS and the centralized scheme
achieve cluster sizes that are more balanced, while SOC
leads to a larger variance in terms of the cluster size.
Regarding the amount of CCs, the same observation holds.

In the following, we are interested in a more general
performance comparison regarding clustering in CRNs.
We therefore present an extensive evaluation study. We
base our evaluations on simulations, and consider the
following comparison schemes:

e ROSS without size control: ROSS-DGA, ROSS-DFA;

e ROSS with size control, i.e., ROSS-6-DGA and ROSS-
o-DFA where ¢ is the desired cluster size;
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(a) Generated by SOC

(b) Generated by the centralized
clustering scheme

Figure 7.Final clusters formed by SOC as well as the
centralized clustering scheme.

e SOC [15], a distributed clustering scheme pursuing
cluster robustness;

e Centralized robust clustering scheme; in our evaluations
we use the built-in function bintprog of MATLAB to
solve the corresponding integer optimization problem
given in Equation 1

Given these comparison schemes, we are interested in
the following performance metrics regarding clustering:

e The average number of CCs per non-singleton
cluster. Previous work [15] and [14] claim that the
larger average number of CCs over all the clusters
indicates robustness. As mentioned, this interpretation
has several shortcomings: First, singleton -clusters
should not be considered when calculating the average
number of CCs, as singleton clusters don’t contribute
to the collaborative computing or sensing. Second, the
average number of CCs doesn’t necessarily indicate
the robustness of a cluster, because the ability of a
cluster to sustain primary user activity also depends
on the size and the location of the cluster members.
This information, however, is not reflected by the
average number of CCs. Thus, in the following we
will consider the average number of CCs per cluster,
excluding singleton clusters from this averaging, as our
first performance metric.

e Robustness of the clusters against newly added PUs.
If clusters are less robust, this leads to an increasing
number of unclustered CR nodes if clusters are exposed
to random primary user activity. We thus are interested
in this effect as a second measure for robustness. In
particular, we are interested in the number of CR nodes
which are still part of a cluster after exposing the
clusters to primary user activity.

o Cluster sizes. We investigate the distribution of the
sizes of the formed clusters. This metric reflects the
above mentioned size constraints, i.e. clusters are
supposed to be neither too big nor too small.

o Control message overhead. We investigate the number
of control messages involved until the final clustering
result is established .
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e Influence from inaccurate spectrum sensing. While
most of our evaluations are conducted under the
assumption of perfect channel sensing by the individual
CR nodes, an important question relates to the fact
how the clustering performs under imperfect sensing
accuracy. In case of erroneous channel sensing, false
negatives harm primary users while false positives
harm the CR nodes. Both effects obviously impact the
clustering process. However, in the following we only
consider the impact from false negatives. In particular,
we assume that primary user activity is only correcly
detected by a CR node in transmission range with a
certain probability, i.e. there is a certain probability
for misdetections. Given this erroneous sensing result,
the secondary users nevertheless make their clustering
decisions. As we are interested in the distorting
impact of the erroneous channel sensing results on the
clustering process, after the clustering is complete, we
provide ground truth and reevaluate the discrepancy
between the assumed channel utilization and its effect
on clustering, and the de-facto channel utilization and
how this affects the CCs of formed clusters.

Our performance evaluation is split into two parts:
First we investigate the performance of the centralized
scheme and the distributed schemes for a small network,
as the run-time for the centralized solution quickly grows
out of hand as a function of the network size. In the
second part, we investigate the performance only of the
distributed schemes for larger settings. The following
simulation settings are identical for both evalutions: CRs
and PUs are deployed on a two-dimensional Euclidean
plane. The number of licensed channels is 10, each PU is
operating on each channel with probability of 50%. The
constant ¢ which is used to control cluster size for ROSS
(discussed in Section 5.1.3) is 1.3. CR users are assumed to
sense the existence of primary users and identify available
channels perfectly, unless we investigate the impact from
erroneous channel sensing. All primary and CR users are
assumed to be static during the process of clustering. All
other parameters i.e., the number of CR and PU, and
their transmission ranges are given at the beginning of
the respective subsections. The simulation is written in
C++, and the performance results are averaged over 50
randomly generated topologies. We provide confidence
intervals corresponding to a 95% confidence level.

6.1. Centralized Scheme vs. Decentralized
Schemes

We start with the comparison of the centralized scheme
versus various distributed ones. For this, we consider 10
primary users and 20 CR users are dropped randomly (with
uniform distribution) in a square area where side length is
A. Transmission ranges of both primary and CR users are
set to A/3. By doing this, we abstract from the influence
of any given physical layer technology and propagation
environment parameters. Due to the parameterization, on
average 7 channels are available per CR node when the



clustering process is started. We set the desired cluster size
& as 3. As for the centralized schemes, we set the following
parameters numerically: p(1) = 0.4, p(2) = 0.6.

We start with the consideration of the CCs in all
non-singleton clusters. Figure 8 shows that basically the
centralized schemes outperform all distributed schemes in
terms of the average number of CCs per cluster. SOC
achieves the most CCs among the distributed schemes,
because SOC groups the neighboring CRs which share
the most abundant spectrum together, without considering
the size of them. However, as a consequence, SOC also
generates the most singleton clusters. As to the variants
of ROSS, we notice that the greedy mechanism (i.e. the
ROSS-DGA variants) maximize the CCs in non-singleton
clusters significantly.

Figure 9 provides further insights into the performance
comparison. Here, we depict the empirical cumulative
distribution function (ECDF) of the size of the clusters.
The centralized schemes don’t result in any singleton
clusters in the the considered evaluation scenarios. In
contrast, ROSS-DGA/DFA account for 3% singleton
clusters of the total CR nodes, as compared to 10% of
nodes being unclustered when applying SOC. ROSS-DGA
and ROSS-DFA with size control feature generate 5%-8%
unclustered CR nodes, which is due to the cluster pruning
procedure (discussed in Section 5.1.2 and Section 5.1.3).
In terms of cluster size, the clusters resulting from the
centralized schemes and ROSS with cluster size control
mechanism have little deviation from the desired cluster
size. In contrast, the size of clusters resulting from ROSS-
DGA and ROSS-DFA have a higher variance, but appear
to be better than SOC, i.e., the 50% percentiles for ROSS-
DGA, ROSS-DFA and SOC are 4.5, 5, and 5.5, and the
90% percentiles for the three schemes are 8, 8, and 9. Thus,
the corresponding sizes resulting from ROSS are closer to
the desired size.

Next, we consider the robustness of clusters if facing
random primary user activity. We thus extend the
simulation by adding more primary users sequentially into
the area of the CRN, leading to a decreasing spectrum
availability. While 10 primary users are in the network
at start, some extral9 batches of primary users are added
sequentially, each batch including 5 primary users that are
placed randomly in the area. These added primary users
choose then an active channel also at random. Figure 10
shows the corresponding average number of unclustered
CR nodes as a result of this significant increase in primary
user activity. The figure reveals that the centralized scheme
with a desired size of 2 leads to the best robustness, while
SOC leads to the worst one. Surprisingly, the centralized
scheme with desired size of 3 doesn’t outperform the
variants of ROSS, because pursuing larger cluster sizes
generally leads to clusters with a lower amount of CCs.
In contrary, the variants of ROSS generate some smaller
clusters which are more likely to be maintained despite the
increasing primary user activity.

10

Alternatively, we can consider the total share of users
(still) residing in a cluster after the addition of the primary
users as performance metric for robustness. If we do so,
the ROSS-based schemes maintain 5%, 30% and 230%
more secondary users within clusters than SOC, when
the numbers of newly added PR are 10, 40 and 80
respectively (no figure is provided for this data). This
observation illustrates clearly that the average number of
CCs of non-singleton clusters doesn’t necessarily reflect
the robustness of clusters, i.e., SOC obtains the most CCs
among the distributed schemes, but the resulting clusters
are vulnerable to primary user activity.

We finally turn to a comparison of the amount of
the involved control messages for the different clustering
schemes. For this, we count the number of transmissions
of control messages as metric [34], without distinguishing
broadcast or uni-cast control messages.

As to ROSS, in the first phase the maximal number of
broadcasts is N according to 5.1. In the second phase,
the upper bound for the number of message exchanges is
n?m and n for ROSS-DGA and ROSS-DFA respectively,
where n is the number of debatable nodes and m is
the number of claiming clusters. SOC consists of three
rounds, and in each round every node needs to perform
a broadcast to do comparisons and cluster merging. The
centralized scheme is conducted at some control device,
which involves information aggregation and subsequent
dissemination of clustering decisions. To analyze the
centralized scheme’s message overhead, we adopt a
backbone structure proposed in [35], and apply ROSS
to generate cluster heads which serve as the backbone.
In the stage of information aggregation, all the nodes
transmit information to the cluster heads which forward
the messages to the controller. In the dissemination stage,
all the cluster heads and the debatable nodes broadcast the
clustering result, thus the upper limit for the number of
broadcastis N + m + n.

The number of control messages which are involved
in ROSS variants and the centralized scheme is related
to the number of debatable nodes. Figure 11 shows the
percentage of debatable nodes with different network
densities. Table II shows the amount of control messages
using big O notation, the number (or upper bound) of
control messages (illustrated in Figure 12), and the size
of control messages for the different schemes under
consideration. From Figure 12 we can see that the upper
bound on the number of control messages which are
involved in the variants of ROSS is still smaller than the
one involved in SOC. Meanwhile, the length of the control
messages involved in the variants of ROSS is shorter than
that involved in the centralized scheme.

6.2. Comparison among the Distributed
Schemes

We now switch to a more fine-grained investigation only
of the distributed schemes. We are here most interested in
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Figure 10. Number of unclustered CRs
with decreasing spectrum availability

Scheme Message Overhead Number of messages Content and size of the message
ROSS-DGA, (’)(NB) a N +n2m (upper bound) Phasel: ID, d;,g;, which are 3 bytes;
ROSS-§-DGA Phasell: Cluster head ¢ broadcasts channel availability to all
ROSS-DFA, b members, where are |C(4)|| | bytes
ROSS-6-DFA O(N) N + n (upper bound)
Every CR node ¢ broadcasts channel availability on all
SoC o) 3N cluster members, which is |C'(2)||K| bytes
Centralized O(N) N + n + m (upper bound) clustering result, which is 2N bytes ¢

% For the upper bound on the number of messages.

® For the upper bound on the number of messages.

¢ Assuming the data structure of the clustering result is in the form of {i, C},i € C,i € N.

Percentage

equals to 60% of the average number of neighbors. The
transmission range of CR is now set to A/5 while the
primary user transmission range is set to 24 /5. The initial
number of primary users is set to 30.

Table lll. The average numbers of neighbors and the chosen
desired sizes with respect to different network scales

50 100 200 300 400

Number of CR nodes

Figure 11. Percentage of debatable nodes after ROSS phase |

500 Number of CRs 100 200 300
Average num. of neighbors 9.5 20 31
Desired size ¢ 6 12 20
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Number of transmitted control messages

100 200 400
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Figure 12.The number of transmitted control messages

Average number of CCs per non-singleton cluster

required for clustering (based on the third column in Table I1)
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—Jsoc
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Figure 13. Average number of CCs of non-singleton clusters in
case of increasing the number of CR nodes.

their properties when the network size and density scales.

In particular, we set the desired size based on the density
of the network. As shown in Table III, the desired size
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We start again with considering the average number of
CCs over all non-singleton clusters, shown in Figure 13.
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Note that in this case we increase the number of CR nodes
in the scenario. As in the previous section, the result does
not reveal a significant performance advantage of either of
the distributed schemes.

We next consider the robustness of the formed clusters
in case that more and more primary users are added to the
scenario. In this case, we increase primary users’ activity
by adding 20 batches of primary users sequentially in
CRN, each batch including 10 primary users which are
placed randomly and select a channel at random. Figure 14
and 15 show the corresponding results for N = 100 and
200 CR nodes in the scenario. We basically see that as
the primary user activity increases, more unclustered CR
nodes result from SOC than the variants of ROSS. This
corrobates a somewhat similar observation of the previous
section. When N = 300, as shown in Figure 16, and the
amount of newly added primary users is moderate, ROSS-
DGA/DFA results in slightly more unclustered CR nodes
than SOC, while SOC’s performance deteriorates quickly
when the number of primary users continues to increase.
Also, Figures 14 to 16 reveal that ROSS with size control
mechanism results in significantly less singleton clusters.

We next turn to the size of the formed clusters
under the different distributed schemes. For this we
study in Figure 20 the average number of total clusters
formed under the different schemes for the different
parameter combinations considered. The figure shows that
the number of clusters resulting from SOC increases
linearly, whereas the number of formed clusters increases
sub-linearly in case of the variants of ROSS. This
result coincides with the analysis in Section 5.1.3. We
furthermore consider the empirical distribution function of
the size of the formed clusters, for each considered network
density, in Figures 17, 18 and 19 respectively.

The ECDF associated with the cluster sizes show that
the cluster sizes resulting from the variants of ROSS are
clearly influenced by the chosen desired size, i.e., as shown
in Figures 17, where the number of CR nodes is 100 and
the desired cluster size is 6, 90% of CR nodes are in
clusters whose sizes are between 3 and 9, while for SOC,
only 17% of nodes are in the clusters with these sizes.
Similarly, when N = 200 and the desired size is 12 (as
shown in Figure 18), 80% of nodes are in clusters whose
sizes are between 6 and 18, while only 30% of nodes are in
clusters of similar sizes when SOC is executed. The cluster
sizes from ROSS-6-DGA and ROSS-6-DFA concentrate
more around the desired size than that of ROSS-DGA and
ROSS-DFA.

We finally turn to the results of clustering under
erroneous spectrum sensing. In Figure 21 we first study
the impact of erroneous spectrum sensing and subsequent
clustering on the number of CCs per cluster. The figure
shows that the average number of CCs decreases slightly
when the false negative rate increases. Nevertheless, as
with the previous investigated scenarios, the results do not
show large differences between the distributed variants. We
furthermore consider the ECDF of the size of the formed

12

clusters under erroneous spectrum sensing in Figure 22.
For all the schemes, when the rate of false negatives
increases, the number of singleton clusters and smaller
clusters increases accordingly. Clusters formed by SOC
are furthermore affected by the sensing errors significantly.
More unclustered nodes are generated, and a lot of small
clusters are formed, e.g., when the false negative rate is
30%. In contrary, the ROSS variants are resilient in terms
of unclustered nodes and cluster sizes. We can conclude
that due to the negotiation step within neighborhoods,
ROSS variants successfully rule out the false negative
channels resulting from erroneous spectrum sensing. This
is an interesting and remarkable advantage of ROSS in
comparison to SOC.

7. CONCLUSION

In this paper we investigate the robust clustering problem
in CRN, give mathematical description of the problem and
prove NP hardness of it. Both centralized and distributed
clustering solutions are proposed. With the increasing
tensity of the primary users’ activity, our proposed
schemes generates clusters which make more secondary
users to be in the clusters composed with multiple users,
so that more secondary users can benefit from cooperative
spectrum sensing. Besides, the resulted cluster sizes lie in a
smaller range centered around the desired cluster size and
involve less control messages than the comparison scheme.
In particular, the proposed centralized scheme outperforms
the proposed distributed schemes in all aspects, although
it requires a centralized device and the involved control
message packet is large. Our proposed distributed scheme
is also more robust against the erroneous spectrum sensing
compared with the comparison scheme. The simulation
confirms that the metric of average number of CCs of
clusters alone is not an accurate indicator for the cluster
robustness against the primary users’ activity.
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Appendices
A. PEUDO CODE FOR ALG.1,2,3
B. PROOF OF LEMMA 5.1

Proof
We consider a CRN which is represented by a
connected graph. To simplify the discussion, we assume
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Figure 21. The number of CCs per non-singleton cluster with
the presence of spectrum sensing false negative

that secondary users have unique individual connectivity
degrees.

For the sake of contradiction, let us assume there exist
a secondary user o which is not included into any cluster.
Then there exists a node 8 € Nb(«) such that do > dg
(otherwise ae becomes cluster head). In this case, according
to Algorithm 1, S is not included into any -cluster,
because otherwise dg = M, a large positive integer, which
contradicts to do, > dg. Now, we distinguish between two
cases: If 3 becomes cluster head, node « is included,
the assumption that « is not included in any cluster is
not true. If 5 is not a cluster head, then § is not in any
cluster, we can repeat the previous analysis made on node

13
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Figure 22. Empirical distribution function associated with cluster
sizes, where there are 30 PUs and 100 CRs with false negative
in spectrum sensing

Algorithm 1: ROSS phase I: cluster head determina-
tion and initial cluster formation for CR node ¢
Input: d;, g;,7 € Nb(z) \ A, A denotes the set of
cluster heads among Nb(7). Empty sets 71, T2.
Result: Returning 1 means ¢ is cluster head, and d; is
setto 0, 7 € Nb(7) \ A. Returning 0 means ¢
is not cluster head.
if 75 € Nb(4) \ A, such that d; > d; then
‘ return 1;
end
if 3j € Nb(¢) \ A, such that d; > d; then
‘ return O;
else
if 75 € Nb(é) \ A, such that d; equals d; then
‘ T1 < j
end

D-JE-REEN B N N N

end
if #j € 71, such that g; < g; then
‘ return 1;
end
if 35 € 7, such that g; < g; then
‘ return O;
else
if #j € 71, such that g; equals g; then
‘ T2 < ]
end

L~ L <
o NN R W N =D

end

if ID; is smaller than any ID;, j € 72 \ 7 then
‘ return 1;

end

return 0;

NN NN
B W N =D

a, and deduce that node B has a neighboring node -~y
with d < dg. So far, when no cluster head is identified,
the unclustered nodes, i.e., «, S form a linked list,
where their individual connectivity degrees monotonically
decrease. But this list will not continue growing, because
the minimum individual connectivity degree is zero, and
the length of this list is upper-bounded by the total number

14

Algorithm 2: ROSS phase I: cluster head guarantees
the availability of CC (start from line 1) / cluster size
control (start from line 2)

Input: Cluster C, empty sets 71, T2
Output: Cluster C has at least one CC, or satisfies the
requirement on cluster size
1 while K¢ = () do

2 while |C| >t - ¢ do
3 if 3only one z € C'\ h(C),
i = argmin(| K}, (c) N K;|) then
4 | C=C\i
5 else
6 3 multiple ¢ which satisfies
i = argmin(| K¢y N Ki|);
7 T < 15
8 end
9 if 3onlyone ¢ € 71,
i = argmax(| Njecni Kj| — [ Njec K;l)
then
10 | C=C\i;
11 else
12 ‘ C = C'\ i, where i = argmin ID;
i€Ty
13 end
14 end
15 end

of nodes in the CRN. An example of the formed node series
is shown as Figure 23.

O-O-@ DO

d, > dp > dy > > dy > do

Figure 23.The node series discussed in the proof of
Theorem 5.1, the deduction begins from node «

In this example, node w is at the tail of a list. As w
does not have neighboring nodes with lower individual
connectivity degree, w becomes a cluster head. Then w
incorporates all its one-hop neighbors (here we assume
that every newly formed cluster has common channels),
including the nodes which precede w in the list. The nodes
which join a cluster set their individual connection degrees
to J, which makes the node immediately precede in the
list to become a cluster head. In this way, cluster heads are
generated from the tail to the head in the list, and every
node in the list is in at least one cluster, which contradicts
the assumption that « is not included in any cluster.

O

C. PROOF OF THEOREM 3.1

Proof
To prove the robust clustering problem is NP-hard, we
reduce the maximum weighted k-set packing problem,
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Algorithm 3: Debatable node 7 decides its affiliation
in phase II of ROSS

Input: all claiming clusters C € S;

Output: one cluster C' € S;, afterwards node 7
notifies all its claiming clusters in S; about
its affiliation decision.

1 while ¢ has not chosen a cluster, or %
has chosen cluster C, but 3C’ € S,;(C” # C),
which has
|K(C"\ )| = |[K(C)] < |[K(C\4)| — |K(C)| do
2 if 3only one C € S;,
C =argmax Y,
Ccres;\C

(IK(C\ )| = [K(C))

then

3 ‘ return C';

4 else

J multiple C satisfying the above condition,
then 1, < C;

6 end
7 if 3only one C € 7y,
C = argmax(Kc) N K;) then

8 ‘ return C
9 else
10 J multiple C satisfying the above condition,

then 72 < C;

11 end

12 if Jonly one C' € 73, C' = argmin |C| then
13 ‘ return C';

14 else

15 ‘ return arg min h(C);
Cery

16 end

17 end

which is NP-hard when k£ > 3 [36], to the the robust
clustering problem to show the latter is at least as hard as
the former. Given a collection of sets of cardinality at most
k and with weights for each set, the maximum weighted
packing problem is that of finding a collection of disjoint
sets of maximum total weight. The decision version of the
weighted k-set packing problem is,

Definition 2. Given a finite set G of non-negative
integers where G C N, and a collection of sets Q =
{51,852, ,Sm} where S; C G and max(|S;|) > 3 for
1 < i < m. Every set S in Q has a weight w(S) € N*.
The problem is to find a collection T C Q such that T
contains only the pairwise disjoint sets and the total weight
of these sets is greater than a given positive number ), i.e.,

szez‘*’(s) > A\

We will show that the weighted k-set packing
problem <p CRN robust clustering problem. Given an
instance of the weighted k-set packing problem, i.e., a
collection of sets Q = {S1,S2, -+ ,Sm}, where each
set S;,i € {1,2,...,m} consists of positive integers.
There is an integer weight w(S;) for S;, in the end an
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DOI: 10.1002/ett
Prepared using ettauth.cls

integer A\ completes the description of this instance. We
will construct an instance of a CRN robust clustering
problem within polynomial time. W..o.g. we let set
Uic{1,2,...,m}Si = {1,2,...,N} =P.

We will construct the CRN and the clusters as follows:
For every set S € Q, there will be a corresponding cluster
composed with CR nodes constructed. For the set whose
size is larger than 1, the IDs of the constructed CR nodes
are identical with the elements in it, and we locate the CR
nodes so that any two of them can communicate directly
when common channels are available on them. Besides, a
set of channels with cardinality of |w(.S)] is allocated to all
the CR nodes in this cluster, and the channels are on the
spectrum band which is exclusive for this cluster. For the
set .S which contains only one element, i.e., S = {t} where
t € P, a cluster composed with two CR nodes will be
created, i.e., one CR node’s ID is ¢, the other CR node is the
dummy node of the former and its ID is ¢ + V. Afterwards,
|w(S)| channels which are exclusively allocated to this
cluster are assigned to these two CR nodes. Now we have
constructed the clusters which correspond to every set in
Q. In the end, singleton clusters are formed with respect
to every element in P. Note that the common channels
in these singleton clusters don’t contribute to the sum of
f(C). The existence of the singleton clusters ensures that
it is always possible to find out a group of clusters, which
together constitute the whole CRN.

Actually, all the constructed CR nodes can be assumed
to locate in a very small area so that each CR node is within
the transmission scope of every other CR node. Note
that each constructed cluster maintains certain common
channels which are exclusive to other clusters. This rule
in transformation makes the transformation for every set in
Q to be feasible.

Given any instance Z of the maximum weighted k-set
packing problem, we can now formulate it to an instance
T of the robust clustering problem. For each set in Z, we
find out the corresponding clusters, as well as the singleton
clusters, whose IDs are from P \ (US;), S; € Z. Then the
sum of the weights of the corresponding sets equals to the
sum of f(C') and thus greater than A.

Based on the above construction and transformation,
if robust clustering black box says yes to a clusters
formation 7, then the corresponding Z is an instance
for the maximum weighted k-set packing problem. If
the clusters formation 7 is not a solution for the robust
clustering problem, then 7 is an instance for the maximum
weighted k-set packing problem.

Since the construction and transformation from instance
to clusters formation take polynomial time, we can
conclude that the robust clustering problem is NP-hard.

O
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