

Internet of Reality: Challenges, Initial Results and the Road Ahead

Ericsson Research Lecture Series James Gross Dec 7th, 2020

James Gross

- Professor for Machine-to-Machine Communications
 - PhD from TU Berlin in 2006
 - Assistant Prof. at RWTH 2008 2012
 - Since 2012 at KTH
- Research focus:
 - Cellular networks, critical machine-to-machine communications
 - Network performance models
 - Edge computing for closed-loop applications
- Associate Director KTH Digital Futures
- Co-Director KTH Competene Center TECoSA
- Founder@R3 Communications (spin-off in industrial wireless)

Outline

- Towards an Internet of Reality?
- Initial Challenges and Results
 - EdgeDroid and the quest for latency impact
 - Scheduling for closed-loop
- Upcoming Challenges & Outlook

Cyber-Physical System (CPS)

Traditionally in industrial automation, but broader use cases exist

Wearable Cognitive Assistant (HITL)

Generalizes to human-in-the-loop (HITL), many different scenarios

Underlying Principles

Representation of reality: constant update of a specific context

Feedback system: loop set-up, dependable, 1-to-1 load ratio

Substantial utility of applications:
Automation gain, knowledge transfer, automated assistance

Ubiquitous Provisioning?

- Run over shared network infrastructure
- Efficient support of such applications?
- Interaction between applications and network?

Outline

- Towards an Internet of Reality?
- Initial Challenges and Results
 - EdgeDroid and the quest for latency impact
 - Scheduling for closed-loop
- Upcoming Challenges & Outlook

Application Characteristics

End-to-end latency over the loop is the central metric!

Diverse Footprints:

Uplink/Downlink

+ Compute

Diverse Requirements:

• HITL: ~ 800 ms

• CPS: ~10ms

Example HITL: LEGO Assistant

Ha et al. "Towards wearable cognitive assistance," ACM Mobisys 2014

LEGO Footprint & Latency Requirement

QoE determined by latencies t_{low} =600 ms, t_{up} = 2.7 s !

HITL Emulation: EdgeDroid

Infrastructure Impact

IEEE 802.11n & simple cloudlet set-up, office environment

- Exponential latency scaling, various contributing factors
- Load easily pushes latencies beyond t_{down}, impact?

User Study on Delayed Feedback

- User study at CMU in fall 2019
- Modified assistant to control latencies
- Tracking of various outputs
- 40 participants, mostly students from CMU

Experimental Set-up

Key Results

Normalized execution delay increases with delay, delay also prevents task execution acceleration.

Conclusions & Interpretation

- Increased infrastructure delay leads to:
 - Slowing in execution, prevented from acceleration
 - Execution slow-down lingers even if delay recovers!
- → Delay causes disruption of cognitive task automation, while making it hard to re-automate one happened!
- System consequence: Significantly longer application execution, higher load, higher resource consumption!

How to Prevent Delays?

How to schedule the system to minimize likelihood of violating the deadline?

Model and Scheduling Choices

Two-hop queuing model with joint slots for up-/down-link

- Scheduling variants:
 - Static allocation of slots
 - Allocate slots for the time until deadline, don't change
 - Constantly reallocate slots up until deadline

Results

- Substantial performance differences
- Fully adaptive approaches outperform all other schemes
- Load disbalance, underutilization most important factors

Outline

- Towards an Internet of Reality?
- Initial Challenges and Results
 - EdgeDroid and the quest for latency impact
 - Scheduling for closed-loop
- Upcoming Challenges & Outlook

Current Activities

- Automated models of human reaction in HITL
- Latency & quality of control trade-offs: Cleave
 - https://github.com/KTH-EXPECA/CLEAVE
- Optimal sampling & semantics: When to sense reality?
- Predicting loop end-to-end latencies for real systems

VINNOVA Competence Center TECoSA

What to do with the Representations?

- Build a fabric that tracks the representations/ part of them?
- How to universally represent reality?
- Human footprint in such a fabric?

www.digitalfutures.kth.se

Summary & Conclusions

- Upcoming feedback systems that process reality
 - Powerful application class!
 - Novel footprints and requirements
 - End-to-end latency is key metric
- Mastering communication & compute interaction is key
 - Severe consequences if not
 - Still, complex scheduling task, mostly still open
- Towards an Internet of Reality? More research needed ...