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Take-home message 4 years ago 

•  Had worked with effective capacity, analyzed various 
wireless system set-ups (SISO, interference, relaying) 

•  Strived for accurate communication-theoretic modeling 
•  Results typically not easy to obtain 
•  Implications typically not very surprising 
•  Little attention in particular from industry 

è Should this still be continued? 
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URLLC Motivation 

Reality Wireless Access Server Sensors 

Actuators ! 

•  From sensing applications to closed-loop control 
•  Dependability becomes the focus (latency, reliability) 

è URLLC: Ultra-reliable low latency communications! 
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URLLC: Application Fields 

•  Various application fields according to 3GPP: 
•  Rail-bound mass transit 
•  Building automation 
•  Factory of the future / industrial automation 
•  Smart living / smarty city 
•  Electric power distribution & power generation 

•  In addition: 
•  Support for autonomous devices (cars, drones, robots) 
•  Human-in-the-loop applications (AR / cognitive assistance) 

5 

 3GPP, TR22.804 v1.0.0, December 2017 



Range of Factory Automation Requirements 

•  Dependability: Availability + Reliability + Security 

•  Field-Level Control 
•  Cycle time: <10 ms 
•  Packet sizes: < 10 byte 
•  Reliability: > 1 – 10-6 

•  Inter-PLC Communication: 
•  Cycle time: < 50 ms 
•  Packet sizes: < 500 byte 
•  Reliability: > 1 – 10-6 
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Why turn to wireless? 



Visionary Reasoning: Flexibility 
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Inter-PLC Level 

Field 
 Level 

Devices (Sensors, Actuators, Primary Technology) 

Inter-PLC Level 

Field 
 Level 

Devices (Sensors, Actuators, Primary Technology) 

More powerful, 
embedded processors 

Virtualized egde 
resources 



Realistic Use Cases: Mobility-Driven 
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Safety Devices 

Safety PLC 

Production Cell Master PLC 

Unit PLC Unit PLC 

Safety Cases Logistics Cases 



Systems & Safety Layers 
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Fig. 1. Schematic illustration of the assumed system model.
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Fig. 2. Illustration of the time slot structure: after the training, the transmitter receives the SNR estimate �̂ as feedback, and

then transmits a codeword at a rate determined by the rate adaptation function � : �̂ ! r.

We consider a single-antenna system, where the fading coefficient H is scalar and has circularly

symmetric Gaussian distribution CN (0, 1). The instantaneous SNR at the receiver is given as

� = �̄|H|2 and has exponential distribution with mean �̄. The average SNR �̄ is assumed to be

constant and known at the transmitter and the receiver.

Each time slot contains n
slot

symbols and is assumed to be split into three phases as shown

in Fig. 2: the training/estimation phase, where the transmitter sends a known training sequence

of n
t

symbols; a feedback phase of n
f

symbols where the receiver sends an estimate ˆ

� of the

channel’s SNR back to the transmitter; and the data transmission phase, where the transmitter

sends a codeword of length n
d

. The rate R of the code is determined by some rate adaptation

function � :

ˆ

� ! R, which remains fixed over time. We now describe the phases in detail.

1) Training Phase: The receiver estimates the fading coefficient H through a training sequence

of n
t

symbols. The minimum mean square error (MMSE) estimate for H is given as [20], [30]:

ˆH =

�̄n
t

1 + �̄n
t

H +

p
�̄n

t

1 + �̄n
t

N , (1)

where N ⇠ CN (0, 1) is independent of H . Therefore, the channel estimate ˆH is Gaussian

distributed as ˆH ⇠ CN (0, ⇢2) with ⇢2 = �̄n
t

/(1 + �̄n
t

), while the estimated SNR ˆ

�

�

= �̄| ˆH|2

follows an exponential distribution with mean ⇢2�̄. Due to H and ˆH being jointly Gaussian, the

Safety Layer Safety Layer 

•  Black channel principle 
•  Periodic message exchange,  >10 ms cycle time 
•  Small PDUs, about 10 byte 
•  Turns link reliability issues into availability issues of the system 



Queuing-Theoretic Problem Formulation 
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Delay Characterization/Optimization?  

•  Deterministic arrivals 
•  Random service: Fading, interference, cross-traffic 



Modeling Assumptions 

 
•  Discrete time t 
•  Fluid-flow model 
•  FIFO Queue with infinite size 
•  Constant arrivals 
•  Work-conserving server 
•  Service increments are independent & stationary 
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8 CHAPTER 1. INTRODUCTION

– how many in the queue?

1.1.1 Analysis of Queuing Systems

• Arrival and service can be random

• Discrete or continuous time

• Packet-train or fluid flow model

• Assuming discrete time t we define:

– instantaneous arrival, service and departure, at, st, dt

– queue length at time t, bt

– waiting time of customer n, Wn

• Lindley’s recursion to describe queue length evolution

bt+1

= max(0, bt + at � st)

• Customer n+ 1 waiting time in a FIFO queue is given by

Wn+1

= max(0,Wn + T s
n � T a

n)

– T s
n is the service time of customer n

– T a
n is the time between nth and (n+ 1)th arrivals

st

bt 
at dt



Wireless Service Increments 

•  Shannon capacity used for principle design of networks 

•  Low latencies è Shannon capacity inappropriate 
•  Assumes infinitely long code words 

•  Tight finite blocklength approximation: 

 
 V : Channel dispersion, n : blocklength, ε : block error rate 
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Y. Polyanskiy, H. Poor, and S. Verdu, “Channel coding rate in the finite blocklength regime,” 
IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307– 2359, May 2010. 



Communication at Finite Blocklength 

•  No error-free communication possible due to “above-
average” noise effects 
•  The lower the blocklength, the higher the rate reduction 
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•  AWGN Channel 
•  SNR 10dB 
•  Target error prob. 10-5 

•  Perfect CSI 



Finite Blocklength and Imperfect CSI 

•  SISO set-up, focus on impact of CSI at transmitter: 
•  Trade-off 1: Training symbols nt ó Data symbols nd 

•  Trade-off 2: Rate r ó Error probability ε 
è Errors are bad, but low r and small nd can also increase the 
queueing delay! 
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S. Schiessl et al. “Delay Performance of Wireless Communications with Imperfect CSI and Finite 
Blocklength,” IEEE TCOM, 2018. 



From Bit-Domain SNC to SNR-Domain SNC 
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Synopsis of Analysis

 H. Al-Zubaidy et al. “Network-layer Performance Analysis of Multi-hop Fading Channels,” 
IEEE/ACM TON, 2016 



Finite Blocklength and Imperfect CSI 

To minimize the delay violation probability, minimize 
 
 
 
 

•  For each estimated SNR    : need to solve trade-off  r ó ε 

•  Can be solved quickly, as the expression is convex in the 
error ε  
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Main Result 1: Optimal nt 
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Parameters: 
•  nslot  = 250,  
•  nd  = nslot  - nt,  
•  w = 5 slots, 
•  Avg. SNR 15 dB 



Result 2: Rate Adaptation is Superior 
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•  These results consider queueing constraints: pv(w=5) < 10-8 

•  Ignoring the queueing constraints would lead to wrong conclusions. 

Fixed rate, nd =400 

Adaptive rate, nd =220 - 240,  
nfeedback=150 

Adaptive rate, nd =370 – 390 
nfeedback=0 

•  nslot  = 400,  
•  nd  = nslot  - nt,  
•  w = 5 slots 



More Results  

•  Interference channel [1] 
•  MISO downlink [2] 
•  Non-orthogonal multiple access [3] 
•  Physical layer secrecy [4] 
•  Millimeter-wave multi-hop [5] 
•  WirelessHART multi-hop [6] 
•  Physical layer authentication [7] 

•  Most of the results are understood as qualitative results 
rather than quantitative. 
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Recent Attempt: Transient Analysis 
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Three Approaches 

•  Model initial backlog as cross-traffic, invoke SNC 

•  Naïve approach: Consider stationary delay bound by 
assuming constant arrivals, and some cross-traffic 

•  Apply SNC bound by considering finite time horizon with 
some cross-traffic (SOTAT) 

•  Own contribution WTB: Start from SNC and tailor bound 
towards the backlog of interest.  
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J. Champati et al. “Transient Delay Bounds for Multi-Hop Wireless Networks,” ArXiv Draft, 2018 



Somewhat Surprising Results 
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Parameters: 
•  Slot duration: 1 ms  
•  W = 20 kHz  
•  Backlog: 100 bits 
•  Arrival of 25 bits 
•  Avg. SNR 5 dB 



Conclusions 

•  Main contribution from SNC: URLLC design guide 
•  Bounds used for comparison of different system approaches 
•  Significantly different conclusions than capacity analysis 
•  Still, lots of assumptions and simplifications 

•  Attempt towards application of SNC bounds for real systems: 
•  Experimentation with wirelessHART 
•  Transient bounds 

•  No waste of time anymore! 
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