

URLLC: System Design Perspectives through Queuing Analysis

TUM URLLC Workshop, Zugspitze, July 2018 joint work with S. Schiessl, H. Al-Zubaidy

James Gross

- Associate professor at KTH Stockholm (since 2012)
- Assistant professor at RWTH Aachen University (2008-12)
- PhD from TU Berlin in 2006
- Co-Founder of R3 Communications GmbH/Berlin
- Research focus:
 - Cellular networks
 - Critical machine-type communications
 - Theoretical network performance models
 - Edge computing and artificial intelligence

Outline

- URLLC: Motivation and Requirements
- Queuing Analysis Approaches
- Achieved Results:
 - Interference Channel
 - FBL and CSI Accuracy
 - MISO Downlink
- Discussion and Outlook

Machine-Type Communications: Origins

<u>Autonomous</u> monitoring & metering purpose

- End of 90s: First research on "sensor networks"
- Mid 2000: First standards (802.15.4, 6LowPAN)
- ~2010: Picked up by cellular networking industry (M2M business)
 - → Massive machine-type communications

Closing the Loop ...

- Closed-loop control (driven by autonomy trend)
- Dependability becomes the focus
 - → Critical machine-type communications!

Critical MTC: Application Fields

- Various application fields according to 3GPP [1]:
 - Rail-bound mass transit
 - Building automation
 - Factory of the future / industrial automation
 - Smart living / smarty city
 - Electric power distribution & power generation
- In addition:
 - Support for autonomous devices (cars, drones, robots)
 - Human-in-the-loop applications (AR / cognitive assistance)

3GPP, TR22.804 v1.0.0, December 2017

Critical MTC: Factory Automation

Range of Factory Automation Requirements

- Dependability: Availability + Reliability + Security
- Field-Level Control
 - Cycle time: <10 ms
 - Packet sizes: < 10 byte
 - Reliability: > 1 10⁻⁶
- Inter-PLC Communication:
 - Cycle time: < 50 ms
 - Packet sizes: < 500 byte
 - Reliability: > 1 10⁻⁶

Why turn to wireless?

Visionary Reasoning: Flexibility

Realistic Use Cases: Mobility-Driven

Systems & Safety Layers

- Black channel principle
- Periodic message exchange, >10 ms cycle time
- Small PDUs, about 10 byte
- Turns link reliability issues into availability issues of the system

Queuing-Theoretic Problem Formulation

- Deterministic arrivals
- Random service: Fading, interference, cross-traffic

Outline

- URLLC: Motivation and Requirements
- Queuing Analysis Approaches
- Achieved Results:
 - Interference Channel
 - FBL and CSI Accuracy
 - MISO Downlink
- Discussion and Outlook

Modeling Assumptions

- Discrete time t
- Queue has infinite size
- Work-conserving server
- FIFO service order
- a_t , s_t , d_t : Arrival, service and departure of slot t
- Arrival & service process are independent and stationary
- b_t: Backlog at slot t

Traditional Approach: DTMCs

- Per slot system size grows/decreases by 1, or stays the same
- Markov property of arrival and service process: With probability p_s system size decreases by 1 regardless of previous evolution (p_a : increases by 1)
 - → Homogeneous discrete-time birth-death Markov chain, steady state exists under certain conditions (stability criteria)

Steady-state analysis:
$$\vec{\pi} = \vec{\pi} \cdot \mathbf{P}$$
 & $\sum_{orall i} \pi^i = 1$

Traditional Approach: Pros & Cons

Difference equation approach (balance equations)

Pros:

- 100 years of research: Lots of results, well understood
- Typically provides exact results

Cons:

- Simplicity hinges on Markov property / single packet event
- Quickly becomes intractable (concatenated systems, crosstraffic, scheduling)

Cumulative System View

Define the following cumulative processes:

$$A_{s,t} = \sum_{i=s}^{t} a_i, \quad S_{s,t} = \sum_{i=s}^{t} s_i, \quad D_{s,t} = \sum_{i=s}^{t} d_i$$

Let us assume that new arrivals can be served instantly.

Denote the backlog at time t as b_t , we have (Lindley):

$$b_t = \max(0, b_{t-1} + a_t - s_t)$$

As the system is lossless, we also have:

$$b_t = A_{0,t} - D_{0,t}$$

Exercise: From Lindley to Reich!

Work through the recursion of Lindley's equation (use $b_0 = 0$)

$$b_{t} = \max(0, b_{t-1} + a_{t} - s_{t})$$

$$= \max(0, \max(0, b_{t-2} + a_{t-1} - s_{t-1}) + a_{t} - s_{t})$$

$$= \max(0, \max(a_{t} - s_{t}, b_{t-2} + a_{t} + a_{t-1} - s_{t} - s_{t-1}))$$

$$= \max(0, A_{t,t} - S_{t,t}, b_{t-2} + A_{t-1,t} - S_{t-1,t})$$

$$= \max_{0 \le i \le t} (0, A_{i,t} - S_{i,t})$$

$$= \max_{0 \le i \le t} (A_{i,t} - S_{i,t})^{+}$$

Min,+ System Theory of Queuing Systems

What does Reich's equation mean for the system output?

$$b_{t} = A_{0,t} - D_{0,t} \Leftrightarrow D_{0,t} = A_{0,t} - b_{t}$$

$$= A_{0,t} - \max_{0 \le i \le t} (A_{i,t} - S_{i,t})^{+}$$

$$= \min_{0 \le i \le t} (A_{0,t} - A_{i,t} + S_{i,t})$$

$$= \min_{0 \le i \le t} (A_{0,i-1} + S_{i,t})$$

$$= (A \oplus S)_{0,t}$$

Turns out that: $b_t = A_{0,t} - D_{0,t}$ $= \max_{0 \le i \le t} (A_{i,t} - S_{i,t})^+$ $= (A \ominus S)_{t,t}$

with:
$$(X \ominus Y)_{s,t} = \max_{\tau \le s} (X_{\tau,t} - Y_{\tau,s})$$

Probabilistic Backlog Bound

First consider:

$$\mathbb{P}\left((X\ominus Y)_{s,t} \geq z\right) = \mathbb{P}\left(\max_{\tau \leq s} \left(X_{\tau,t} - Y_{\tau,s}\right) \geq z\right)$$
Union Bound
$$\leq \sum_{\tau=0}^{s} \mathbb{P}\left(X_{\tau,t} - Y_{\tau,s} \geq z\right)$$
Chernoff
Bound
$$\leq e^{-\theta z} \cdot \sum_{\tau=0}^{s} \mathbb{M}_{X}(\theta, \tau, t) \cdot \mathbb{M}_{Y}(-\theta, \tau, s)$$

$$= \epsilon$$

Thus:

$$\mathbb{P}\left((A \ominus S)_{t,t} \ge \max_{0 \le \theta} \left(\frac{1}{\theta} \left(\log \sum_{\tau=0}^{t} \mathbb{M}_{A}(\theta, \tau, t) \cdot \mathbb{M}_{S}(-\theta, \tau, t) - \log \epsilon\right)\right)\right) \le \epsilon$$

Stochastic Network Calculus: Pros & Cons

Moment-bounds on system variables

Pros:

- Applicable for arbitrary arrival and service processes
- Strict upper bound on system performance
- Works also for concatenated systems

Cons:

- Best for stationary processes with independent increments
- Upper bound is not tight in general

Outline

- URLLC: Motivation and Requirements
- Queuing Analysis Approaches
- Achieved Results:
 - Interference Channel
 - FBL and CSI Accuracy
 - MISO Downlink
- Discussion and Outlook

From Bit-Domain SNC to SNR-Domain SNC

H. Al-Zubaidy et al. "Network-layer Performance Analysis of Multi-hop Fading Channels," Transactions on Networking, 24/1, 2016

SISO Interference Channel

Signal-of-interest and interference signals are fading.

$$\gamma_t = \frac{P_0 |h_{0,t}|^2}{\sum_i P_i |h_{i,t}|^2 + \sigma^2}$$

Service in time slot *t* in bits:

$$S_t = n \log_2(1 + \gamma_t)$$

w.l.o.g., assume n/log(2)=1.

→ Service in the **SNR-domain**:

$$S_t = e^{S_t} = 1 + \gamma_t$$

SISO Interference Channel

For the queueing analysis, we must find

$$\mathcal{M}_{\mathcal{S}}(\theta) = \mathbb{E}\left[\mathcal{S}^{\theta-1}\right] = \int_{0}^{\infty} (1+\gamma)^{\theta-1} f(\gamma) d\gamma$$

For K interferers, we get K integrals of the form

$$\int_0^\infty \frac{(1+\gamma)^{\theta-2}}{\gamma+a} e^{-\gamma} d\gamma = \int_1^\infty \frac{z^{\theta-2}}{z+a-1} e^{-z+1} dz$$

S. Schiessl et al. "On the Delay Performance of Interference Channels," IFIP Networking, 2016.

SISO Interference Channel

Solution:

- Split the integral into two parts: z < a-1 and z > a-1
- For the second part with z > a-1:

$$\frac{z^{\theta-3}}{1 + \frac{a-1}{z}} = z^{\theta-3} \sum_{n=0}^{\infty} \left(\frac{1-a}{z}\right)^n$$

- For the first part: similar solution
- \rightarrow Can determine $\mathcal{M}_{S}(\theta)$ in closed form (as a series of incomplete gamma functions)

S. Schiessl et al. "On the Delay Performance of Interference Channels," *IFIP Networking*, 2016. F. Naghibi et al. "Performance of Wiretap Rayleigh Fading Channels under Statistical Delay Constraints," *IEE ICC*, 2017

SISO Interference Channel: Main Result

- Main av. signal power: 15 dB
- Total av. interference power is constant (8 dB).
- What is the max. delay w such that $p_{v}(w) < 10^{-6}$?

Result:

It is better to have one interf. with av. P=8 dB than two interf. with av. P=5 dB each.

Reason: signal from the one interferer is often weak, allowing high data rates

Outline

- URLLC: Motivation and Requirements
- Queuing Analysis Approaches
- Achieved Results:
 - Interference Channel
 - FBL and CSI Accuracy
 - MISO Downlink
- Discussion and Outlook

Finite Blocklength and Imperfect CSIT

- SISO set-up, focus on impact of CSI at transmitter:
 - Trade-off 1: Training symbols $n_{\rm t} \Leftrightarrow$ Data symbols $n_{\rm d}$
 - Trade-off 2: Rate r ⇔ Error probability ε
 - \rightarrow Errors are bad, but low r and small $n_{\rm d}$ can also increase the queueing delay!

Finite Blocklength and Imperfect CSIT

Normal approximation (Polyanskiy et al. / Yang et al.):

$$\varepsilon \approx \mathbb{E}\left[\left.Q\left(\frac{\log_2(1+\Gamma)-r}{\sqrt{\mathcal{V}(\Gamma)/n_{\rm d}}}\right)\right| \hat{\gamma}\right] \qquad \begin{array}{c} \Gamma : \text{Actual SNR} \\ \text{(unknown/random)} \\ \hat{\gamma} : \text{Estimated SNR} \end{array}\right.$$

Too complex for queueing analysis.

Thus, we find a normal approximation for Γ and use a Taylor approximation for the FBL effects, giving:

$$\varepsilon \approx Q \left(\frac{\hat{\gamma} - (2^r - 1)}{\sigma_{\text{ICSI,FBL}}} \right)$$

S. Schiessl et al. "Delay Performance of Wireless Communications with Imperfect CSI and Finite Length Coding," accepted for publication Transactions on Communications, 2018.

Finite Blocklength and Imperfect CSIT

To minimize the delay violation probability, minimize

$$\mathcal{M}_{\mathcal{S}}(\theta) = \mathbb{E}\left[\mathcal{S}^{\theta-1}\right] = \int_{0}^{\infty} (1+\gamma)^{\theta-1} f(\gamma) d\gamma$$

- For each estimated SNR $\hat{\gamma}$: need to solve trade-off $r \Leftrightarrow \varepsilon$
- Can be solved quickly, as the expression is convex in the approximate ε

Main Result 1: Optimal n_t

Parameters:

- $n_{\rm slot} = 250$,
- $n_{\rm d} = n_{\rm slot} n_{\rm t},$ w = 5 slots,
- Avg. SNR 15 dB

Result 2: Rate Adaptation is Superior

- These results consider queueing constraints: $p_v(w=5) < 10^{-8}$
- Ignoring the queueing constraints would lead to wrong conclusions.

Outline

- URLLC: Motivation and Requirements
- Queuing Analysis Approaches
- Achieved Results:
 - Interference Channel
 - FBL and CSI Accuracy
 - MISO Downlink
- Discussion and Outlook

Multiuser MISO

Multiuser MISO with zero-forcing beamforming (ZFBF). M antennas, K scheduled users

Large K: multiplexing gain

Small K: beamforming gain

What is the optimal K under delay constraints?

S. Schiessl et al. "On the Delay Performance of the Multi-user MISO Downlink," ArXiv preprint, 2018.

Multiuser MISO

- Has been well studied with respect to ergodic sum rate, e.g., Hochwald & Vishwanath '02.
- Choose K≈αM. Here: α ≈ 0.8

- $n_{\text{slot}} = 400$,
- K_{tot} = 120 users,
- $P_{\text{sum}}^{\text{sum}}$ = 20 dB

Multiuser MISO: Delay Performance

- Observation: For M ≥ 6, no queueing delay as long as expected arrival rate < 0.9 * expected service rate
- Optimal value K rarely changes under delay constraints

- $n_{\rm slot} = 400$,
- K_{tot} = 120 users,
- $P_{\text{sum}} = 20 \text{ dB},$
- w = 120 slots

FYI: When K=2, each of the K_{tot} =120 users can be scheduled 2 times within w=120 slots.

Outline

- URLLC: Motivation and Requirements
- Queuing Analysis Approaches
- Achieved Results:
 - Interference Channel
 - FBL and CSI Accuracy
 - MISO Downlink
- Discussion and Outlook

Discussion

- Queuing analysis extends physical layer work towards real application layer performance
- SNC approaches can provide useful upper bounds
- Somewhat surprising findings for URLLC:
 - Have rather one strong interferer
 - Estimate channel & rate adaption
 - Relatively few antennas at transmitter lead (through channel hardening) already to almost perfect system performance

Outlook

- Transient system characterization instead of steady-state
- Analyze the entire loop through edge server
- Integrate models with control performance models