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Machine-Type Communications: Origins 
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Reality Wireless Access Server 

Autonomous monitoring & metering purpose 
•  End of 90s: First research on “sensor networks” 
•  Mid 2000: First standards (802.15.4, 6LowPAN) 
•  ~2010: Picked up by cellular networking industry (M2M business) 

 è Massive machine-type communications 

Sensors 



Closing the Loop … 

Reality Wireless Access Server Sensors 

Actuators ! 

•  Closed-loop control (driven by autonomy trend) 
•  Dependability becomes the focus 

è Critical machine-type communications! 
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Critical MTC: Application Fields 

•  Various application fields according to 3GPP [1]: 
•  Rail-bound mass transit 
•  Building automation 
•  Factory of the future / industrial automation 
•  Smart living / smarty city 
•  Electric power distribution & power generation 

•  In addition: 
•  Support for autonomous devices (cars, drones, robots) 
•  Human-in-the-loop applications (AR / cognitive assistance) 
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 3GPP, TR22.804 v1.0.0, December 2017 



Critical MTC: Factory Automation 
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Range of Factory Automation Requirements 

•  Dependability: Availability + Reliability + Security 

•  Field-Level Control 
•  Cycle time: <10 ms 
•  Packet sizes: < 10 byte 
•  Reliability: > 1 – 10-6 

•  Inter-PLC Communication: 
•  Cycle time: < 50 ms 
•  Packet sizes: < 500 byte 
•  Reliability: > 1 – 10-6 
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Why turn to wireless? 



Visionary Reasoning: Flexibility 
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Realistic Use Cases: Mobility-Driven 
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Safety Devices 

Safety PLC 

Production Cell Master PLC 

Unit PLC Unit PLC 

Safety Cases Logistics Cases 



Systems & Safety Layers 
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Fig. 1. Schematic illustration of the assumed system model.
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Fig. 2. Illustration of the time slot structure: after the training, the transmitter receives the SNR estimate �̂ as feedback, and

then transmits a codeword at a rate determined by the rate adaptation function � : �̂ ! r.

We consider a single-antenna system, where the fading coefficient H is scalar and has circularly

symmetric Gaussian distribution CN (0, 1). The instantaneous SNR at the receiver is given as

� = �̄|H|2 and has exponential distribution with mean �̄. The average SNR �̄ is assumed to be

constant and known at the transmitter and the receiver.

Each time slot contains n
slot

symbols and is assumed to be split into three phases as shown

in Fig. 2: the training/estimation phase, where the transmitter sends a known training sequence

of n
t

symbols; a feedback phase of n
f

symbols where the receiver sends an estimate ˆ

� of the

channel’s SNR back to the transmitter; and the data transmission phase, where the transmitter

sends a codeword of length n
d

. The rate R of the code is determined by some rate adaptation

function � :

ˆ

� ! R, which remains fixed over time. We now describe the phases in detail.

1) Training Phase: The receiver estimates the fading coefficient H through a training sequence

of n
t

symbols. The minimum mean square error (MMSE) estimate for H is given as [20], [30]:

ˆH =

�̄n
t

1 + �̄n
t

H +

p
�̄n

t

1 + �̄n
t

N , (1)

where N ⇠ CN (0, 1) is independent of H . Therefore, the channel estimate ˆH is Gaussian

distributed as ˆH ⇠ CN (0, ⇢2) with ⇢2 = �̄n
t

/(1 + �̄n
t

), while the estimated SNR ˆ

�

�

= �̄| ˆH|2

follows an exponential distribution with mean ⇢2�̄. Due to H and ˆH being jointly Gaussian, the

Safety Layer Safety Layer 

•  Black channel principle 
•  Periodic message exchange,  >10 ms cycle time 
•  Small PDUs, about 10 byte 
•  Turns link reliability issues into availability issues of the system 



Queuing-Theoretic Problem Formulation 
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Delay Characterization/Optimization?  

•  Deterministic arrivals 
•  Random service: Fading, interference, cross-traffic 



Outline 

•  URLLC: Motivation and Requirements 
•  Queuing Analysis Approaches 
•  Achieved Results: 

•  Interference Channel 
•  FBL and CSI Accuracy 
•  MISO Downlink 

•  Discussion and Outlook 
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Modeling Assumptions 

 
•  Discrete time t 
•  Queue has infinite size 
•  Work-conserving server 
•  FIFO service order 
•  at, st, dt : Arrival, service and departure of slot t 
•  Arrival & service process are independent and stationary 
•  bt : Backlog at slot t 
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8 CHAPTER 1. INTRODUCTION

– how many in the queue?

1.1.1 Analysis of Queuing Systems

• Arrival and service can be random

• Discrete or continuous time

• Packet-train or fluid flow model

• Assuming discrete time t we define:

– instantaneous arrival, service and departure, at, st, dt

– queue length at time t, bt

– waiting time of customer n, Wn

• Lindley’s recursion to describe queue length evolution

bt+1

= max(0, bt + at � st)

• Customer n+ 1 waiting time in a FIFO queue is given by

Wn+1

= max(0,Wn + T s
n � T a

n)

– T s
n is the service time of customer n

– T a
n is the time between nth and (n+ 1)th arrivals

st

bt 
at dt



Traditional Approach: DTMCs 

•  Per slot system size grows/decreases by 1, or stays the same 
•  Markov property of arrival and service process: With probability ps 

system size decreases by 1 regardless of previous evolution (pa : 
increases by 1) 
è Homogeneous discrete-time birth-death Markov chain, steady 
state exists under certain conditions (stability criteria) 

 
        Steady-state analysis:  
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DTMC Steady-State Analysis II

Hence, we can solve for the steady-state state probability vector by:

~⇡ = ~⇡ ·P &

X

8i
⇡

i
= 1 (5)

Recall that in (3) we had derived Q and called it the rate of change.
We can thus also solve the steady-state state probability vector by

0 = ~⇡ ·Q &

X

8i
⇡

i
= 1 (6)

A final observation is that if the steady state solution exists, this is
independent from the initial state probability vector ~⇡0.

0 1 m ... ...
pa  pa  pa  pa  

ps  ps  ps  ps  



Traditional Approach: Pros & Cons 

•  Difference equation approach (balance equations) 

•  Pros: 
•  100 years of research: Lots of results, well understood 
•  Typically provides exact results 

•  Cons: 
•  Simplicity hinges on Markov property / single packet event 
•  Quickly becomes intractable (concatenated systems, cross-

traffic, scheduling) 
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Cumulative System View 

Define the following cumulative processes: 
 
 
 
Let us assume that new arrivals can be served instantly. 
Denote the backlog at time t as bt, we have (Lindley) : 
 
 
As the system is lossless, we also have:  
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1.2. CLASSIFICATIONS OF QUEUEING SYSTEMS 9

study is characterized by a basic unit in which the arrival and/or service
increments are measured, then we refer to the waiting time as the one of the
n-th basic unit that has arrived, which we denote as W n. Note that in this
case we do not distinguish between discrete or continuous modeling of time,
which only manifests in the range of W n. On the other hand, if the arrival
and service increments are infinitely divisible, then we rather consider the so
called virtual sojourn time or delay at time t, which we represent by Wt in
case of time-discrete modeling, and W (t) in the continuous-time case. The
virtual delay represents the delay a newly arriving infinitely small demand
would have to spend in the system if it arrived right away at time t until it
would departure. Note that both quantities W n and Wt W (t) represent the
total time spent in the system, i.e. the time spent in the queue waiting as
well as being served after waiting. We might also be interested only in the
individual components of the delay, for which we introduce a notation later.

Finally, given the increments of the system dynamics, we might also wish
to represent the cumulative behavior of arrival, service and departure. In
the time-discrete case, we end up with the following fundamental relationship
between the increments and the corresponding cumulative processes:

As,t =
tX

i=s

ai, Ss,t =
tX

i=s

si, Ds,t =
tX

i=s

di . (1.1)

Likewise, for the continuous-time case, we have the following notation for the
cumulative process:

A (s, t) =

Z t

s

a (x) dx, S (s, t) =

Z t

s

s (x) dx, D (s, t) =

Z t

s

d (x) dx .

(1.2)
Note that above we have utilized the bivariate process representation.

1.2 Classifications of Queueing Systems

1.3 Basic Relations of Queueing Systems

1.4 Modeling Aspects of Queueing Systems
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For the backlog in the discrete-time case, we have:

bt = max (0, bt�1

+ at � st) (1.3)
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Exercise: From Lindley to Reich! 

Work through the recursion of Lindley’s equation (use b0 = 0) 
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bt = max (0, bt�1

+ at � st) (1.5)

= max (0,max (0, bt�2

+ at�1

� st�1

) + at � st) (1.6)

= max (0,max (at � st, bt�2

+ at + at�1

� st � st�1

)) (1.7)

= max (0, At,t � St,t, bt�2

+ At�1,t � St�1,t) (1.8)

= max
0it (0, Ai,t � Si,t) (1.9)

= max
0it (Ai,t � Si,t)

+ (1.10)

1.2 Classifications of Queueing Systems

1.3 Basic Relations of Queueing Systems

1.4 Modeling Aspects of Queueing Systems



Min,+ System Theory of Queuing Systems 

What does Reich’s equation mean for the system output? 
 
 
 
 
 
Turns out that: 
 
 
with:   
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0,t = A

0,t � bt (1.12)

= A
0,t �max

0it (Ai,t � Si,t)
+ (1.13)

= min
0it (A0,t � Ai,t + Si,t) (1.14)

= min
0it (A0,i�1

+ Si,t) (1.15)

= (A� S)
0,t (1.16)

bt = A
0,t �D

0,t (1.17)

= max
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sX

⌧=1

P (X⌧,t � Y⌧,s � z) (1.22)

 e�✓z ·
sX

⌧=1
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Probabilistic Backlog Bound 

First consider: 
 
 
 
 
 
 
Thus:  
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Stochastic Network Calculus: Pros & Cons 

•  Moment-bounds on system variables 

•  Pros: 
•  Applicable for arbitrary arrival and service processes 
•  Strict upper bound on system performance 
•  Works also for concatenated systems 

•  Cons: 
•  Best for stationary processes with independent increments 
•  Upper bound is not tight in general 
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Outline 

•  URLLC: Motivation and Requirements 
•  Queuing Analysis Approaches 
•  Achieved Results: 

•  Interference Channel 
•  FBL and CSI Accuracy 
•  MISO Downlink 

•  Discussion and Outlook 
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From Bit-Domain SNC to SNR-Domain SNC 

23 

Synopsis of Analysis

 H. Al-Zubaidy et al. “Network-layer Performance Analysis of Multi-hop Fading Channels,” 
Transactions on Networking, 24/1, 2016 



SISO Interference Channel 

Signal-of-interest and interference signals are fading.  
 
 
 

Service in time slot t in bits: 
 
 
w.l.o.g., assume n/log(2)=1.  
è Service in the SNR-domain: 
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SISO Interference Channel 

 
For the queueing analysis, we must find 
 
 
 
For K interferers, we get K integrals of the form 
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 S. Schiessl et al. “On the Delay Performance of Interference Channels,” IFIP Networking, 2016. 



SISO Interference Channel 
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Solution: 
•  Split the integral into two parts: z < a-1  and  z > a-1 
•  For the second part with z > a-1: 

•  For the first part: similar solution 
•  è Can determine MS(θ) in closed form (as a series of 

incomplete gamma functions) 

 S. Schiessl et al. “On the Delay Performance of Interference Channels,” IFIP Networking, 2016. 
F. Naghibi et al. “Performance of Wiretap Rayleigh Fading Channels under Statistical Delay 

Constraints,” IEE ICC, 2017 
 
 



SISO Interference Channel: Main Result 
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•  Main av. signal power: 15 dB 
•  Total av. interference power is 

constant (8 dB). 
•  What is the max. delay w 

such that pv(w) < 10-6 ? 
 
Result: 
It is better to have one interf. with 
av. P=8 dB than two interf. with 
av. P=5 dB each. 
 
Reason: signal from the one 
interferer is often weak, allowing 
high data rates 



Outline 

•  URLLC: Motivation and Requirements 
•  Queuing Analysis Approaches 
•  Achieved Results: 

•  Interference Channel 
•  FBL and CSI Accuracy 
•  MISO Downlink 

•  Discussion and Outlook 
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Finite Blocklength and Imperfect CSIT 

•  SISO set-up, focus on impact of CSI at transmitter: 
•  Trade-off 1: Training symbols nt ó Data symbols nd 

•  Trade-off 2: Rate r ó Error probability ε 
è Errors are bad, but low r and small nd can also increase the 
queueing delay! 
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Finite Blocklength and Imperfect CSIT 

Normal approximation (Polyanskiy et al. / Yang et al.): 
 
 
 
Too complex for queueing analysis.  
Thus, we find a normal approximation for Γ and use a Taylor 
approximation for the FBL effects, giving: 
 

30 

Γ : Actual SNR  
(unknown/random) 

   : Estimated SNR 

 S. Schiessl et al. “Delay Performance of Wireless Communications with Imperfect CSI and Finite 
Length Coding ,” accepted for publication Transactions on Communications, 2018. 



Finite Blocklength and Imperfect CSIT 

To minimize the delay violation probability, minimize 
 
 
 
 

•  For each estimated SNR    : need to solve trade-off  r ó ε 

•  Can be solved quickly, as the expression is convex in the 
approximate ε  
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Main Result 1: Optimal nt 
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Parameters: 
•  nslot  = 250,  
•  nd  = nslot  - nt,  
•  w = 5 slots, 
•  Avg. SNR 15 dB 



Result 2: Rate Adaptation is Superior 
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•  These results consider queueing constraints: pv(w=5) < 10-8 

•  Ignoring the queueing constraints would lead to wrong conclusions. 

Fixed rate, nd =400 

Adaptive rate, nd =220 - 240,  
nfeedback=150 

Adaptive rate, nd =370 – 390 
nfeedback=0 

•  nslot  = 400,  
•  nd  = nslot  - nt,  
•  w = 5 slots 
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Multiuser MISO 

 
Multiuser MISO with zero-forcing beamforming (ZFBF). 
M antennas, K scheduled users 
 
 
 
 
What is the optimal K under delay constraints? 
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Large K:  
multiplexing gain 

Small K:  
beamforming gain 

S. Schiessl et al. “On the Delay Performance of the Multi-user MISO Downlink,” ArXiv preprint, 2018. 



Multiuser MISO 

•  Has been well studied with respect to ergodic sum rate, 
e.g., Hochwald & Vishwanath ’02. 

•  Choose K≈αM. Here: α ≈ 0.8 

36 

•  nslot = 400,  
•  Ktot = 120 users, 
•  Psum= 20 dB 



Multiuser MISO: Delay Performance 

•  Observation: For M ≥ 6, no queueing delay as long as 
expected arrival rate < 0.9 * expected service rate 

•  Optimal value K rarely changes under delay constraints 
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•  nslot = 400,  
•  Ktot = 120 users, 
•  Psum= 20 dB, 
•  w = 120 slots 
 
FYI: When K=2, 
each of the Ktot =120 
users can be 
scheduled 2 times 
within w=120 slots. 
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Discussion 

•  Queuing analysis extends physical layer work towards real 
application layer performance 

•  SNC approaches can provide useful upper bounds 

•  Somewhat surprising findings for URLLC: 
•  Have rather one strong interferer 
•  Estimate channel & rate adaption 
•  Relatively few antennas at transmitter lead (through channel 

hardening) already to almost perfect system performance 
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Outlook 

•  Transient system characterization instead of steady-state 

•  Analyze the entire loop through edge server 

•  Integrate models with control performance models 
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