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Abstract—This paper proposes efficient schemes for wireless
cellular base stations to utilize TV white spectrum (such base
stations referred to as white base stations - WBS), so that
WBSes can provide good services to their end terminals without
violating the incumbent TV services. In particular, we consider
two complementary problems. On the one hand, given a set of TV
stations and white base stations, maximum permitted transmit
power levels on all channels for each base stations needs to be
determined. By use of convex programming, we propose here
an improved, centralized mechanism. On the other hand, once
the maximum transmit powers are determined, each white base
station needs to choose a channel with the maximal permitted
power on that channel such that the resulting cell performance
is improved. Allocating channels with nonidentical transmission
power and asymmetric interference is formulated into congestion
game for the first time, and an algorithm is derived thereafter
which converges after a small number of iterations in simulation.
However, the scheme requires geo information coupled with a
radio map to decide at each WBS in a decentralized manner
about the channel usage. We find that in comparison to several
other decentralized schemes, our proposed approach first of all
converges after a small number of iterations while on the other
hand it is able to achieve the same network performance spending
significantly lower transmit power.

Keywords: cognitive mesh network, TV whitespace, con-
gestion game, channel assignment, SINR, economic power
consumption !

I. INTRODUCTION

Opportunistic utilization for secondary users working with
TV broadcast spectrum (TV white space) is promising to cope
with the scarcity of spectrum resources [2]. Firstly, more unused
TV white frequencies become vacant than ever with the ongoing
transition from analog to digital broadcasts. Secondly, the lower
frequencies of TV band enable broadband access over much
longer ranges compared to other bands with higher center
frequencies. Nevertheless, services on TV receivers need to be
protected with so called interference margin® [15] which must
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2interference margin is the maximal interference caused by secondary users,
which doesn’t violate TV service.
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not be exceeded jointly by all secondary users working on the
channel. 3

Federal Communications Commission (FCC) of U.S. and
Electronic Communications Committee (ECC) in Europe have
announced rules on the transmission power of white space
for secondary users in US and Europe respectively [2], [3].
FCC adopts a minimum distance between secondary user and
TV service area to guarantee that the interference margin is
not exceeded by secondary users. The transmission power for
fixed secondary users is fixed to 4 W which is a conservative
setting. FCC assumes that the protection area is sufficient to
protect the TV receivers, but it is not the case when there are
multiple secondary equipments transmitting in the the same
as is discussed in [13]. ECC’s restriction requires that the
secondary user adapt its transmission power in order not to
violate the interference margin at exposed TV receivers. In this
manner, secondary systems have to determine their maximum
transmission power.

Recent work [17] follows FCC rules [1] to obviate spectrum
sensing and only rely on the database of TV incumbents to
determine the white space availability on secondary users. The
authors of [17] demonstrate the feasibility of predicting the
available TV spectrum accurately using suitable propagation
models (Longley-Rice and terrain wherein). A central controller
contains the locations of all TV stations and secondary users,
then the central controller calculates the RSSI level of TV
UHF signals on all secondary users and accordingly determines
the available TV spectrum for them. The authors give big
impetus to the database method by developing sophisticated
signal propagation modeling and efficient content dissemination
scheme. Enlightened by this work, it can be seen that the
RSSI level caused by secondary users on TV receivers can be
calculated accurately in a centralized entity if secondary users’
transmission power, geo-location and appropriate propagation
model are provided. Inversely, given geo-location and appropri-
ate propagation model, secondary users’ maximum transmission
power can be determined by the central entity according to
the interference margin (maximum RSSI level from secondary
users) at TV receivers.

3In this paper, channel and spectrum are used indiscriminately.
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In this paper, the secondary users are assumed to be cellular
systems consisting of base stations and associated terminals,
all of which work on TV white spectrum. The corresponding
secondary base stations are referred to as white base stations
(WBS). In what follows in this paper, we use WBS and
secondary base station interchangeably. Some cellular networks,
such as GSM or LTE network, work on licensed spectrum,
and they emphasis on providing satisfactory services to their
end terminals by choosing proper transmission channel and
power. As to cellular network working on TV white spectrum,
they have to keep one eye on the primary users to make sure
that TV service is not violated, which makes the problem of
channel and power selection even harder. It is possible that
WBSes are owned and operated by different operators, thus
completely centralized decision on the base stations’ working
channel and transmission power is infeasible. In this paper we
will investigate how do secondary cellular network utilize the
whitespace.

we will look for a distributed scheme to solve this problem.

The rest of the paper is organized as follows. We elucidate
the system model in Section II, afterwards related work and
problem formulation is presented in Section III. In Section IV,
we discuss how to utilize the white space sufficiently by setting
the transmit powers based on a convex problem formulation. We
analyze the spectrum allocation problem under game theoretical
framework and propose an algorithm in Section V, thereafter
performance evaluation is presented in Section VI. Finally, we
conclude our work and point out directions of future research
in Section VIIL.

II. SYSTEM MODEL

Following the IEEE 802.22 standard, the primary systems
considered in this paper are digital TV (DTV) stations which
use the TV spectrum legally. TV stations provide service to
passive TV receivers which must not be interfered by secondary
systems. The secondary systems are IEEE 802.22 Wireless
Regional Area Network base stations (WBS) utilizing the TV
spectrum with senseless mode [17]. WBSes serve a set of end
users/terminals without interfering TV receivers significantly.
Denote the set of DTV stations by K and the set of WBSes
by N with |[N] = N. Channels are available for both TV
services and secondary systems, in total is represented by C with
|C| = C, and the channels are considered to be identical. These
secondary systems are distributed over a certain area and is
surrounded by multiple DTV service areas, as Figure (1) shows.
When there are two WBSes working on the same channel,
co-channel interference will be caused to each other, while,
neighboring channel interference is not considered. Each DTV
station, as well as each WBS utilizes exactly one channel.*
We represent the usage of channels for WBS ¢ with a binary
vector XZ.‘C‘Xl = {,zig,---} € {0,1}I€, where k € C

4The assumption that one WBS only utilizes one channel is for convenience
of analysis. In reality multiple channel usage (channel bonding) is requisite
as one single TV channel’s bandwidth is 6 MHz which is not adequate for
a WBS to fulfill system requirement. We will relax this single channel usage
assumption without hammering our scheme in the end of Section (V).

and binary variable x;; denotes whether channel k is used by
user i. As each node can only use one channel, for X; there
is ZLCZ‘I zir = 1. Let ¢; denote the channel used by a WBS
i € N. The transmission power of WBS ¢ on channel ¢ is Pf.

There are TV service contours deployed at the edge of the
TV service area (as bold rectangles in Figure (1)) representing
the worst located TV receivers. For them a certain upper bound
of interference should not be violated to guarantee the TV ser-
vices, where the interference is from secondary users and noise.
The deployment of contours is decided by the TV operators,
which varies according to the concrete location, geographic
terrain and possible deployment of secondary networks. For
simplicity, we assume there is only one contour deployed for
one TV area.

Database

Fig. 1. System model: WBS cells and DTV systems
WBSes are interested in payload data exchange with their
associated terminals with good quality of services (QoS). As to
performance metric for this QoS provisioning, we choose the
signal-to-noise-and-interference ratio (SINR) at the terminals.
SINR is the ratio between the power of the received signal
of interest and the summed power of all interference sources
as experienced by the terminal. We only focus on the down-
link SINR. We denote the path loss between the serving WBS
i and a certain terminal j associated to it by h;;, similarly,
the path loss between any other secondary base station 7 # i
operating on the same channel as 7 and end user j is denoted
as h;;. The path loss is dependent on the distance between
the corresponding equipments, e.g. h;; = K - di_jo‘, where «
is the path loss exponent and K is a constant that models the
reference loss over a single unit of distance. Furthermore, Ny
denotes the noise power. Finally, we do consider shadowing,
but do not consider fading. Hence, the sum of all disturbing
RF effects (including interference) at terminal j (we assume
the working channel is c) is given by
5= (P - hij - i) + No (1)

7

where P denotes the transmit power of WBS i and z;; models
the zero-mean log-normally distributed shadow-fading with
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standard deviation osy between ¢ and j. Hence, the signal-to-
interference-and-noise ratio (SINR) on end terminal j is given
by: N
Py - hij - 2
= e 2
To manage secondary channel access, there is a central
database recording the location and terrain information of the
whole secondary network. Besides, the channel usage of each
WABS is also stored in the database. We assume all secondary
systems can access the central database directly to obtain the
geo-location information and the channel usage of all WBSes.
WBSes work on senseless mode, and is able to calculate the
RSSI from one transmitter to an receiver with proper propaga-
tion model (e.g. Formula (1) and (2) can be calculated within
WBS) with the geo-location and channel usage information.
The geo-location information in the secondary networks is
deemed to be static. We assume the secondary base stations
are not under the same operators, thus there is no scheduling
mechanism available among WBSes.

III. RELATED WORK AND PROBLEM FORMULATION

Given all the other WBSes’ channel and power selection
in secondary network, to achieve high SINR on its end ter-
minals (or QuasiSINR), the pure strategy of one WBS is to
choose the channel experiencing the minimum interference, and
utilizing the biggest possible transmit power (make sure the
primary services are not violated) in order to achieve better
SINR at its terminals and meanwhile maximize their coverage.
Nevertheless, high transmission power causes significant co-
channel interference to other secondary cells operating on the
same channel, and the WBSes’ distributed update will end
in a miserable Nash equilibrium, if there existsf one [24].
Our goal in this paper is to propose a strategy for WBSes
to choose channel and power, so that they can deviate from
the Nash equilibrium with big Price of anarchy in distributed
manner. To speak exactly, the proposed scheme should protect
the primary systems, provide its end users good SINR with
relatively smaller power consumption, and as a distributed
scheme, it should converge quickly.

A centralized scheme is proposed in [18] for joint channel
and power allocation among end terminals in OFDM cogni-
tive radio network. [11] discusses power control and channel
assignment in both down-link and up-link communication in
cellular network. Although the solution is distributed, primary
users are required to cooperate with secondary base station in a
learning process to decide the transmission power, in addition,
there is only one secondary base station considered whereas
we are coping with the whole cellular network. A distributed
power allocation (single channel) scheme based on learning
for secondary networks is given in [8], where penalty function
involving the interference threshold on primary systems is
used. [24] deals with the joint channel-power selection for
multiple transmission links (pairs). The authors decompose the
Lagrangian dual of the problem, then propose a distributed
scheme based on the dual parameters. The scheme converges

to pure Nash equilibrium, but in order to facilitate this scheme,
monitors are required to watch interference from secondary
users, moreover, monitors have to be equipped with compu-
tational ability and interact with secondary users in the whole
process of convergence.

Because of the requirement by the interference margin from
the primary system, the primary systems are involved in all
the current distributed schemes, which is uneconomic and un-
realistic in reality. We try to propose a distributed workaround
for the joint power and channel allocation problem, so that the
dynamics in the secondary network can be seen as transparent
for primary system. In this paper we solve this problem through
two subproblems: firstly, given a set of secondary WBS and
their geo-location, the maximum permitted transmit power on
all channel for each WBS is determined, so that the interference
margin is impossible to be broken no matter how do WBSes uti-
lize the channel and power resources. This requires considering
the joint interference that the WBS have on the TV receivers
of the considered service area. Secondarily, once the maximal
transmit power has been determined, each WBS chooses its
operating channel. While for the first problem a centralized
approach is of interest, the second problem should be solved
by a distributed scheme in general. We discuss the detailed
problems in the following two subsections in combination with
related work in the respective area.

A. Maximal Transmission Power Planning

[15] gives a sufficient condition for secondary base stations
not to violate the services on TV contours, which requires the
aggregate interference caused by WBSes on TV contours to
be lower than interference margin. The sufficient conditions in
the context of TV white space is formulated into a centralized
linear programming program (LP). The objective function is
to maximize the summation of all secondary base stations’
transmission power, and the constraints are built to satisfy the
sufficient condition for each TV contour.

B. Channel Allocation with Fixed Transmission Power Level

After knowing the power limit on each channel, WBSes need
to decide which channel to use so as to mitigate interference
among WBSes and provide better SINR to its end users. In this
paper we assume WBSes’ transmission power is the biggest
permitted and fixed. Such problem lies in channel assignment
problem which has been well investigated in many scenarios.
Channel assignment problem mainly copes with mitigating co-
channel interference among users, which can be converted into
coloring problem thus is NP hard [20]. Authors of [6], [14]
propose heuristic algorithms utilizing best response based on
the welfare on itself to assign channels among users, but the
assumption that transmission power is identical and path loss
is symmetric renders them problematic for our problem where
transmission is nonidentical and the path loss is asymmetric
(e.g. shadowing exists, as in our system model). Distributed
algorithm based on Learning is proposed in [12] for LTE to
allocate the resource block in down link, which leads to cor-
related equilibrium, but large number of steps hinter its appli-
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cation. [19] formulates channel assignment problem in ad-hoc
cognitive radio network into potential game which leads to pure
NE, a learning scheme achieving slightly better performance
is provided for comparison, but they assume the transmission
power is identical and there is no noise in the secondary
network, and the proposed random access mechanism demands
a huge amount of information to be exchanged, which is a real
burden for network in ad-hoc structure. [7], [23] investigate
the channel allocation problem under game framework in same
collision domain, the authors propose algorithms to converge
to pure Nash equilibrium (NE) and strongly dominate strategy
equilibrium respectively. As to our knowledge, there is no
work dealing with channel allocation with such asymmetric
interactions.

In this paper we try to improve the SINR on secondary end
terminals through WBSes’ power-channel strategy. To facilitate
analysis and proposition of solution, we propose a metric
QuasiSINR for each secondary base station to represent the
SINR of the terminals in the coverage of that base station.

C. QuasiSINR

We are interested in a worst-case SINR’ of each cell. Such a
virtual value will be referred to as QuasiSINR in the following.
It is proposed to represent the worst-case quality of service that
a WBS might provide to its associated terminals.

Fig. 2. QuasiSINR of WBS i: the worst case SINR of its terminals
For this we consider a circle around an WBS with radius §
as is shown in Figure (2). The radius § is the largest distance
among all associated terminals of the considered WBS. § can
be different for different WBSes and can also be decided by
operators. For this terminal furtherest away on the d-circle,
we now construct a worst-case SINR which factors in all
interference from neighboring secondary cells as if they were
closest to the considered terminal. Hence, QuasiSINR is the
ratio between the weakest signal of interest and the summation
of the biggest (possible) interference from other co-channel
WBSes. According to this construction, the weakest strength
of the signal of interest is P - hig - zig = P -07% - zig
while the biggest possible interfering power from co-channel
WBS j is P;»: . th CZiQ = P;»: . (dﬂ — 5)70( © 25Q- We
denote in this context by @ the point along the & — circle,
where the weakest interested signal and strongest interference
happen. Hence, as we form the SINR such a virtual *worst-case’
terminal, the co-channel interference impact is overestimated
as the total received interference power is given by the sum

Zw Py -hjq - zjq where index j spans all co-channel WBSes
with ¢. Formally, the QuasiSINR of WBS ¢ is given by:

o Prhigezg
) Zj#fi,jeN(Pf “hjq - ZJ'Q) +No

ci=c;

J

. 3
PZ»C SO 2iQ P;

Zj#i,jEN(PJC -K(dj; —0)= - zjq) + No B F

where P;° represents the power of received interested signal
from WBS 7 on @ (the green square in Figure (2)), and fic
denotes the sum of received co-channel interferences plus noise,
where the co-channel interference happens on the red rounds
in Figure (2)).

Notice regrading the QuasiSINR, that any modification of the
transmit powers of co-channel interference sources (i.e. other
WBS working on channel ¢) will have always fixed impact
to the WBS concerned, so the interaction between co-channel
WBSes are independent on the concrete end terminals. With
QuasiSINR, the channel and power allocation problem will
exclude terminals and thus simplify the problem. QuasiSINR
will be validated in Section (VI).

D. Problem to be Solved in This Paper

The problem is represented in the following form, to ensure
fairness, instead of maximizing the sum of QuasiSINR of
all WBSes, we will try to minimize the sum of inversed
QuasiSINR.

1
Minimize —
1EN i
Ic| “)
subject to ZI“" =1

k=1

For every WBS, each channel in C experiences different levels
of interference from other WBSes working on it. In order to
provide better service to its end users, WBS is liable to choose
either the channel permitting higher transmission power or the
one with less interference, or the channel compromising the
two factors according to Formula (2). Achieving optimal white
spectrum allocation in a distributed style is the goal of this
work, furthermore, this distributed solution should converge fast
and lead to an efficient and stable solution. In the following
We will present our solution by solving the two subproblems
sequentially.

IV. DECIDE THE MAXIMAL PERMITTED TRANSMISSION
POWER

We adopt the interference model and the optimization
methodology from the work of [15] to plan the maximal
transmission power for WBSes. In our system the WBSes
locate within one area, whereas TV areas locate around them.
If implying linear programming to decide the maximal trans-
mission power, the WBSes locating far from TV contours
contribute more to the sum of power with the biggest permitted
power, as a result the maximal transmission power on each
channel obtained with LP is seriously unbalanced. To address
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this fairness issue, we try to maximize the summation of the
logarithmic value of every WBS’s transmission power, then
we formulate the problem into a series of convex optimization
problems, each of which corresponds to a optimization. We
denote that, for WBS 7 € NV, the maximal transmission power
allowed to be used on channel c is denoted as P;. For each
channel ¢ € C, there is one optimization problem,

max Z log(PY)
iEN

st Y (PP hip - zigr) < I,
iEN

where I, is the interference margin for the DTV contour pt
and the DTV is working on channel c¢. Here we only consider
the interference caused by WBSes, Since their transmission
power is higher and their altitude is higher [15], the down-
link transmission contributes the main secondary interference
[5], and the interference caused by white space end users
is trivial and omitted. There will be multiple constraints for
Optimization (5) if there are multiple DTV contours working on
channel c. There is one optimization problem for each channel
¢ € C, after solving the |C| problems, we obtain the maximal
transmission power over all channels (maximal power map) for
every WBS. We solve this convex optimization problem with
[9] in the centralized base station.

Figure (3) depicts the distribution of maximal transmission
power levels obtained in 100 simulations. In each simulation
the locations of TV contours are randomly decided around the
WBSes. It can be seen that around half of WBSes’ transmis-
sion power planed with LP is restricted to be the minimum
transmission power, and the other half of WBSes’ transmission
power is the maximum permitted power. By applying convex
programming, the planed maximal transmission power levels
are distributed evenly in between the minimum and maximum
permitted power. The gain of SINR on end terminals by ap-
plying convex optimization to decide the maximal transmission
power is illustrated in the simulation section.

(&)

Cumulative distribution of maximal transmission power from different schemes
100% T T T T T T T

90%

80%

70% -

60% -

50% -

F(x)

40% -
30% -
20%

10% . — — — Linear programming |7
convex programming
i i n T N

0% i i i
0 5 10 15 20 25 30 35 40 45
Transmission power levels (W)

Fig. 3. Distribution of maximal transmission power levels obtained from
convex and linear programming respectively

Optimization problem (5) provides the maximal transmission

power, with which violating the TV contour becomes impos-
sible even in case that all WBSes work on the same channel
simultaneously. When there are WBSes working on a different
channel from others, there will appear a interference margin for
TV contour, which can tolerate network dynamics such as new
WBS starting to work, increased background noise, or variance
of channel shadowing.

V. CHANNEL ALLOCATION WITH FIXED TRANSMISSION
POWER

A. Centralized Optimization Programming

In the very beginning, we formulate the channel allocation
problem into a binary quadratic programming problem which
will be solved in a centralized way. For two nodes 7 and 7,
there is,

Il

1
X?Xj_’;xik'xjk_{ 0

if ¢; = ¢;
' 6
ifci#Cj ()

The power levels across all channels for WBS ¢ are denoted
by a constant vector P; € PI€I*1 which is possibly nonidenti-

cal to other nodes’ power levels. The power used by user 7 is
]
PTX; =Y PF-ay.

k=1
Problem (4) can be modeled via general purpose nonlinear
optimization:
N2 PIXG(XTX)hjoziq + No
. JEN j#i
min Z
i=1

IC]
S.t. Z:L’ik =12 € X; € {0, 1}|C‘
k=1
2, with 4 € N,k = 1,2--- is binary variable. Problem (7)
is a non-linear problem with binary variables, but it can be
reformulated into a quadratic programming problem as,

PT X;hig
' (7)

min
; J; zk: PFhig Ek: Prhig
JF#i
Il
S't'zxik} = 17xik c Xi c {O7 1}\(3\
k=1

®)

The reformulation is available in Appendix (A). We use

LINDO [4] which is a state of art non-linear problem solver to

solve the problem, which employs Branch-And-Reduce method

to get the global optimal for the problem. The result will be
used as benchmark.

B. Distributed White Space Channel Allocation Technology
(WhiteCat): Algorithm and Protocol

In this paper a distributed scheme for WBSes to allocate
channels is proposed, which is named as white space channel
allocation technology (WhiteCat). WitheCat is depicted by
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Algorithm (1) which is a best response process, where each
WBS (referred to as ) greedily searches for a preferred channel
based on utility function u;, and the sum of all WBSes’ utilities
is minimized after finite times of updates, even the interaction
between WBSes are asymmetric. The utility is as follows,

> i
JEN ,j#i,
c(oj)=c(oy;)

U; =
2. P

Z f” - > CN(% )
JEN ,j#i, S:i,jES, ?
L(u,> cm) e(oj)=c(o3)

where f;] =F- hij * Zij and f;z = P]' . hij " Zji- Overlooking
the constant coefficient 2, the first item of u; is one part of
the inversed QuasiSINR of station 7. To minimize the first
item, WBS 7 needs to choose a channel either permits larger
transmission power or experiences less interference, whereas
the larger power will increase the second item which is part
of inversed QuasiSINR of other co-channel WBSes. Hence,
the cost function presents a reasonable comprise between the
welfare of one WBS and others. If WBS only emphasizes on its
own utility (e.g. the first part of Formula (9)), the best response
process doesn’t converge. We have the following theorem:

Theorem 1. With non-identical transmission power, if every
WBS updates its channel based on algorithm (1) with utility
based on its own interests, the process doesn’t always converge.

The proof is in Appendix (A).

Input: quasi distance d;; for Vi, j € N; path lose between
i and any other WBS h;;, j € N, j # i, and the
fading z on it; noise Njy; total number of
secondary base stations N; maximal transmission
power Pf,j € N, c € C; ¢;, current channel used
by j € N, j # 1.

1 for i € N do

2 for ce C do

3 calculate u;(c) based on Formula (9)

4 if u;(c) < u;(c;) then

5 ‘ C; < C

6 else

7 ‘ ¢; unchanged

8 end

9

end
10 Notify data base of its channel usage, which notifies
the other WBSes

11 end
Algorithm 1: Spectrum selection for node 4

¢; is the current channel used by ¢ € N Imitating the player’s
behavior in the congestion game, each base station tries to find
the channel ¢ € C that brings the smallest u; based on the
other stations’ decisions, every channel update will decrease
the summation of utilities in the whole network and finally
converges to a pure Nash equilibrium(proof is in Section (V-C).

Some parameters needed to calculate the utility are identical
for all WBSes, such as quasi distance §, the total number

of WBSes N, number of channels C, attenuation factor c,
standard deviation o in flat shadowing and noise Ny, albeit
the following information is further needed to calculate u;:

L4 Z 7EN77(67)

c(o;)=c(o

which happen on the () point (introduced in Section III-C)
for WBS 4, which is the intersection point of § — circle
and the connecting line between WBS i and its interfering
sources.

. }j the interference caused by ¢ on the nearest point which
locates along j’s  — circle, there is ¢; = ¢;.

o P7: transmission power of j for using channel c.

fﬂ, ¢ € C: sum of the received interferences

Unfortunately, it is difficult to get these interferences of in-
terested measured, for station 7, it is low efficient to scan all
channels and obtain the interferences f;; on virtual measure-
ment point for each channel, furthermore, it is impossible to
split the interference f;; from the total interference received on
WBS j° @ point.

Enlightened by the work of [17] which verifies the usage
of geo information in deciding the available channels, we let
every WBS store the location information and maximal power
map of all other WBSes, and it retrieves information about
channel usage by other WBSes from centralized base station.
After executing Algorithm (1), it reports to centralized base
station for its channel update. As the location of WBSes and TV
stations and the transmission channel and power of TV stations
are generally static (entries of TV station change averagely once
in 2 days [17]), except for the channel usage in the network,
the change of the other data stored in WBS is infrequent.

We refer [19] to decide the sequence for WBSes to update
their channel. [19] proposes a method like random access mech-
anism of CSMA/CA, where the access for broadcast medium
is changed to getting access to the centralized center to retrieve
the current channel usage and update its new channel. All WBS
are able to access the database in one round (with random
or Predetermined sequence). As WBSes are connected with
database, the control messages needed to decide the sequence
will not become a burden. Update of channels can happen in
the boot phase, or when the quality of services (the SINR on
its end users) of WBSes falls below a threshold, or a fixed time
duration comes to end, or a new WBS joins in the network.

C. Analysis in Game Theoretical Framework

We give an elegant proof on WhiteCat’s convergence in the
framework of congestion game theory. Formulating a spectrum
sharing problem into a congestion game and the concept of
virtual resources are firstly proposed in [16] which ’reversely
engineer’ the distributed channel allocation schemes proposed
in [6], [14].

1) Congestion Game: A congestion game [21] [22] can be
expressed by a tuple A = (N, R, (>",)ien, (gr)rer), Where
N = {1,...,N} denotes the set of players (each each is
labeled with a unique index number), R = {1,...,m} the
set of resources, Y;cn C 2% is the strategy space of player 4.
Under strategy profile ¢ = (01,09, --on), player ¢ chooses
strategy o; € X;, and the total number of users using resource
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ris ny(o) = [{i | r € 0;}|. The cost g, : N — Z is a function
of the number of users for resource 7, gi. = >, .. gr(n-(0)).
In our paper, g, is regarded as congestion and is Monotonic.

Rosenthal’s potential function ¢ : 0; X 09 X --- X 0y = Z
is defined as:

ny (o)

G0 =3 40.0)

reR i=1

=Y > 9:(ni(0))

ieEN reo;

(10)

ni (o) means the number of players using resource 7 and their
indices are smaller than or equal to i. Note that the potential
is not the sum of congestions experienced by every user. The
change of the potential caused by one player’s unilateral move
from o to ¢’ is equivalent to the change of gain (or loss) of
that player.

(1)

o_; is the strategy profile for all players except for ¢. As every
congestion game is a potential game, and the total potential is
finite, thus the number of improvements is upper-bounded by

ny (o)
2- E E gr(i) [22].

reR i=1
In congestion game, each player acts selfishly and aims at

choosing strategy o; € X; to minimize their individual cost. The
gain (loss) caused by any player’s unilateral move is exactly the
same as the gain (loss) in the potential, which may be viewed
as a global objective function. For problems where the potential
of the problem is the same with the summation of the cost of
all users, the cost function can be used as a utility function
directly. This equivalence doesn’t exist in our problem, but by
carefully choosing the cost function for players, we can make
sure that the change of individuals’ cost is in the same direction
with that of the global utility.

2) Bridging the Game and Practical Scheme: We utilize
the conception of virtual resource which is firstly introduced
in [16]. In the following text, we use player and base station
interchangeably.

AG(o; — dl) = g'(al,0_5) — g'(0s,0_4)

o Player i strategy space is X; = {(4,7,¢),j € N,j #
i,c(oj) = ¢,c = 1,2,--- ,N}, and ¢ has C' admissible
strategies, one strategy related with channel ¢ € C is
described by the set of virtual resources it uses: o; =
{(i,5,¢),7 € N.,j # i,¢(0;) = c}, note that virtual
resource (i, j,¢) # (4,4, ¢).

o Under the strategy profile ¢ = (01,092, --on), player 4
obtains a total cost of

>

JEN ,j#i,

e=c(o;)=e(o;)

g'(o) =

12)

The transmission power over all channels of player 7 is
{pi1, iz, - -+ ,pijc|} and fixed. Path loss is assumed reciprocal:
h;ij = hj;, but nor is the flat fading z. To keep the formula clear

(9(i,4.0) (N(ijie) () + (sise) (M(Goi,e) (0))

in the following part, we denote f;j = P;-hyj-z, f;—i = Pj-h;j-z,
pi = th for i € N, where hjz' = hij = (dﬂ — 6)7a,hii =
h;; = e~“, dj; is the distance between base station ¢ and j, and
0 is the quasi distance introduced in Section (II). Ny is noise
which is identical for any channel and any WBS. We define the
cost function for virtual recourses (i, j, ¢) as follows,

fjj L fi~j n C- ]YO
2P, 2P; NP
0 otherwise

if k=2

9(i o) (k) = (13)

As resource (4, j,c) only lies in the strategy space of player
i and j, based on (13), cost of resource (4, j, ) is only decided
by the number of players(0 or 2) using it, thus this is a typical
congestion game which has infinite update property [22].

Substitute Formula (13) to Formula (12), we get the total
cost for user ¢ under strategy profile o.

glo)= > (9¢1.5.0)(2) + 9j,,0)(2))
JEN j#i,
c=c(oj)=c(o;)
fii  fiy  C-Ny, 1 1
-2 e TN )
JEN G#1, ? J T J
c(oj)=c(o;)
> Jii
o -
(o )=o) i CN 1 1
D) N SIE
b P S~ b P
J#i, JFi,
c(o))=c(o;) c(o)=c(a;)
pog
JEN ,j#1, fd
eloj)=c(oy) i 2CN, 1
==+ 5 fij | 20N Y o~
B JEN jH, P; iesew, Pi
eloj)=clo;) Cs(gvz)ezsc
(14)

Let S denote the set of WBSes which work on the same
channel. Now we try to get the potential over all WBSes, note
that the summation of one WBS’s congestion is related to its
index. For any two WBS 4,5 € S with ¢ < j, the potential
brought in by ¢ is 0, while, that caused by j is in the form of
9(i.5.¢)(2) + 9(ji.)(2). In other words, for each interfering pair
of WBSes, only the WBS with bigger index contributes to the
potential. The total potential is,

ny (o)
Glo)=>_> g)=> > g(ni(o)
rerR i=1 ieN reo;
2y fi (15)
olop)Zeor) CNy 1
= = + S —
iezj\/ b N s;f, S ; P

VieS,c(o;)=c

When players minimize their utilities (cost or potential) il-
lustrated by Formula (14), the total congestion in the secondary
network given by Formula (15) decreases monotonically before
reaching one Nash equilibrium. Players’ greedy update in the
game to minimize its cost Function (14), which ceases finally
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in pure Nash Equilibrium. The strategy and cost function of
players in the game is transplanted as Algorithm (1) and utility
Function (9) respectively.

3) Difference Between Equilibrium and The Aimed Variable:
Here rises a question, is the final value obtained by Algo-
rithm (1) exactly the same as the expression (15) representing
a Nash equilibrium? The answer is that there is very little dif-
ference if interference is considered. Recall the target objective
we want to minimize in Problem (4) is,

fz gE/;/J#Z f]z+N0
2.5 =2

c(oq)

zeN zGN H (16)
JEN J#i, f]z N,
c(ap r(a) 0
-3 DICD
ieN ieN Tt

Compare Formula (16) and (15), we find that the difference
between the objective value and the final value promised by
congestion game is the difference between the last items in
Formula (16) and (15). When channels are evenly distributed,
there is C/Nx | S |~ 1, thus Formula (16) and (15) are
approximately the same, but monotonicity on the decrease of
expression (16) is not perceived whereas convergence to NE
is still guaranteed. When Ny = 0, the potential is exactly the
same with the object we want to minimize.

From above analysis, we can see the assumption that each
WBS only occupies one channel can be easily removed, for
example, each WBS can access multiple channels, and we can
regard that WBS consists of multiple WBSes (have the same
location) and each of which works on one channel. Then the
proof on convergence of WhiteCat can be applied directly to
this case.

Note that the convergence of the game is independent on the
the concrete form of the cost function. Using function (14),
the total potential of the game is approximately the same with
the total utility of all WBSes in the network, while, if the
goal of a problem varies (e.g. (4) has a different objective),
then a distinctive utility for each WBS need to be proposed
accordingly. Hence, we say that WhiteCat scheme provides a
prototype for the problems where the interaction among users
are asymmetric: based on a suitable utility involves the welfare
of itself and its neighborhood community, the best response
approach can converge in a decentralized style.

VI. PERFORMANCE EVALUATION

We compare the performance of WhiteCat, with another two
distributed heuristic schemes (Whitespace channel allocation
selfish) WhiteCase and no-regret learning, besides, the cen-
tralized optimization and a random allocation are used for
reference.

o WhiteCase: Each WBS selfishly updates its channel to
achieve the best (in this paper means the smallest) possible
utility based on Formula (18).

o No-regret learning: Each WBS maps the probability of
choosing each strategy to a certain proportion of the
regret which the WBS may have if it doesn’t choose that

strategy, and the WBS choose the strategy with the biggest
probability. WBSes update such mapping dynamically and
this approach converges to correlated equilibrium. Please
refer the original paper [10] for details.

A 60KM x 60KM square area is divided into 16 minor square
blocks evenly, for each block there is one WBS locating in
the middle of it. Same mount of end terminals distributed in
each minor block, however, they don’t necessarily belong the
WBS in that minor block, they choose the WBS to join, which
caused the strongest received signal strength indicator (RSSI)
on it. There is a rim area with width of 30Km around the square
area, where TV contours are randomly located. The TV station
which protected by TV contour working only on one channel.
There are 4 TV contours belonging to 4 TV stations, each of
which works on one different channel. The location of WBSes
and TV contours are illustrated in Figure (4), and the other
parameters are listed in the table (I).

WBS

contoyr

> > > =
> > >~
= > > >
> > > >

Fig. 4. Layout of WBSes and TV contours

TABLE I
SIMULATION PARAMETERS
[ TKM
Noise | 10712W
length of the square to locate WBSes 60Km
Interference threshold on TV contour 107"W
Path loss factor 2
Standard deviation in flat shadowing 8
Minimal WBS transmission power 4W
Maximal WBS transmission power 40W
Number of end terminals in network 800

A. Better Way to Decide the Maximal Transmission Power Map

We simulate the four distributed spectrum allocation schemes
with the maximal permitted transmission power map obtained
from convex programming and linear programming respec-
tively, and then tell which maximal power map generation
outperforms based on the performances of the four spectrum
allocation schemes. We run simulations for 100 times, the
WBSes’ location is fixed in each run whereas the location of TV
contours, end terminals and the sequence for WBS to update
are randomly decided. Figure (5) elucidates that all the four
distributed spectrum allocation schemes consume less trans-
mission power consumption by from 15% (Random scheme
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and WhiteCat) to 35% (WhiteCase and No-regret Learning)
when convex programming is applied to decide the maximal
power map, meanwhile, Figure (6) shows that QuasiSINR is
improved from 10% to 20% for all the four distributed spectrum
allocation schemes. The cumulative distribution function curve
of SINR on end terminals is drawn in Figure (7), where the x
axis represents SINR level, and the y axis shows the cumulative
proportion of end terminals whose SINR equals or smaller than
that level. The curves show that all the four distributed schemes
perform better with convex programming (the dash curves).
Hence we adopt convex programming to decide the maximal
transmission power in the following simulation.

B. Comparison of Distributed Spectrum Schemes

Now let’s have a look at the performance of the four spectrum
allocation approaches with convex programming to decide the
maximal power map, which is elucidated in the right part of
both Figure (5) and (6). We can see that WhiteCat consumes
30% less transmission power than WhiteCase and No-regret
learning schemes, whereas better QuasiSINR is obtained. The
cumulative distribution function curve of SINR on end ter-
minals with convex programming is presented in Figure (7)
as dash lines, we can see that for any cumulative proportion
under 90%, the corresponding SINR level from Whitecat on
end terminals is slightly (around 0.5-1 dB) but stably higher
than that obtained by WhiteCase and No-regret schemes, and
3 dB higher than that in random scheme.

In each run of simulation, average value of the 20 % end
terminals with the worst SINR is recorded, and the averaged
such value over 100 simulations is illustrated in Figure (8)
which shows WhiteCat achieves better performance for the
worst suffered end terminals than WhiteCase and No-regret
approaches.

B Rand

30f .....{_... ~...... @ WhiteCat. ..........
[C—JWwniteCase
—INoregretLearning

+
20l ]

Average transmission power of each WBS (W)

from LP from cvx

Fig. 5. Power consumed by different distributed spectrum allocation schemes
under different ways deciding the maximal transmission power map

C. Analysis on Convergence Process

In the congestion game, each player has at most (n — 1) %
|C| resources available for usage, so there is no polynomial
steps converging to NE, while, simulation shows the algorithm
can quickly converge to NE when the number of WBS is up

Il Rand
I WhiteCat
B o T WhiteCase " b ]

[—INoregretLearni

| BH

Average Quasi SINR of each WBS (dB)

from LP from cvx

Fig. 6. QuasiSINR achieved by different distributed spectrum allocation
schemes under different ways deciding the maximal transmission power map

Cumulative distribution of SINR on end terminals for different distributed schemes
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different methods to decide the maximal transmission power map
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tp 100. Figure (9) depicts one instance of simulation, where
WhiteCat converges quickly, No-regret produces oscillation but
converges finally, while WhiteCase can not converge thus has
to be stopped manually.

We also compare the convergence speed between WhteCat
with no-regret scheme. We fix 16 WBSes’ location working
with 4 channels, whereas the location of TV contours and
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Fig. 9. Convergence with three different schemes in one simulation instance

end terminals are randomly decided. We account each WBS
accessing the base station (refer to Section (V-B)) as one step.
We record the number steps before convergence. Table (II)
illustrated the average number of steps needed for convergence
in 100 runs of simulations. As there is no guarantee for
WhiteCase to converge, we stop the channel allocation process
after 16000 steps (1000 rounds). We can see WhiteCat is 30
times faster than no-regret, and the relatively small confidence
interval shows that WhiteCat’s convergence is not affected
obviously by different network conditions, which is reasonable
as more knowledge of the network is known by users executing
Whitecat. As to average running time for each convergence
with Matlab, Whitecat is much smaller than the other two
schemes, as the nonlinear solver LINDO to be discussed in
next subsection, the running time is about 40 minutes.

TABLE I
CONVERGENCE PERFORMANCE

Scheme | average #steps | 95% CI | average time
Whitecat 58 5.6 2s
Whitecase 4587 2742 50s
No-regret 1916 1541 144s
Lindo - - 2400s

D. Stability of SINR in the Process of Channel Allocation

WBS provides service to end users in the process of channel
allocation. A certain SINR corresponds to certain transmission
configurations like modulation type and data rate. Oscillation of
SINR may cause reconfiguration, reduced throughput or delay
variance, thus is not preferred. We propose a metric Cost of
Oscillation (COS) to represent the stability of SINR in the
converging process. We assume each update step takes the same
amount of time which is 1 time unit, the variance of SINR on
end user ¢ at time point ¢ + 1 compared with that at time ¢ is
Ay (t+1) =| GV ea U] |. The COS value for one network

. . i () . .
applied with a certain channel allocation scheme is,

T
COS =) > Ay(t)

t=14ieN

a7

~i(0) is the SINR for i before starting channel allocation. The
variance of SINR in channel allocation process is shown in
table (II) from which we can see WhiteCat achieves only 6%
of oscillation on SINR compared with No-regret approach.

TABLE III
STABILITY IN THE PROCESS OF CONVERGENCE

Scheme COS 95% Confidence interval
Whitecat 8850 2984
Whitecase | 246790 168050
No-regret | 145460 1541

E. Comparison Between Distributed and Centralized Scheme

After comparing the performances of WhiteCat with the
other two heuristic solutions, we have a look at the difference
between these distributed approaches and the centralized op-
timization method. For these heuristic schemes, the sequence
to update influences the final performance, while, it is very
difficult to find out the optimal sequence which achieve the
best performance, for our simulation configuration, the number
of different sequence for 16 WBSes is 16! which has order
of magnitude of 14. For demonstration purpose, we choose
100 different update sequences randomly for 100 times of
simulation. In each simulation the sequence of WBS to update
their channels is randomly decided be identical for all the 4
schemes. As solution of optimization has nothing to do with
sequence, we only solve the optimization problem for once.
We fixed the location of WBSes and PU contours, only leave
the end terminals randomly scattered in the inner square area
in each simulation.

Figure (10) shows the average power consumption and av-
erage QuasiSINR over all WBSes and rounds of simulations.
WhiteCat consumes the least of power except for the random
scheme. while, Lindo outperform others on QuasiSINR. Fig-
ure (11) demonstrates the cumulative distribution of SINR on
all end terminals, where the centralized optimization achieves
3 dB better SINR on end terminals than distributed schemes,
which means there is still big space to improve the performance
of decentralized approaches.

VII. CONCLUSION

This paper proposes a solution for secondary cellular network
to utilize TV white spectrum. Strictly obeying the interfer-
ence restriction from primary network, the maximal permitted
transmission power on each channel for each base station is
decided in a centralized manner, then secondary base stations
choose channel with the maximal power level on that channel
distributively using WhiteCat. WhiteCat provides end terminals
better SINR with less transmission power, and converges to
one pure Nash equilibrium in a faster speed compared with
two other schemes (greedy best response as well as a no-
regret learning scheme). WhiteCat is formulated into a standard
congestion game which proves the convergence of the scheme.
WhiteCat requires a central data base containing information
about the previously allocated channels to secondary users as
well as their positions and propagation information among the
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Fig. 11. Cumulative distribution of SINR on all end terminals when applying
different schemes

base stations. Compared to previous work that suggests the use
of a central data base for base station registration and channel
validation, this is a minor overhead to be introduced. For future
work we will address the problem of allowing base stations to
set the transmit power arbitrarily within the maximum transmit
power limit, so as to investigate further potential.

APPENDIX
PROOF OF THEOREM (1)

For selfish best response approach, the utility function is set
as follows,

> eime, i+ No
P; - hi;

U; =

(18)

Proof: In order to simplify the proof, we assume Ny = 0.
Consider one WBS i executing algorithm (1) with utility (18),
and updates its channel from ¢; to ¢, we denote u},k € N as
the utility of WBS & when 4 chooses channel ¢}, accordingly,
the summation of utilities of all WBSes after ¢ changing to ¢}

: ! !
isU" = ZVkeN,ch; Uy,

U’:u;Jr Z u;

JEN j#i
=uj + Z (u; + '_UJ))
JEN j#i
=uit D owit Y (W —u)
JEN j#i JEN j#i
S Y e S ) Y 0w
JEN ,jF#i Jif\_/’ ]iN (19)
7T JFT,
cj:c; cj=ci
LY e
JEN ,j#1,
-#(‘/L cjFe;
f,,
=u; + Z u; + Z Z (#)
JEN ,jFi ]if\/’ ]iN J
JFT JFT,
c]‘:cg Cj=¢cq
where,
w;, = u; + Au;i(c; — )
SRS ML RS BT S IEY
JEN, i JEN, P;
J#zl VEN
cj=c; Cj=¢i
bring (20) into (19), we get,
=U fﬂ
D NCORD D
JEN, Z JEN, PZ
J#l/ CJ¢=1L,
ff’” } ' 1)
+ 2 ()= > (F)
JEN, JEN, Pj
J?ﬁl/ J#,
cj=c; cj=¢cq

According to algorithm (1), the summation of second and third
items, which is the variance of ¢’ utility, is negative. If we
can confirm the summation of fourth of the last four items is
negative, the whole utility of the network decreases with ¢’
each update. For simplification, we assume that the channel is
symmetric, which means, h;; = hj;, and z is identical among
all WBSes. Then, the problem we want to confirm is equivalent
to the following: Given the in-equation with n, m are natural
numbers

Yo < B, (22)
i=1 i=1
Prove the following in-equation is correct or not,
m n 1
D (it ) <) (Bt 7). (23)
i=1 ¢ i=1 ¢

. We propose a small contradiction to prove (23) is not true.
When m =2,n =1, and a; = 1,2 = 0.5,5 = 2.1, we can
see that although > " a; = 1.5 < Y. | 3; = 2.1, there is
Simi(ai+ o) = 45> 30 (B + 3) = 2.58. hence, with
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WBS’s update, it is possible that U’ > U, thus there is no
monotonically convergence by utilizing (18). ]

Notice that the last four items in (21) is exactly the change of
summation of utilities of all WBSes after " update if WhiteCat
is executed, hence the monotonic convergence of WhiteCat is
proved here analytically if noise is considered to be zero. If
noise is considered, we can follow the conclusion in the end
of (V-C2) that WhiteCat converges without monotonicity.

DEVIATION OF PROBLEM (7)

we reformulate the objective Problem (7) here,

N
Z JEN j#i
i=1

>

PTX;(X] Xi)hjqziq + No

PTX;hig

2(Pjk - gk - Tk - Tk hiq - 2iQ) + Ek: No - zix

[1]

[2]

[3]

[4]
[5]

[6]
[7]

[8]

I
M=

jEN,j#i k
€ . o1
p PTX;hiq
N 2 2Bk xge - wihig - zQ) Y No-wik o
— Z(JGNJ?EL k + k )
i PT Xihiq PTX;hig~  [1]
N
_ Z Z Z Pjk - zjk - ik - hiq - 2iQ) MDIZJ
TX.h. TX . ]
i=1 jENj#i K PY Xihiq Pt Xihiq
(24) [13]
we now simplify the first item in the parenthesis. If we assume
secondary base station ¢ is working on channel m, then there
is x;m; = 1, and wen get, (14]
Pik i - i - hj - 2o _ Pik - T - Tim - hyji - 2 [15]
PTX;h; Pim - Tim - by
P I ¢ (29
_ Lk Tk - Q" ZQ [16]
Py, - hy
@ [17]
other wise, Formula (25) equals to 0. (18]
Similarly, for the second item in the bracket,
No - 24k No 06 1ol
= < Til
PTX;hig  Puhig =" [20]
then, Formula (24) becomes, [21]
[22]
PR DI PR LTI P D B )
i=1 jeN.jAi K P b kth [23]
(27
this is a binary quadratic programming problem. [24]
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