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ABSTRACT
To minimize interference in LTE networks, several inter-cell
interference coordination (ICIC) techniques have been in-
troduced. Among them, semi-static ICIC offers a balanced
trade-off between applicability and system performance. The
power allocation per resource block and cell is adapted in
the range of seconds according to the load in the system.
An open issue in the literature is the question how fast the
adaptation should be performed. This leads basically to a
trade-off between system performance and feasible compu-
tation times of the associated power allocation problems. In
this work, we close this open issue by studying the impact
that different durations of update times of semi-static ICIC
have on the system performance. We conduct our study
on realistic scenarios considering also the mobility of mobile
terminals. Secondly, we also consider the implementation
aspects of a semi-static ICIC. We introduce a very efficient
implementation on general purpose graphic processing units,
harnessing the parallel computing capability of such devices.
We show that the update periods have a significant impact
on the performance of cell edge terminals. Additionally, we
present a graphic processing unit (GPU) based implementa-
tion which speeds up existing implementations up to a factor
of 92x.

Categories and Subject Descriptors
I [Computing Methodologies]: SIMULATION AND
MODELING; I.6.4 [Model Validation and Analysis]:
Methods—performance measures

General Terms
Algorithms, Measurement, Performance

Keywords
OFDMA; LTE; ICIC; Inter-Cell Interference Coordination;
GPU; GA; Genetic Algorithm; 4G; Cellular Networks; In-
terference; Proportional Fair Scheduling

1. INTRODUCTION
Since the introduction of LTE systems there has been ex-
tensive research on mitigating inter-cell interference stem-
ming from frequency reuse one. In inter-cell interference
coordination (ICIC), power is allocated for specific parts of
the frequency spectrum such that mobile stations in neigh-
bouring cells experience low interference. A vast amount
of ICIC schemes have been proposed taking quite different
approaches. One way to group them is by the time dynam-
ics. Static ICIC approaches [1] and [2], decide on a fixed
parametrisation of frequency or power allocation. On the
one hand the deployment efforts are low and taken during
network planning phase. On the other hand, such schemes
lack adaptation to the instantaneous load distribution in the
cells leading to inefficient allocation of resources. In order to
increase the efficiency, dynamic ICIC approaches have been
introduced. Dynamic ICIC approaches adapt the power as-
signments to different frequency shares according to the cur-
rent distribution of terminals and/or to the instantaneous
channel gains.

Depending on the execution periodicity, dynamic schemes
can further be distinguished into two categories. Highly dy-
namic schemes [3] and [4] adapt their coordination param-
eters in the range of a few milliseconds, e.g. 1-100 ms. In
this category the negotiated parameters are combined with
the local scheduler in order to adapt to the instantaneous
channel gains. The nature of such a coordination approach
requires exchange of overhead information between base sta-
tions, and if this is supposed to run at a high periodicity then
the signalling overhead is very high. In addition to this, the
short update periods leave little room for computing near-
optimal allocations. As a consequence, the application of
ICIC on short time scales in the range of milliseconds is
unlikely to be feasible in practice.

A solution to the above problems has been originally pro-
posed in [5] where semi-static ICIC is introduced. The power



allocations are adapted over much longer time spans like sec-
onds or longer. This is a form of soft frequency reuse (SFR)
[6], where the overall spectrum is reused by all base sta-
tions, but the transmission power in each resource block is
restricted to a certain level. Although the idea of infrequent
coordination intervals seems appealing, it also brings with
it a wide set of challenges. Due to the long time span of the
coordination period and the random evolution of fast fad-
ing and scheduling decisions, the overall system performance
for a given power allocation becomes a random variable it-
self, turning the interference coordination problem into a
stochastic optimization problem where the expected system
performance is to be maximized. Optimization on expected
systems performance turns out to be a highly non-linear op-
timization problem depending on the fading statistics of the
signal-of-interest as well as all interfering signals. In ad-
dition, these statistics somehow translate into a throughput
behaviour which is further influenced by the modulation and
coding schemes as well as the dynamic resource scheduling
at the individual base stations. So two fundamental prob-
lems are to be solved: (i) Modelling the expected system
performance and (ii) Optimizing the power allocations ac-
cordingly. We have already addressed both these issues: In
[7] we have addressed stochastic performance models for in-
terference limited LTE systems. In [8] we have then fun-
damentally addressed the issue of solving the optimization
problem. In our work we showed that - in principle - the
resulting stochastic optimization problems could be solved
near-optimal by the application of genetic algorithms (GA).

There still remains the question how frequent the semi-static
ICIC approach should be executed. This depends mainly
on two issues: How fast do the channel states change (in
comparison to the underlying statistical model used for the
computations). That is essentially a question of mobility.
On the other hand, the question arises how fast the power
allocations can be generated. Basically this is a trade-off
because mobility-wise one would expect that the more fre-
quent the power allocations are updated, the better the sys-
tem should perform. However, there must be a limit to the
computation times which sets a hard limit on the periodicity.
The contribution of this paper is to address this trade-off.
We deal with it by: (i) Firstly, evaluating how sensitive the
system performance is when operating semi-static ICIC at
different update periods (ii) Secondly, we introduce a highly
efficient implementation of our proposed genetic algorithm
in [8] for semi-static ICIC based on general purpose graphic
processing units, taking advantage of their high degree of
parallelism. Besides the programming aspects of our imple-
mentation we show in particular that the reuse of solutions
from previous allocation phases results in a drastic speed-up
of the execution run-time of the coordination scheme. This
has a direct impact on the system, where with decreasing
update times for the semi-static ICIC, an improvement in
performance is noticed. In contrast, related works on semi-
static ICIC [9] and [8] perform their evaluations on static
drops of terminals and synthetic simulation models. In gen-
eral, neither paper looks at the impact of the update period
nor at the computation times of the stochastic optimization
problem.

The work is structured as follows. In the next section we
present the system model that we are working with. Af-

terwards, our approach on performing semi-static ICIC and
problem definition are introduced in Section 3. The im-
plementation details of our GPU-based implementation are
presented in Section 4 and the corresponding evaluations in
Section 5. Finally, conclusions are drawn in Section 6.

2. SYSTEM MODEL
We consider the downlink communication of an LTE cellu-
lar network. The multiple-access technique used is Orthogo-
nal Frequency Division Multiple Access (OFDMA). The fre-
quency spectrum with carrier frequency fC and bandwidth
B is equally split into N subsequent chunks called resource
blocks, which are the minimal unit that can be used for data
transmission over the air interface. Each resource block n is
comprised of NC orthogonal subcarriers which are used for
the transmission of NS sequential OFDM symbols. Time
is organized in time slots of duration TTTI where for each
time slot t base stations take scheduling decisions, which
we refer to in the following as fast resource assignments.
In this process, packets from local queues at the base sta-
tion are matched to resource blocks for transmission to mo-
bile stations. In the following we assume proportional fair
scheduling (PFS) for the fast resource assignment originally
introduced in [10].

Each base station k transmits data packets to its set J(k)
of mobile stations through the air interface. Meanwhile,
through a different interface (called X-2 in the LTE con-
text), each base station communicates with K other neigh-
bouring ones for inter-cell coordination purposes, forming a
so called coordination cluster. Semi-static coordination is
periodically performed for each base station involved in the
cluster. A virtual master node, which we will refer to as
Central Entity (CE), decides for every base station involved
in the cluster on the power allocations per resource block
pk,n(t). It is valid for the time duration TC, being the total

time needed to collect the pathloss values h2
k,j at the CE,

executing the semi-static ICIC algorithm and communicat-
ing the power masks pk,n(t) back to the corresponding base
stations. It is much longer than the fast resource assignment
interval (TTTI = 1 ms). A schematic example of a cluster is
shown in Figure 1. Network wide, mutually interfering base
stations are grouped together forming independent inter-cell
interference coordination clusters where their transmission
powers are decided by the corresponding CE (which could
be for example one of the base stations in the coordination
cluster).

Every TTI, each mobile terminal j feeds its instantaneous
channel capacity C(γj , n(t)) back to its serving base sta-
tion. It can be considered as a mapping of SINR to rate
function where specific values can be found in [11]. The ac-
tual channel capacity directly depends on the instantaneous
signal-to-interference-plus-noise ratio (SINR):

γj,n(t) =
h2
0,j,n(t) · p0,n(t)∑K

k=1 h
2
k,j,n(t) · pk,n(t) +N0

, (1)

where h2
k,j,n(t), k = 0, . . . ,K are the instantaneous channel

fading gains with corresponding means h2
k,j (pathloss) of

the serving (k = 0) and interfering base stations (k > 0).
Furthermore, N0 is the noise power.
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Figure 1: System model of semi-static ICIC for a
cluster of three cooperating base stations.

For fast resource assignments according to PFS, the serving
base station uses the instantaneous feedback to construct a
priority metric r̂j(t) based on the ratio of the instantaneous
rate and the total scheduled data r̄j,n over the last W time
slots as the following:

r̂j,n(t) =
C(γj,n(t))

r̄j,n
. (2)

The mobile station j∗n having the highest priority is then
scheduled for transmission:

∀k, n : j∗n(t) = arg max
j∈J(k)

r̂j,n(t). (3)

LTE operates with a unique modulation and coding scheme
if multiple resource blocks are assigned to the same terminal.
We assume in the following that this is utilized, i.e. no
individual MCS selection per resource block is performed.

3. PROBLEM STATEMENT
ICIC is mainly in place to improve the cell-edge perfor-
mance. Therefore, any optimization problem that improves
this performance can be considered. In the following, we
study a problem formulation where the CE decides on the
power allocations pk,n(t) by solving the following max-min
stochastic optimization problem:

max ρ (4)

s.t.

N∑
n=1

Rj,n(pk,n(t)) > ρ ∀k, ∀j ∈ J(k),

N∑
n=1

pk,n(t) ≤ Pmax ∀k,

pk,n(t) ≤ pmax ∀k, n.

Above, pk,n(t) denotes the combination of transmission pow-
ers p0,n(t), . . . , pK,n(t) per resource block n and base station
k in the cluster. Furthermore, the maximal allowed trans-
mission power per resource block is pmax and the maximal
one per base station

∑
n pk,n(t) is Pmax. The goal of the

optimization problem is to maximize the expected rates of
the terminals at the worst locations in the cluster area by
an appropriate choice of the power allocations.

For the computation of the expected rates Rj,n(pk,n(t)) a
stochastic model is needed taking into account the impact
of the proportional fair scheduler on fading and interfer-
ence limited wireless links. Considering the instantaneous
SINR γj,n(t) as a random variable Zj,n, then from [7] the
rate expectation Rj,n(pk,n(t)) for PFS based systems can be
computed as:

Rj,n(pk,n(t)) =
NS ·NC

TTTI
(5)

·
∫ ∞
0

C(z)
∏

∀m∈J(k)/j

FZm,n

(
E[Zm,n]

E[Zj,n]
· z
)
· fZj,n(z) dz,

where FZj,n(z), fZj,n(z) and E[Zj,n] are respectively the
SINR cumulative function (CDF), the SINR probability den-
sity function (PDF) and the SINR expectation. Assuming
the instantaneous fading gains h2

k,j,n, as exponentially dis-
tributed, from [12] and [13] we have the PDF and CDF of
SINR for multiple interfering sources as:

FZj,n(z) = 1−
K∏

k=1

1

1 + z ·
h2
k,j

pk,n

h2
0,jp0,n

exp

(
− zN0

h2
0,jp0,n

)
. (6)

Then, taking the derivative of function FZj,n(z) with respect
to variable z we obtain:

fZj,n(z) =

(
K∑

k=1

h2
k,jpk,n

h2
0,jp0,n

(
1 + z ·

h2
k,j

pk,n

h2
0,jp0,n

)2

·
∏
q 6=k

1

1 + z ·
h2
q,jpq,n

h2
0,jp0,n

+

K∏
k=1

N0

h2
0,jp0,n + z · h2

k,jpk,n

)

· exp

(
− zN0

h2
0,jp0,n

)
. (7)

The rate model in Formula (5) is solved through numerical
methods. Its accuracy and validity has been already evalu-
ated with system level simulations in [12].

As it can be noticed optimization variable pk,n(t) has a non-
linear relation to the rate expectation Rj,n(pk,n(t)). This
makes it difficult to apply analytical methods in obtain-
ing optimal power allocations. In our previous work [8], we
showed, without considering algorithm computational run-
times and the mobility of terminals in the propagation envi-
ronment, that such a problem can be solved near-optimally
through genetic algorithms.

In contrast, in this work we are interested in characterizing
the dependency of semi-static ICIC on the periodicity of ex-
ecuting the algorithm. On the one hand, we are interested
in the overall system performance for different periodicities.
On the other hand we are interested in characterizing the
algorithm’s run time for different system parametrizations.
In the following we study how the system performance in
realistic scenarios behaves for different values of the update
period TC. Secondly, we present an efficient semi-static ICIC



implementation that can be executed in parallel on a GPU
with low execution times. We aim to reduce the compu-
tational times of the ICIC algorithm presented here, such
that they are significantly smaller than TC. This approach
still has to collect the pathloss from the base stations and
then also signal the new power assignments back to the base
stations requiring extra overhead time.

4. IMPLEMENTATION OF GA IN GPU
Genetic algorithms are stochastic search methods used to
solve optimization problems based on natural selection prin-
ciples. A candidate solution, which in our case are the quan-
tized power allocations pk,n(t) ∈ {0, pl, 2 · pl, . . . , L · pl},
where pl = pmax/L are encoded as a two dimensional matrix
((K+1)×N), which in GA lingo we refer to as chromosome
and individual parts of it as genes. An initial population
of chromosomes is repetitively altered by operations of eval-
uation, selection, crossover, mutation and validation. One
iteration of the above operations is called a generation.

In each generation an intermediate population is generated
when selection is applied. It initiates a tournament among
randomly selected chromosomes where the fitness, decided
in the evaluation process, is compared. The fittest chromo-
some is selected for crossover. Genes of randomly picked
parent chromosomes from the intermediate population are
swapped to form the next offspring. Afterwards, with a low
probability, mutation is applied to the genes of the offspring.
It alters the transmission power pk,n of a gene by adding or
subtracting the value pl. In this stage, it can happen that
the chromosomes do not fulfill the power constraint of the
given optimization problem. Therefore, during the valida-
tion process, a check is performed for the newly generated
population. In case the allocated transmission power per
cell is above the limit Pmax, random genomes of the cell
violating the constraint are picked up and their power is
reduced. The process repeats itself until the constraint is
met. Now, it is possible to evaluate the fitness of the chro-
mosomes in the new population. It is the minimal expected
rate among all terminals in the cluster for the given chromo-
some pk,n(t) which, is also the metric that we are optimiz-
ing: min∀j

(∑
nRj,n(pk,n)

)
. As it can be noticed, after each

generation fitter candidate solutions are generated, bringing
the evolution closer to the optimal solution (power combi-
nation).

We exploit the parallelism of GPUs for general purpose
computation by using Compute Unified Device Architecture
(CUDA) framework. CUDA framework provides a mapping
between CUDA programming constructs and GPGPU hard-
ware. CUDA uses a notion of block which maps to hard-
ware streaming multi-processor. A number of blocks can
be assigned to a multi-processor where they are time-shared
internally by the CUDA programming environment. A de-
fined number of threads can be configured for a block to run
on streaming processors. Each thread executes a single in-
struction set called the kernel. The kernel code executes in
batches of warp size of the device in a time-shared fashion,
simultaneously over streaming processors. Each thread uses
a number of private registers for its computation, whereas
threads within a block share common limited memory called
“shared memory”. Threads and blocks are given a unique ID
that can be accessed within the thread during its execution.

These can be used by a thread to perform the kernel task on
its part of the data resulting in a Single Instruction Multiple
Data (SIMD) execution.

Our implementation of genetic algorithm on GPGPU ex-
ploits parallelism over several layers. We use multiple threads
to evaluate a single chromosome in parallel and multiple
blocks for different individuals simultaneously. This is real-
ized by organizing the data in GPGPU memory in such a
way that genes (pk,n) of each individual can be accessed ef-
ficiently in a coherent manner by multiple threads handling
it. This access pattern is known as coalesced access.

Each GA operation is implemented as a separate kernel func-
tion which executes one after another. The initialized pop-
ulation is retrieved from device memory. Each kernel oper-
ates on retrieved population in parallel and once all oper-
ators are executed, the new population is kept back in the
global memory and thus a generation in GA life cycle is
completed. We also take advantage of shared memory for
keeping intermediate chromosomes during the process of se-
lection, crossover and mutation which reduces the number
of access to the global memory and enhances the overall per-
formance of computations. This process is shown in Figure
2.
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Figure 2: CUDA implementation of GA. Each
thread Tk,n manipulates the corresponding genes
pk,n(t).

In literature related to GA implementations in GPU [14] and
[15] the methodology applied by the authors for implemen-
tation of genetic algorithm on GPUs is similar. The basic
idea exploited is to realize different phases of genetic algo-
rithm as separate CUDA kernels and apply them on GPU
for parallel execution. Despite all the similarities, the main
difference that stands out in our approach is the evaluation
of the fitness function. Based on the problem at hand, the
fitness function needs to be evaluated for every generation on
the fly for each of the candidate solutions. As specific power



combinations for each resource block pk,n might need to be
evaluated multiple times during the evaluation process, re-
computation of user rates would add a significant overhead.
In our case, we simplified the problem by pre-computing the
user rates Rj,n(p(l1,l2,l3),n) for every permutation of the set
(l1, l2, l3) that are required during fitness calculations.

A further very efficient way to reduce the execution time of
GA is by minimizing the number of generations needed to
reach a near-optimal solution. This is done by taking advan-
tage of the spatial correlation of pathloss. It can be expected
that the topology of terminals does not drastically change
between subsequent runs. As a consequence, the best indi-
viduals of the GA will also be similar. Consequently, the
less generations it will take to reach the optimum. We can
take advantage of this feature by seeding 10% of the new
population with the fittest solution of the previous alloca-
tion phase. The number of generations needed to reach the
optimum is also directly connected to the mobility of the ter-
minals. The slower the mobility is, the more similar are the
optimal solutions, resulting in less generations to be com-
puted. Carefully initializing the population also helps in
quickly reaching a near optimal solution. We initialize the
population with random and commonly used approaches of
power allocations in static allocations, i.e. uniform and or-
thogonal power allocations.

In our previous work [8], the same optimization problem
was solved using a serial implementation with GALib library
on standard CPUs. The runtime achieved for solving the
optimization problem (4) by the genetic algorithm was in the
order of minutes, being too slow for practical deployments.

5. PERFORMANCE EVALUATION
In the first part of the evaluation we consider the depen-
dency of the system performance with respect to different
update periods TC in realistic scenarios where mobility is
present. The evaluation is further extended by analysing
the performance of the proposed semi-static ICIC approach
to different comparison schemes widely used in literature.
Afterwards, we investigate the run times of the GA imple-
mentation for the GPU and evaluate its ability to deliver
near-optimal solutions.

5.1 Comparison Schemes
We compared the performance of three different inter-cell
interference coordination approaches for a cluster of three
cooperating base stations.

• The first one is our proposed semi-static ICIC scheme
periodically generating power profiles pk,n(t). Due to
illustration reasons we name it as SFR. Four different
periods of TC : 0.1, 0.5, 1 and 2 seconds were simulated
by re-using the genomes of previous solutions. Accord-
ing to the results of the next section (Section 5.3), we
set the number of iterations to 1000 before terminating
the genetic algorithm.

• The second scheme considered is fractional frequency
reuse (FFR). In FFR, the frequency spectrum is split
into two parts exclusively dedicated to cell center and
cell edge terminals. Terminals in either group get re-
sources exclusively assigned from the one or the other

spectrum by the proportional fair scheduler. The spec-
trum dedicated for cell-centred users (RB index 1-10)
is fully reused in the neighboring base stations. Mean-
while, for cell-edge terminals, a bunch of 5 resource
blocks is orthogonally reused in the neighbouring cells.
The categorization of terminals as centrally or edge lo-
cated is periodically done every 100 ms. It is locally
performed for every cell according to a greedy algo-
rithm introduced in [12]. First, all users are assumed
as centrally located then, the ones with the worst pre-
dicted rate are subsequently reallocated to the cell-
edge spectrum. The process is repeated as long as the
estimated minimal rate of the cell is increased. For
estimation, the rate prediction model from Formula
(5) is used. This FFR scheme is dynamic and has the
same optimization goal as the SFR scheme proposed
here making it a fair candidate for comparison.

• Finally, two static ICIC schemes are also considered.
In the first one, the whole spectrum is re-used in the
neighbouring cells. The difference to our proposed
semi-static ICIC, is that here the power allocation is
not changed from RB to RB but is the same for all re-
source blocks (equalling Pmax/N) causing strong inter-
cell interference. We refer to this scheme as frequency
reuse one (FR1). In the second, orthogonal frequency
bands in the neighbouring cells are used, i.e. the fre-
quency band is split into disjoint sets of frequency
bands and each base station is operating on one of
those bands. In our case a frequency reuse of 3 (FR3)
scheme was used, resulting in a network where no in-
terference at all is present.

5.2 Simulation Parameters
As simulation environment we chose the urban area of the
city of Munich. From the German radio-monitoring agency
we obtained the geographical location and base station an-
tenna orientation of a cellular network operator. From the
vast amount of cells, we worked with a cluster of three sec-
tors radiating inwards the simulation playground as shown
in Figure 3a. The profile of 120o sectorized antennas and
their corresponding orientation and position together with
a 3D model of the city served as input for a ray-tracing
algorithm to generate a RF propagation map of the simu-
lated area. As a result, we could associate to every pixel
the corresponding path-loss with the neighbouring base sta-
tions. The corresponding long-term SINR of the simulation
environment is shown in Figure 3a.

Through the ONE mobility simulator [16], the node move-
ment across the streets was replicated. After initially drop-
ping terminals in the environment (30 drops in total) mobile
terminals started to move with a velocity of 30 km/h accord-
ing to a map based random walk model [16]. The position of
terminals was continuously traced and mapped to the corre-

sponding pathloss h2
k,j with the surrounding base stations.

The pathloss values h2
k,j were fed into our OMNET++ based

system level simulator, mimicking the radio access of an
OFDMA/LTE system. Fast fading based on Jake’s model
was simulated and proportional fair scheduling on fully buf-
fered traffic queues was performed. The simulated band-
width was 5 MHz (N = 25 resource blocks) with carrier fre-



quency of 1.8 GHz while the maximal transmit power Pmax

was set to 20 W. The total number of terminals considered
was J = 60 and the noise power per resource block was as-
sumed as N0 = −112dBm. For every drop the downlink
communication of 60 seconds duration was simulated.

5.3 System Performance Evaluation
We basically considered the average rate per terminal as per-
formance metric. To capture the rate variability of the ter-
minals at different positions, we evaluated the average rates
by building the empirical cumulative distribution functions
(ECDF) over all terminals rates observed during the simula-
tion, which serves as primary performance metric. It tells us
the likelihood that the minimal observed data rate X in the
cluster is smaller than or equal to a number x. The 5% per-
centile on the rate ECDF is a common metric used in stan-
dardization to evaluate the cell-edge performance which we
will use in the following as well. The corresponding curves
are given in Figure 3b. Observing the lower part of Fig-
ure 3b (the 5-th % percentile) we notice that the semi-static
approach proposed here delivered the best performance for
the cell-edge terminals. For different update intervals (0.1
vs 2 s) there is a performance difference, with the shorter
periodicity of 0.1 s offering slightly better results.

The general rates ECDF metric gives information about the
overall system performance. However, we are also inter-
ested to further highlight the performance of the optimiza-
tion goal, namely the rate of cell-edge terminals for different
update periods. In order to do so, we collect the minimal
rates per simulation run and every second of simulation time.
Based on these data the ECDF curves are computed, leading
to Figure 3c. There, we can notice that the performance of
cell-edge terminals is notably improved compared with the
other comparison schemes and that shorter update periods
result in a much better performance of cell-edge terminals.
The quicker the update time is, the better the adaptation
of power allocations to the topology of mobile terminals.
With the time passing by, the position of mobile stations
changes and so does also the pathloss with the neighbor-
ing base stations. This results in a mismatch between the
predicted rates during the power mask optimization process
and the actual rate obtained during network operation. The
generated power allocations are not relevant to the topology
of terminals with the time passing by resulting in a perfor-
mance loss.

These observations bring us to the conclusion that signif-
icant gains can be harnessed in semi-static ICIC schemes
for relatively low (smaller than 1 s) update periods. There-
fore, efforts in minimizing the run-times of semi-static ICIC
schemes are beneficial to the cell-edge terminals performance.
It needs to be mentioned that the gain depends on the mo-
bility of terminals and more investigations are required to
consider also other mobilities, but were not performed in
this paper due to space limitations. In the next section we
evaluate the execution run-time of our proposed semi-static
ICIC approach.

5.4 Evaluation of GAs Implementation
The run-time of our GA implementation for a fixed num-
ber of generations of 2000 and variable number of resource
blocks and terminals is shown in Figure 4a. The measure-
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Figure 3: Evaluation of different approaches for in-
terference coordination by system level simulations.



ments were performed on a NVIDIA Quadro 6000 GPU. We
notice that, the execution runtime increases linearly with the
number of RBs and terminals. This is due to the fact that
we exploit parallelism (in GPU) in multiple dimensions. The
increase in the number of terminals impacts runtime signif-
icantly as compared to the number of RBs. Although all
the chromosomes in the population are operated in parallel,
the evaluation of the genome is a search operation through
all the users (i.e. finding the minimal rate). In total, for
60 mobile stations and 3 cells, it took only 0.38 s for the
GA to execute1. Compared to our previous implementa-
tion running on a four-core machine with conventional CPUs
(AMD Phenom(tm) II X4 945 processor and 8 GB RAM)
the pre-computation implemented also in parallel took 64.20
seconds to complete and the optimization time of GA took
21.4 seconds. In total we notice a 92x improvement on the
pre-computation and a 56x improvement on the GA opti-
mization. This is already a significant improvement due to
the GPU implementation discussed previously.

In the following, we investigate the number of generations
needed from the GA to find the near-optimal solutions for
the given search space. This is an important factor as the
GAs execution run-time is linearly connected with the num-
ber of generations. For benchmarking purposes, we use a
linearised version of the optimization problem (4) in find-
ing the optimal solution. The linearised problem is given as
follows:

max ρ

s.t.

N∑
n=1

L∑
l1=0

L∑
l2=0

L∑
l3=0

R̂j,n,l1,l2,l3 · xn,l1,l2,l3 > ρ ∀j,

N∑
n=1

L∑
l1=0

L∑
l2=0

L∑
l3=0

p(lk) · xn,l1,l2,l3 ≤ Pmax ∀k,

L∑
l1=0

L∑
l2=0

L∑
l3=0

xn,l1,l2,l3 = 1 ∀n,

xn,l1,l2,l3 ∈ {0, 1}, (8)

where x is the decision variable and rates R̂j,n,l1,l2,l3 are
the precomputed input values to the optimization problem.
Then, using an ILP solver we obtained the optimal solution
to the ILP. The evaluation was performed for different mo-
bilities of 3, 30 and 60 km/h of mobile terminals and with
different execution periods of 0.2, 0.5, 1 and 2 seconds. The
GA was run for each period 30 times in order to gather
statistical confidence.

The average number of generations needed for the GA to
reach 97% of the optimum is shown in Figure 4b. The av-
erage number of generations to reach near-optimal solutions
was between 200 and 800 generations, respectively lasting
37 ms and 130 ms. For the studied scenario, the 3 km/h run
times are slightly higher than the 30 and 60 km/h ones.
This is a scenario specific behaviour as, the path-loss of
mobile stations moving with 3 km/h changes more slowly
than scenarios with higher mobility. The search space (pre-
computed rate expectations) for the 30 consequent runs of

1The pre-computation on the worst case it took 0.7 s and is
subject to further optimization.

the GA is more similar than for higher mobilities. Hence,
the similarity in the number of generations for the 3 km/h
mobility.

We repeat the GA evaluations by reusing the power pro-
files generated in the previous solutions. The motivation is
that the topology of mobile stations does not change dras-
tically in consequent GA runs. Therefore, optimal power
profiles in consequent runs differ slightly, helping the GA
to evolve quicker to a near-optimal solution. The corre-
sponding results are presented in Figure 4c. Observing it,
we notice a drastic speed-up for high frequency adaptation
(200 ms) and low mobility (3 km/h). Less than 4 ms (10
generations) were needed instead of 86 ms (500 generations)
to reach near-optimal values for low mobility scenarios of 3
km/h, resulting in a 22x fold speed-up of the GPU imple-
mentation. Another trend to be noticed is also between the
length of the period of optimization and the convergence to
the optimum. The longer the coordination periods are the
slower it takes for the GA to converge. The reason for that
is that the topology of terminals differs more the longer the
update periods are. The same can be said also for increas-
ing mobility. The higher the mobility the more different will
be the topology of terminals. Consequently, the number of
generations to meet the optimum will also be larger.

For all mobility scenarios and update periods which we in-
vestigated so far, we could show that through an efficient
implementation the run times can be reduced down to ap-
proximately 50 ms by using a GPU. That is a noticeable
gain in computing time, taking into account that the previ-
ous CPU based implementation runs at 21.4 seconds.

6. CONCLUSIONS
Based on the evaluations performed in this work we observe
that performance-wise smaller update periods of semi-static
ICIC lead to better performance. However, the improvement
by going from 0.5 seconds update period to 0.1 seconds is
marginal. On the other hand, the paper shows by exploiting
spatial correlation of path-loss and implementing the semi-
static ICIC algorithm in GPU the computation time can
be reduced from 20 seconds down to approximately 50 ms
(and lower). Given these facts we conclude that parallel
implementation in GPUs of semi-static ICIC is a practical
approach in employing near-optimum semi-static ICIC for
OFDMA/LTE networks.
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