

## Machine-to-Machine Applications meet Opportunistic Communications: Friends or Foes?

AOC Workshop 2013 June 4th, 2013 Madrid, Spain



www.access.kth.se



## World Data Traffic: Status & Forecast

• The myth of exponential growth ?





Development 2007-2012

**Predictions** 

By 2025 Ericsson expects a 1000-fold increase of data traffic!



## Purpose of Telecommunication Networks?

- Telecommunication <u>allows humans to benefit</u> from information although not being physically present.
  - Gives humans (potentially) an efficiency advantage
- One of the first telecommunication systems:
   Optical semaphore lines (~ 1800)





Sweden

Military use: Threats, orders

Financial use: Prices of bonds

→ Operated by humans, used to exchange messages between humans



## **Direct Human Interaction**

- Continuous evolution of systems that allowed humans to interact directly:
  - 1837/39: Electrical telegraph in US/England
  - 1856: Transatlantic telegraph (Victorian Internet)
  - 1870-1880: Electrical telephone
  - 1920s: Transition to electromechanical switching
  - 1950s: Publicly available transatlantic lines
  - 1960s/70s: Digital switching
  - 1970s/80s: Optical backbones
  - 1980s: Introduction of mobile phones





- All developments fueled by demand for telephony
- Early adopters: Military, Finance industry



## Humans Interacting with Computers

- Computers provide two properties:
  - Storage of information
  - Processing (computation) of data



- In a networked context, this allows for novel applications with different efficiency advantages:
  - Automatically offer information at request
  - Manipulate data remotely
- Efficiency advantage made the Internet happen!
  - Early adopters: Military (ARPANET) and Financial Industry



## Today's Networks

<u>Humans interacting with humans</u> Telephony, Messaging, Email, Social Web







<u>Humans interacting with computers</u> WWW, P2P, Streaming, Apps





Increase in efficiency

Massive increase in devices and traffic

Always humans directly involved in information exchange!



the house to current tariff!

## So What Comes Next?

 Use telecommunication networks for automation and monitoring tasks in various different scenarios.



advantage!



## Third Fundamental Application Type

 No direct human involvement anymore, instead computers constantly exchanging status and control information → Control-Service Applications!





## Control-Service Applications: Impact?

- We already see various scenarios:
  - Smart Grid
  - Vehicular Cloud
  - Smart Cities
- Essentially, these applications will be deployed wherever there is an efficiency advantage
- Skeptical? There is already something in place ...
  - High frequency trading at stock exchanges: Fully automated trading of shares according to algorithms
    - Reaction delay in the range of micro- and milliseconds
    - Accounts for about 50% of all trades at NYSE
  - Finance sector used to be an early adopter ...



## Consequences for Networks

- Dramatic change ahead ?
- At least, a set of different & novel requirements:
  - Reliability and timeliness become important
  - Small packet sizes
  - Large number of devices
    - Ericsson predicts 50 billion devices by 2025
  - Most connections involve wireless → cellular / other ?
- Leads to very interesting research problems!
  - Reliability/latency guarantees possible in such networks?
  - Protocol engineering for low latency/high reliability?
  - Point of computation for applications?
  - Network architectures?
  - Privacy / Security ?



## Control meets Opportunistic Comm.

- Opportunistic communication seems an odd candidate:
  - Delay-intolerant instead of delay tolerant required
  - Tight control of topology required
  - No explicit reliability guarantees possible
- However, opportunistic communication also provides some interesting features:
  - Energy-efficient
  - Low spectrum requirements
- Can control-type applications benefit from opportunistic communications?
  - For which type of control applications interesting?
  - Under which conditions?



## Example: Opportunistic Spectrum Access

• The well established story ...

# UNITED STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM ORDINATIONS THE RADIO SPECTRUM ORDINA



Spectrum Usage

- Opportunistic spectrum access allows spectrum reuse:
  - Overcome discrepancy between allocation and usage
  - Secondaries have to vacate the spectrum if primary appears



## Control-Type Applications and Opportunistic Spectrum Access

- Assume a mix of primary and secondary systems
  - Control-applications run over secondary devices



 Can we support control applications at all in such a network? Under which conditions is this possible?



## Control-Type Applications and Opportunistic Spectrum Access

 Assume time-slotted behavior, fixed nodes, constant traffic (source & destination) & varying link capacities



Identify conditions for stability, throughput and delay guarantees

Automated checking of such conditions



## Analysis Approach: 2-Player Infinite Games

- Well established theory for controller design
- Turn-based approach with demand and routing agent
  - Demand agent action:



- Routing agent action:





## Game Definition

- Formally, define a game and a winning condition
  - → Check if there exists a winning strategy
- Game definition:
  - Topology
  - Traffic pattern
  - Set of primary blocking patterns:

$$\mathcal{B} = \{$$

- Winning condition:
  - Stability: Number of packets stays bounded



## Winning Condition & Strategy

### Theorem

Routing Agent has a winning strategy  $\Leftrightarrow$  For all capacities  $B \in \mathcal{B}$  a suitable **Multi Commodity Flow** (MCF) exists.



Strategy:

Route along corresponding MCF while B is active; ignore rest

Joint work with S. Tenbusch, C. Löding and F. Radmacher from RWTH Aachen



## Delay Bound?

- We can even find a delay bound, requires:
  - Some additional capacity in the flows per B pattern
  - Minimum capacity on the links which is periodically available

Delay bound under **stricter** condition:

### **Theorem**

If for each  $B \in \mathcal{B}$  an MCF with excess throughput  $\varepsilon > 0$  exists and the minimal capacity on each node is  $c_{\min} > 0$ :

Routing Agent has a winning strategy with some delay bound D.



### So what?

- Compared to related work:
  - We do not rely on backpressure routing
  - We analyze a worst-case scenario
  - We provide checkable conditions for stability and delay:

Automatic check if Routing Agent can win (QoS Guarantee)

For each  $B \in \mathcal{B}$ , check if suitable MCF exists.



## Checking QoS Conditions

- Problem: # of B patterns can be very large
  - Restrict to some max, utilization
    - i.e 80%, 90 % ...
  - Allows to develop an algorithm which handles complexity

Start with capacity N on all nodes and call BACKTRACK( $O_{max}$ ) BACKTRACK(o) does the following:

- 1. Calculate MCF with maximum throughput X
- 2. If X < 1 return current assignment
- 3. If  $X \ge o + 1$  return NULL
- 4. Normalize MCF to throughput 1
- 5. For all involved nodes v:
  Reduce capacity on v by y s.t. MCF becomes invalid
  If BACKTRACK(o-y) not NULL return BACKTRACK(o-y)Restore capacity on v
- 6. Return NULL



## **Example Evaluation**

• Secondaries: V = 50

• Primaries: P = 50

• Channels: N=3

• min. Channels:  $c_{min} = 1$ 

• Traffic: m = 8, 10, 12, 14

| $O_{max}$ | $ \mathcal{B} $ |
|-----------|-----------------|
| 1         | 51              |
| 2         | 1.326           |
| 3         | 23.376          |
| 4         | 313.701         |
| 5         | 3.412.461       |
| 6         | 31.298.361      |
| 7         | 248.635.761     |
| 8         | 1.744.483.611   |
| 9         | 10.970.926.711  |
| 10        | 62.561.143.641  |





## **Example Evaluation**



|       |               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |   |   |   |   |   |   |   |   |    |
|-------|---------------|-------------------------------------------------------|---|---|---|---|---|---|---|---|----|
|       | m             | 1                                                     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $D_1$ | 8<br>10<br>12 | •                                                     | • | • | • | • | • | • | • | • | •  |
| $D_2$ | 10            | •                                                     | • | • | • | • | • | • | • | • | 0  |
| $D_3$ | 12            | •                                                     | • | • | • | • | • | • | 0 | 0 | 0  |
| $D_4$ | 14            | •                                                     | • | • | 0 | 0 | 0 | 0 | 0 | 0 | 0  |

• : Routing Agent wins



### Conclusions

- Raise of control applications in networks ?
  - Some believe: Massive impact
  - I believe: Lots of very interesting research problems
- Can opportunistic communications contribute ?
  - Depends on application requirements and resource availability in the network
  - Stability and delay bounds for opportunistic spectrum access as an example
    - Can check beforehand if requirements can be met!
    - OSA can be used