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Abstract—We study stability and delay in dynamic networks
under adversarial conditions. Adversarial conditions are manda-
tory in establishing deterministic performance guarantees in
networks. Under this framework, we concentrate on the gen-
eral stability region for a network, i.e. without specifying the
routing algorithm. This is in contrast to related work for
adversarial network conditions, where usually the backpressure
routing algorithm is considered. Our work consists of four
novel contributions: (1) We present a novel analysis model
which is based on the theory of infinite two-player games; (2)
Using this approach, we can characterize the stability region
of networks under adversarial conditions for arbitrary routing
schemes; (3) We determine conditions under which a delay
bound for packet forwarding under adversarial conditions exists;
(4) We provide a backtracking algorithm which determines in
a model-checking fashion network stability. The backtracking
algorithm is furthermore shown to reduce the computational
effort significantly for practical scenarios.

I. INTRODUCTION

Among the more fundamental research problems addressed
recently by the networking community are the investigations
with respect to stability of networks. Stability is usually
defined as the circumstance that the node queues within a
network are bounded under certain variations of the traffic
and/or the link capacities between the nodes. Over the last two
decades a rich set of results has been achieved here with re-
spect to various different models and conditions. These results
have almost all been established regarding the backpressure
routing algorithm as (for example) investigated in an early
contribution by Tassiulas [1].

This seminal work of Tassiulas studied network stability
under random stochastic arrival processes but with fixed link
capacities and showed that under certain conditions on the ar-
rival rate of the flows the network stays stable if backpressure
routing is the algorithm for forwarding data between the nodes.
This initial result with respect to stochastic variations of the
network arrivals was significantly extended by Neely et al.
[2] where the network stability region was established for net-
works with stochastic link capacity variations. Subsequently,
further extensions of the stochastic model were presented.
However, while these stochastic variations are well justified
from a practical point of view, these models also come with
disadvantages. Most strikingly, from a practical point of view
an application or a network provider might be interested in

guarantees with respect to stability or the end-to-end delay,
which cannot be studied based on stochastic models.

This perspective motivates to consider adversarial scenarios,
where malicious agents actively degrade network performance.
One of the first contributions in this line was provided by
Borodin et al. in [3] where network stability of backpressure
routing was investigated for adversarial conditions. Since then,
several contributions have extended the original models and
results [4], [5], [6]. Most recently, two contributions from
Andrews et al. [7], [8] addressed the stability of backpressure
routing for dynamic networks (i.e., networks with varying link
capacities) where an adversary injects multi-commodity traffic
into the network. The papers show that as long as the adversary
injects packets such that the network load is subcritical,
backpressure routing is stable. Subcritical load is defined in
this context by an A (w, ε) adversary that operates as follows
[7] : For any time t let I [t,t+w−1] be the set of packets
injected during the w time steps from t to t + w − 1. Then
the adversary can associate with each packet p ∈ I [t,t+w−1] a
simple path Γp from sp to dp such that for all e ∈ E we have∑
p∈I[t,t+w−1],e∈Γp

lp ≤ (1− ε)
∑t+w−1
i=t ce(i). E is here the

set of edges of a directed graph which models the network, lp
is the size of packet p and ce(t) is the capacity of edge e at
(slotted) time t (such that any packet with a smaller size than
the capacity can be transmitted over the edge).

These insights with respect to network stability under
adversarial conditions come with some limitations. First of
all, they are restricted to backpressure routing. While the
analysis techniques (namely arguing about the maximum drift
of backlogged queues) are well established, we lack a more
fundamental insight into network stability under any routing
scheme in adversarial conditions. Moreover, the usage of
the A (w, ε) adversary is not easily transferred to practical
scenarios, i.e. if we are given a set of traffic streams and
some possible configurations for the capacity variations, one
needs to simulate the operation of the network in order to
determine if at each time slot t routes can be found with
enough capacity - or not. Instead, a more assessable criterium
for network stability would be of interest. What is missing
is a more fundamental insight into the stability region under
adversarial conditions, possibly providing as much insight into
the case of adversarial settings as achieved by Neely et al. [2]
for the case of stochastic variations of network conditions.
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In this paper, we address this open issue. We provide four
novel contributions:
• We present an infinite games based model which is used

to analyze adversarial dynamic networks under critical
and subcritical load. This modeling and analysis method
is completely different to the usual analysis technique for
network stability, where the drift of backlogged queues
is considered.

• Based on this approach we obtain conditions for network
stability, as well as a bound on the number of packets
in dynamic networks for critical load. These conditions
essentially define the network stability region under ad-
versarial conditions regardless of the routing scheme.

• Furthermore, we provide a delay bound for dynamic
networks under subcritical load.

• Finally, we present an algorithm that checks given in-
stances of dynamic networks for stability. While our the-
oretical results indicate that exponentially many network
conditions need to be considered in the worst case to
determine network stability, we present a backtracking
approach which considers only a tiny fraction of these
conditions for rather practical instances. This leads in a
numerical example to quite acceptable run times.

The remaining paper is structured as follows. In Section II
we present our system model and problem statement, sum-
marize some background information on infinite games and
provide a mapping of the system model and problem statement
to a play in infinite games. Section III contains our main
results as well as all of the proofs. We continue with the
presentation of our model-checking algorithm for network
stability in Section IV and demonstrate its application for a
simple example. Finally, we conclude the paper in Section V.

II. PRELIMINARIES AND BACKGROUND

A. Basic Model

We consider a communication network represented by a di-
rected graph G = (V,E) with a set of nodes V and E ⊆ V ×V
being the set of mutual direction communication links, i.e.,
(u, v) ∈ E ⇔ (v, u) ∈ E. Time is split into slots with index t.
Each node has up to N ∈ N independent channels available for
communication. However, the number of available channels
per node can vary from slot to slot. We model this varying
capacity by defining a set B := {B1, B2, ... , Bb} of blocking
functions Bi : V → {0, ... , N}. Hence, N−B(u) channels are
available for communication at the current time slot at node
u. For each available channel a node can forward one packet
(error-free) to some neighboring node during one slot1.

Furthermore, we consider a set D =
{(s1, d1, λ1), ... , (sm, dm, λm)} of traffic flows to be
conveyed by the network. Each flow is specified by a source
and destination s, d ∈ V as well as an intensity λ which
denotes the (maximum) number of newly generated packets

1We consider in the following a so called node-centric model. Nevertheless,
all our results can easily be transferred to a edge-centric model.

per slot for this flow. We refer to packets belonging to a
particular source-destination pair (sj , dj) as commodity j.

In the following, we are interested in conditions on the
blocking functions B under which the network is guaranteed
to be stable given the set of traffic flows D. If stability can be
reached, we are furthermore interested in delay guarantees for
the flows. Note that we do not restrict ourselves to any routing
algorithm. Instead, we are interested in general conditions for
stability and finite delay.

B. Infinite Two-Player Games

The interest in guaranteed stability and delay requires us to
turn to an adversarial approach. We utilize in the following
infinite two-player games as novel tool for the adversarial
analysis. Infinite two-player games have been studied first by
set theorists [9], [10]. Their algorithmic theory, however, has
its origin in the synthesis of digital circuits [11]. The basic
idea is straightforward: A system (called controller in the
following), which has to produce an infinite output sequence
Y , plays in a turn-based game against an environment, which
provides an infinite input sequence X . This interaction pro-
duces a sequence ρ = X1Y1X2Y2 ... where the goal of the
controller is to assure a requirement which is checkable on
ρ. The question arises if for such a two-player game we can
decide at all if the requirement can be met by the controller,
and if so, if we can synthesize a strategy that the controller
should apply. It has been shown that if the requirement is ω-
regular [12], one can determine algorithmically whether the
controller can satisfy the requirement. In this case, one can
furthermore compute a strategy for the controller in the form
of a finite automaton. In order to do so, one transforms the
described game to a game on a finite, directed graph. Each
vertex of this game graph represents a position of the game;
it corresponds either to a chosen input or a chosen output.
Hence, the vertex set Q of the game graph is partitioned into
a set Q0 of the controller and a set Q1 of the environment. At
each vertex of Q1 the environment chooses an outgoing edge
to a successor vertex of Q0, which represents the chosen input
vector; and at each vertex of Q0 the controller chooses an edge
to a successor vertex of Q1, which represents the chosen output
vector. Likewise, the requirement is transferred to a so-called
winning condition for the controller on the game graph. For ω-
regular requirements, the winning condition can be described
by sets of vertices (on a bigger graph) which eventually occur
or which occur infinitely often. Reformulating the game and
the winning condition in form of the game graph allows now
the application of standard analysis techniques to determine
conditions for winning the game, as well as for synthesizing
a winning strategy as there exist various algorithms that solve
games. For a more detailed introduction to the theory of
infinite games we refer to the book [12] and the tutorial [13].

C. Routing Game Formulation

We now introduce the detailed game formulation. We refer
to the controller in the following as routing agent and to the
environment as demand agent. The routing game G is given as
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the tuple G = (G,D,B), where G is the connectivity graph,
D the set of traffic flows, and B the set of blocking functions.
For the game to be played, we need to define the game graph
H = (Q,T ). In the game graph, the positions Q describe the
current network state and the transitions T ⊆ Q×Q are given
by all possible choices of routing agent and demand agent.
Q is furthermore partitioned into the positions Q0 and Q1 of
routing and demand agents next turn. A network state q ∈ Qi
for 0 ≤ i ≤ 1 is given as a tuple (i, B,P). i indicates which
player’s turn comes next, 0 (1) indicating routing (demand)
agent’s turn. B is the currently active blocking function and
P is the set of packets currently in the network. Each packet
is represented as a tuple (id, u, j) ∈ N×V ×{1, ...,m} where
id is a unique identifier, u is the node where the packet is
stored, and j is the commodity.

The game starts in the position q1 = (1,−, ∅) and evolves
then by routing and demand agent turns. A turn of routing
agent consists of three steps: a) λj new packets for every com-
modity j are inserted at the corresponding source nodes; b)
Routing agent transfers packets from each node to neighboring
nodes respecting the capacity limit at node u being N−B(u);
c) Packets arriving at their destination are removed. These
steps lead then to a new position in the game graph (1, B,P ′).
It is then demand agent’s turn with the sole step of choosing
a new blocking function B′ ∈ B which leads to the position
(0, B′,P ′). Overall, the game results in a play ρ = q1, q2, ...
where qi ∈ Q0 if i is even and qi ∈ Q1 otherwise.

Initially, we consider the stability of the network as winning
condition for routing agent: Routing agent wins if there exists
a bound k ∈ N such that no position qi in the play exists with
|P| > k. We are primarily interested in the conditions under
which routing agent is guaranteed to win the game. However,
for this we also need to construct winning strategies, i.e.
routing schemes that are applied by routing agent. Formally,
a winning strategy for routing agent defines for any history
of the play q1, q2, ... , q2i for i ∈ N which position q2i+1 to
choose next, such that the play is assured to fulfill the winning
condition. However, the type of winning condition that we use
is rather simple: routing agent just has to stay inside the “safe”
area of the game graph. Such conditions are referred to as
safety conditions. For the resulting class of safety games it is
known [12] that the player who has a winning strategy also
has a winning strategy which is memoryless, i.e. the choice of
the next position depends only on the current position in the
game graph. The existence of memoryless strategies makes it
much easier to argue about the behavior of the players.

III. MAIN CONTRIBUTIONS

A. Stability Results

We characterize the games G = (G,D,B) which can be
won by routing agent, i.e., a winning strategy for her exists.
For this, we establish a connection to multicommodity flows
for which we rehearse here for convenience the definition:

Definition 1. Given a connectivity graph G, a blocking
function B, and demand set D, a multicommodity flow (MCF)

f with throughput λj for each commodity j is a tuple of flows
f = (f1, ... , fm) such that for each flow fj : E → Q+ with
1 ≤ j ≤ m the flow equations hold:∑

v:(v,u)∈E

fj(v, u) =
∑

w:(u,w)∈E

fj(u,w)

∀u ∈ V \ {sj , dj} (1)∑
u:(u,dj)∈E

fj(u, dj) = λj (2)

∑
u:(dj ,u)∈E

fj(dj , u) = 0 (3)

fj(u, v) ≥ 0 ∀(u, v) ∈ E (4)
m∑
j=1

 ∑
v:(u,v)∈E

fj(u, v)

 ≤ N −B(u) ∀u ∈ V (5)

Note that the last condition assures that the sum of flows

respects the number of free channels on each node.
We initially consider the special case where the capacities

in the network are static, i.e., B = {B}. Thus, demand
agent cannot influence the play, and the outcome of the game
depends solely on the choices of routing agent.

Lemma 1. In the game G = (G,D,B) with B = {B} routing
agent has a winning strategy if and only if there exists an MCF
f = (f1, ... , fm) with throughput λj for each commodity j
under blocking function B.

Proof: “⇒”: Assume routing agent plays according to
a winning strategy. By definition, the number of packets in
the network then never exceeds k. Thus, all positions in the
game graph where |P| > k can be replaced with a ’sink state’
position qsink. As k is a bound on the number of packets, all
packet identifiers are from the range {1, ... , k} (if new packets
enter the network, some free identifiers are reused). Overall,
the modified game graph has only finitely many positions.
The winning condition for routing agent is to avoid ever
visiting qsink. Assume routing agent to play according to a
memoryless strategy. Due to the static blocking function and
the memoryless strategy, the play will enter a loop as soon as
a position is seen twice. This must happen at some point as the
game graph is finite. Thus, there are sequences of positions
r, s such that the play ρ has the form ρ = r · sω 2, where
s = s1, ... , sl. At r · si, the game is at the same position
sl as at r · si+1. Let nhj (u, v) be the number of packets of
commodity j that routing agent sends at position sh from node
u to node v according to the winning strategy. Consider the
following tuple f = (f1, ... , fm) with fj : E → Q+ where
fj(u, v) := 1

l

∑l
h=1 n

h
j (u, v) ∀(u, v) ∈ E, j = 1 ...m. We

show that f is in fact an MCF with throughput λj for each
commodity j, i.e., it satisfies the constraints (1) to (5). The
play at ρ = r ·si and ρ = r ·si+1 is at position sl which means
the number of packets of commodity j received at each node
u during s1, ... , sl is equal to the number of packets sent, i.e.,

2sω denotes the infinite repetition of s, similarly si denotes the repetition
of s exactly i times.
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∑l
h=1

∑
v:(v,u)∈E n

h
j (v, u) =

∑l
h=1

∑
w:(u,w)∈E n

h
j (u,w).

Hence,

∑
v:(v,u)∈E

fj(v, u) =
1

l

l∑
h=1

 ∑
v:(v,u)∈E

nhj (v, u)


=

∑
w:(u,w)∈E

fj(u,w).

During one iteration of s, exactly lλj packets of commodity j
are generated. Hence, lλj packets have been delivered to dj ,
i.e.,

∑l
h=1

∑
u:(u,dj)∈E n

h
j (u, dj) = lλj and

∑
u:(u,dj)∈E

fj(u, dj) =
1

l

l∑
h=1

 ∑
u:(u,dj)∈E

nhj (u, dj)


= λj .

Packets that have reached their destination are immediately
removed. Therefore, we have

∑
u:(dj ,u)∈E fj(dj , u) = 0.

Because nhj (u, v) ≥ 0 we obtain fj(u, v) ≥ 0. Finally, the
strategy of routing agent clearly obeys the number of free
channels. Thus, overall f is an MCF with throughput λj for
each commodity j.

“⇐”: Assume f = (f1, ... , fm) is an MCF with throughput
λj for each commodity j on G with blocking function B.
We construct a strategy σB and show that it is a winning
strategy for routing agent. For the construction of the strategy,
we define a list Lu for each node u. The strategy σB uses
these lists to make the routing decisions.

For u ∈ V we denote the neighbors of u by v1, ... , vp by
fixing an arbitrary order. Let K be the lowest common multiple
of the denominators of all flow values appearing in f . For each
node u ∈ V , the list Lu consists of tuples (j, v) ∈ {1, ... ,m}×
V . Lu contains K · fj(u, v) copies of the tuple (j, v) for each
outgoing edge (u, v) ∈ E and each commodity j. The total
number of these entries is

∑m
j=1(K ·fj(u)) ≤ K ·(N−B(u)).

The list is filled up with additional null-entries so that it has
size exactly K · (N − B(u)). Hence, Lu has the following
form:

[(1, v1), ... , (1, v1)︸ ︷︷ ︸
K·f1(u,v1) times

, ... (1, vp), ... , (1, vp)︸ ︷︷ ︸
K·f1(u,vp) times

, ...

(m, v1), ... , (m, v1)︸ ︷︷ ︸
K·fm(u,v1) times

, ... (m, vp), ... , (m, vp)︸ ︷︷ ︸
K·fm(u,vp) times

,

(null), ... , (null)]

The strategy σB works now in rounds of K time steps: For
each node u, the list Lu is traversed, starting at the beginning.
For each time step the N − B(u) next entries are selected
and for each entry (j, v) the oldest packet of commodity j is
forwarded to v. If no such packet is stored at u, nothing is
sent. In the next time step, the next N − B(u) entries of the
list are selected, and packets are sent correspondingly. Within
K time steps, the end of the list is reached, as |Lu| = K ·(N−
B(u)). After a round of K time steps is completed, the next
round of K time steps starts and again, the list is traversed

from the beginning. We show that the number of packets in
u remains bounded. After a round of K time steps, at most
K ·fj(u) packets of commodity j have arrived from incoming
transmissions at u. In the next round of K time steps, K ·fj(u)
packets of commodity j are forwarded by u (or less if less
packets are available at u). Again within this round, at most
K · fj(u) new packets have arrived at u which are forwarded
in the next round. Hence, at any point in time, there are at
most 2K · fj(u) packets of commodity j at u, which means
the total number of packets in the network remains bounded
by 2K

∑m
j=1

∑
v∈V fj(v). Hence, σB is a winning strategy.

Next, we expand the characterization to the general case
with non-static capacities. Hence, demand agent may choose
from a set of blocking functions.

Theorem 2. In the game G = (G,D,B) routing agent has
a winning strategy if and only if there exists an MCF fB =
(fB1 , ... , f

B
m) with throughput λj for each commodity j on G

for each blocking function B ∈ B.

Proof: “⇒”: Given that routing agent has a winning
strategy, assume there exists a blocking function B ∈ B for
which no MCF exists. Then demand agent can play Bω , i.e.,
he can always choose this blocking function. Lemma 1 states,
that in this case, demand agent wins. This is a contradiction
to the winning strategy of routing agent.

“⇐”: Given there is an MCF for each B ∈ B, we construct
a winning strategy σ for routing agent: For each B ∈ B
consider the strategy σB as defined in the proof of Lemma 1.
σ behaves according to σB whenever blocking function B
is active. If demand agent switches to some other blocking
function and later returns to B, σ continues to behave like
σB , memorizing the current list positions for each σB . When
blocking function B is active, all packets that have been
generated while other blocking functions were active are
ignored and never forwarded, even if they are the oldest
packets of that commodity. As shown in the proof of Lemma 1,
the number of packets in the network for each σB is bounded
by3 RB = 2KB

∑m
j=1

∑
v∈V f

B
j (v). Hence, the total number

of packets is bounded by R =
∑
B∈B R

B , when playing
according to σ. This means, σ is a winning strategy.

The contribution of Theorem 2 and its proof is not so much
the routing strategy, which requires global knowledge at all
nodes and is therefore infeasible for practical applications.
However, with Theorem 2 we have obtained a characterizing
property of routing agent winning the stability game: It suffices
if there exists a suitable MCF for each blocking function.
If we are given the set B (or if we can summarize it in a
reasonable way), we can check for a given traffic specification
D if stability can be achieved at all, independent of any
specified routing algorithm. Hence, Theorem 2 provides a
tight and checkable characterization of the capacity region
of the network under adversarial conditions. We comment in

3We denote by KB the smallest common multiple of the denominators
of the flow values occurring in the flow for blocking function B, fB is the
corresponding MCF to blocking function B.
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Section IV-B on the run-time of checking stability of larger
networks.

B. Delay Results

The stability characterization above does not in general
yield worst-case end-to-end delays, as packets may be held
back in the network for arbitrary time spans, e.g. when a
node is completely blocked for an extended period of time.
Nevertheless, it is possible to specify a delay bound that is
guaranteed to hold for at least some fraction of the traffic as
Lemma 3 states.

Lemma 3. If routing agent plays according to σ from
Theorem 2 then at any point in the play and for each
α ∈ N0, a fraction of at most 1

α+1 of the packets have
a delay greater than α · Sj

λj
for each commodity j, with

Sj := 2
∑
B∈B

(∑
v∈V K

B · fBj (v)
)
.

Proof: We consider the sum of delays over all packets
of commodity j: A packet can only get delayed, as long as it
has not been delivered. When routing agent plays according
to σ, the number of packets of commodity j in the network
is bounded by Sj = 2

∑
B∈B

(∑
v∈V K

B · fBj (v)
)
. Since

packets can get delayed only if they are not delivered yet, the
sum of delays of those packets is increased in each time step
by at most Sj . Hence, for any time step t, the total delay for
these packets is at most t ·Sj . Furthermore, at time step t the
total number of packets (in the network or already delivered)
for commodity j is tλj . Therefore for the (worst-case) average
packet delay d̄ it holds: d̄ ≤ t ·Sj · 1

tλj
=

Sj

λj
independently of

the time step t. Consider α ∈ N0 and assume there is a packet
with delay d > α · Sj

λj
. As the minimum delay of a packet

is 0, there have to be at least α packets with a delay < d̄.
Therefore the fraction of packets exceeding a delay bound of
α · Sj

λj
is at most 1

1+α .
Next, we consider conditions under which all packets can be

guaranteed an eventual delivery and therefore allow for upper-
bounding the worst-case end-to-end delay. However, for this
we require somewhat more reliable network conditions than
for pure stability: For each blocking function, there has to
be an MCF with throughput slightly larger than λj for each
commodity j. Furthermore, some nonzero capacity is needed
for each node and each blocking function. Without such an
assumption on the reliability of capacity no delay guarantees
can be given in the adversarial setting as the demand agent
could trap packets in some part of the network indefinitely.
Formally, this leads to:

Theorem 4. Let ε > 0 and let G = (G,D,B) be a game with
demand D where an MCF fB = (fB1 , ... , f

B
m) exists with

throughput λj + ε for each commodity j and each blocking
function B. Furthermore, let N − B(u) ≥ 1 for all u ∈ V
and B ∈ B. Then routing agent has a winning strategy σ′

such that all packets of commodity j are delivered within at
most Dj time steps.

Proof: Notice that we only have one direction to show. We

construct in the following a routing strategy which forwards
packets based on two different principles. Initially, regular
packets are forwarded on routes equal to the static routing
strategy of Theorem 2. However, under certain conditions
packets are converted into stuck packets. For the forwarding
of these we utilize the spare capacity ε. We distinguish the
forwarding of regular and stuck packets by different flows
and start with discussing properties of the flows for the
forwarding of the stuck packets. We assume without loss of
generality, that the network consists of a single connected
component. For each commodity j and all nodes v1 ∈ V
with v1 6= dj we fix an arbitrary shortest path P(v1,dj) =
{(v1, v2), (v2, v3) ... (vk, dj)} from v1 to dj . Let

p(v1,dj)(u,w) :=

{
1 if u 6= dj and (u,w) ∈ P(v1,dj)

0 otherwise.

Given some δ > 0 (to be specified below), we define a tuple
of functions f ′ = (f ′1, ... , f

′
m) on the network by setting for

each commodity j and (u,w) ∈ E:

f ′j(u,w) := δ
∑
v1∈V

p(v1,dj)(u,w).

Note that f ′ does not define a flow because the flow con-
servation property is not given, as

∑
v:(u,v)∈E f

′
j(u, v) =∑

v:(v,u)∈E f
′
j(v, u) + δ for each u ∈ V, 1 ≤ j ≤ m with

u 6= dj . This equality holds because each node u 6= dj has
an outgoing edge for the path P(u,dj) for which there is no
incoming edge.

Denote the minimal capacity in the network by cmin :=
minB∈B,u∈V N − B(u) and note that as long as δ ≤
cmin

m|V | the flow f ′ respects the minimum capacity cmin as∑
v1∈V p(v1,dj)(u,w) is upper bounded by m|V |. Finally, note

that f ′ spans over the entire network.
Now we turn to the MCFs in Theorem 4. Fix initially

B ∈ B. By assumption fB has throughput λj + ε for
each commodity j. Let f̄B be the normalized MCF, i.e.,
f̄Bj (u, v) :=

λj

λj+εf
B
j (u, v) for all (u, v) ∈ E, 1 ≤ j ≤ m.

Then f̄B has throughput λj for each commodity j. Further-
more under f̄B , there is free capacity of at least ε left on
each node. Hence, the combined function FB , defined by
FBj (u, v) := f̄Bj (u, v) + f ′j(u, v) for all u, v,∈ V, 1 ≤ j ≤ m
respects the capacity restrictions of the nodes in case that
δ ≤ ε

m|V | . Based on FB we derive now the following routing
strategy in analogy to Lemma 1: Define a list LBu for each
node u. Let δ := min

(
ε

m|V | ,
cmin

m|V |

)
. For u ∈ V we denote

the neighbors of u by v1, ... , vp by fixing an arbitrary order.
Let KB be the lowest common multiple of the denominators of
δ and all values appearing in f̄B and f ′. The list LBu contains
tuples of the form (j, v, B/1) ∈ {1, ... ,m} × V × {B, 1} as
follows: For each outgoing edge (u, v) ∈ E and each com-
modity j, the list contains KB · f̄Bj (u, v) copies of the tuple
(j, v, B). Additionally, for each outgoing edge (u, v) ∈ E and
each commodity j, the list contains KB · f ′j(u, v) copies of
the tuple (j, v, 1). Finally, fill up the list with null-entries so
that the length of the list is exactly KB ·(N −B(u)). Overall,
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LBu is an extended version of the list in Lemma 1 with the
following structure:

[(1, v1, B), ... , (1, v1, B)︸ ︷︷ ︸
KB ·f̄B

1 (u,v1) times

, ... (1, vp, B), ... , (1, vp, B)︸ ︷︷ ︸
KB ·f̄B

1 (u,vp) times

, ...

(m, v1, B), ... , (m, v1, B)︸ ︷︷ ︸
KB ·f̄B

m(u,v1) times

, ... (m, vp, B), ... , (m, vp, B)︸ ︷︷ ︸
KB ·f̄B

m(u,vp) times

,

(1, v1, 1), ... , (1, v1, 1)︸ ︷︷ ︸
KB ·f ′1(u,v1) times

, ... (1, vp, 1), ... , (1, vp, 1)︸ ︷︷ ︸
KB ·f ′1(u,vp) times

, ...

(m, v1, 1), ... , (m, v1, 1)︸ ︷︷ ︸
KB ·f ′m(u,v1) times

, ... (m, vp, 1), ... , (m, vp, 1)︸ ︷︷ ︸
KB ·f ′m(u,vp) times

,

(null), ... , (null)]

With the construction of this list, we obtain the strategy σ′B
which is played while B is active as follows: Each newly
inserted packet is a regular packet and is marked with a
B. Regular packets are forwarded via the f̄B flow. The
stuck packets (those labeled 1) are forwarded via the f ′

functions. Overall, under strategy σ′B at each node u the list
LBu is traversed and in each time step the N − B(u) next
entries in the list are selected. For each entry of the form
(j, v, B) the oldest packet of commodity j that has mark B
is forwarded to node v. If no such packet exits, no packet
is forwarded. For each entry (j, v, 1) the oldest packet of
commodity j with marking 1 is forwarded to v. If no such
packet exists, no packet is forwarded. For null-entries, no
packets are sent. After KB time steps, the end of the list is
reached and it is again traversed from the beginning. Before
starting a new round on the list at node u, the oldest regular
packet of each commodity at u is turned into a stuck packet
(by changing its mark B′ to 1). As in the argument for
Lemma 1, at any point in time, there are at most 2KB · f̄Bj (u)
packets of commodity j with marking B at u. During one
traversal of the list, at most 1+

∑
v:(v,u)∈E f

′
j(v, u) new stuck

packets arrive at u (from incoming edges or by converting a
regular packet). The number of packets that can be forwarded
during one traversal of the list is

∑
v:(u,v)∈E K

Bf ′j(u, v) =

KB(
∑
v:(v,u)∈E f

′
j(v, u) + δ) ≥ 1 +

∑
v:(v,u)∈E f

′
j(v, u).

Therefore, there are at most 2KB ·
∑
v:(v,u)∈E f

′
j(v, u) packets

of commodity j with marking 1 at u.
Now consider arbitrarily varying blocking functions B ∈ B.

We define in analogy to the proof of Theorem 2 the strategy
σ′ as follows: σ′ plays according to σ′B whenever the blocking
function B ∈ B is active. If demand agent switches to some
other blocking function and later switches back to B, the list
is traversed, continuing at the point where it was when the
blocking function was switched. Overall, at any point in time
there will never be more than

Rj(u) :=
∑
B∈B

2KB f̄Bj (u) + 2KB
∑

v:(v,u)∈E

f ′j(v, u)


packets of commodity j at u. Therefore, the total number of
packets of commodity j in the network is at most Rj :=∑
u∈V Rj(u)

Next we show that σ′ provides a fixed delay bound on
all packets. Note that each packet can be forwarded at most
|V |−1 times as regular packet before reaching its destination,
and similarly at most |V | − 1 times as stuck packet. Now
consider the oldest packet of commodity j in the network.
Within the next T :=

∑
B∈BK

B time steps this packet is
either forwarded (as regular or as stuck packet), or it is turned
into a stuck packet because then at least one blocking function
was active long enough to complete a round of KB time
steps. Hence, the oldest packet of commodity j will reach
its destination and is removed after at most (2|V |−1) ·T time
steps. Since at any point in time there are at most Rj many
packets of commodity j in the network, after Rj(2|V |−1) ·T
rounds any packet of commodity j has reached its destination.

Delay bounds in networks with adversarial packet injection
have been considered by Aiello et al. [4]. In contrast to our
result, their delay bound does not apply to dynamic network
capacities as they utilize an additional static routing scheme
that is executed periodically.

IV. MODEL-CHECKING TOOL

Theorem 2 gives a characterizing condition for which a
network is stable under adversarial conditions. In this section,
we demonstrate how to put this result into more practical use.
We present an implemented algorithm that operates in the
fashion of a model-checker. The algorithm determines whether
in a given network the conditions for worst-case stability hold.
In case no stability can be guaranteed, the algorithm provides
an example blocking function which prevents stability. The
algorithm can be easily extended to determine the existence of
a delay bound as well (by taking the conditions of Theorem 4
into account). We evaluate the performance of our algorithm,
and discuss resulting applications.

The biggest problem to overcome in order to check sta-
bility is the computational effort involved. On the one hand,
checking the condition for worst-case stability involves the
computation of a sufficient MCF for each possible blocking
function B ∈ B. Indeed, calculating a single MCF is less an
obstacle, as this problem is algorithmically well understood.
Even though the integer version of the MCF problem is NP-
complete [14], polynomial time algorithms are known for
calculating fractional valued MCFs [15]. However, checking
the existence of MCFs for each blocking function separately
is tedious because in the general case the set B can be large
(exponential in the network size). To still allow for realistic
network sizes, we argue that under certain (simple) restrictions
on the structure of B, one can skip the MCF computation for a
large fraction of the occurring blocking functions. In particular
we consider the following straightforward restriction: We
specify a fixed bound Omax ∈ N and assume that the sum of
blocked channels never surpasses Omax. We call a blocking
function that fulfills this constraint Omax-compliant and denote
by

B(Omax) = {B | B is Omax-compliant}
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Algorithm 1 The backtracking algorithm determines for a
given problem instance whether a blocking function without
suitable MCF exists.
Require: Network G, demand D and Omax-compliant B
Ensure: Returns a blocking assignment B for that no MCF

with throughput λj for each commodity j exists or null
otherwise.

1: function BACKTRACK(O,B)
2: F ← maximal throughput MCF on G with blocking

function B
3: T ← excess throughput of F
4: if T < 0 then return B
5: else if O ≤ T then return null
6: else
7: F ← normalize(F )
8: for all u ∈ V do
9: r ← bN −B(u)− F (u) + 1c

10: if r ≤ O ∧N −B(u)− r ≥ cmin then
11: B′ ← backtrack(O− r,newB(B, u, r))
12: if B′ 6= null then return B′

13: end if
14: end if
15: end for
16: end if
17: return null
18: end function

the set of all Omax-compliant blocking functions. In general,
the set B(Omax) with Omax ≥ N contains blocking functions
that will not support stability: A source node can be blocked
out completely if the adversarial occupies all N channels at
that node. Hence, checking these sets is trivial. Nevertheless,
we can add further constraints to B that allow the considered
traffic to have a certain minimum capacity as considered in
Theorem 4: For all u ∈ V it holds that N −B(u) ≥ cmin.

In the following, we assume the blocking functions con-
tained in B to be both Omax-compliant and respecting a given
minimal channel capacity cmin. Note that these restrictions for
the blocking functions have some quite practical implications:
Assume a wireless network provider to own spectral resources
which are chopped up into N channels per base station.
Given a certain load (equaling the arrivals in our model), we
may ask how many of the N channels can be rented out to
secondary users without further implications on the exact set
of channels such that the stability of the providers network
is not harmed. Assuming that a minimum capacity per node
is held back for the providers traffic, this problem matches
exactly the conditions specified previously with respect to the
restrictions on the set of blocking functions B. In an equal
manner, questions of survivability of fixed networks can be
mapped into the same framework.

A. Algorithm Implementation

Our algorithm works in a backtracking fashion to find
a blocking function for which no MCF with sufficient

throughput exists (see also the pseudo-code in Algorithm 1):
backtrack(O,B) takes two parameters. B is the blocking
function that is currently considered and O is the number
of channels that can be blocked additionally. Let B0 be the
blocking function that blocks no channels, i.e., B0(u) = 0 for
all u ∈ V . We have that B0 is Omax-compliant. Initially, the
algorithm is called by backtrack(Omax, B0).

At first the algorithm computes an MCF for the current
blocking function B. This computation is explained in detail
further below. The MCF is computed such that it provides a
maximal additional throughput (we call it excess throughput)
for each commodity j: Its throughput is (λ1 +T, ... , λm +T )
for T being maximal, instead of (λ1, ... , λm). There are
two breaking conditions, depending on T : a) If the excess
throughput T is negative, no feasible MCF exists and we can
return B as a counterexample4. b) Up to O channels may be
blocked by the adversarial in addition to the current blocking
assignment B. If O ≤ T then clearly, the MCF cannot be
made unfeasible by O additional blockings and hence null
is returned (i.e., we ascend in the backtracking tree). In case
that neither condition is fulfilled, we have to descend in the
backtracking tree. For this, the current blocking function has
to be modified (by occupying more channels), so that the
current MCF becomes infeasible. Therefore, the algorithm
normalizes the MCF to throughput (λ1, ... , λm), i.e., it sets
Fj(u, v) ← λj

λj+T Fj(u, v) for all 1 ≤ j ≤ m, (u, v) ∈ E.
In order to make the MCF unfeasible, the adversarial has
to occupy enough channels so that for some u there is not
enough capacity left to support

∑m
j=1

∑
v:(u,v)∈E Fj(u, v). In

case this can be achieved by blocking at most O additional
channels while respecting cmin, the backtracking algorithm
is called recursively. Here, newB(B, u, r) is the blocking
function that blocks B(u)+r channels on u and B(v) channels
for v ∈ V, v 6= u.

Overall, the runtime of this algorithm is still exponential
in the size of the network. However, as we demonstrate
in the evaluation, the algorithm typically considers only a
small fraction of the possible blocking functions so that only
relatively few MCFs have to be computed.

In line 2 of Algorithm 1, a feasible MCF for the current
blocking function is computed. For simplicity and more flexi-
bility during the development, we use a formulation as linear
program (LP) in our implementation to compute the MCFs.
The LP instances are processed by the well-known LP-solver
CPLEX.

The input data is the connectivity graph G = (V,E), the
demand D, a blocking function B and the number of channels
N . The required variables are T ∈ Q, which represents the
excess throughput for all commodities, and fu,v,j ∈ Q+ for
(u, v) ∈ E, 1 ≤ j ≤ m representing the fraction of the flow of
commodity j on edge (u, v). We formulate the LP as follows:

4Note that in order to check for the existence of a delay bound according
to Theorem 4, the algorithm must be modified to check whether T ≤ 0. For
stability according to Theorem 2, T < 0 is enough.
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Fig. 1. The evaluation scenario consists of 50 nodes. We assume a maximal
capacity of N = 3 and cmin = 1. The source and destination nodes of
demand D4 are annotated.

Maximize T , subject to∑
v:(v,u)∈E

fu,v,j =
∑

w:(u,w)∈E

fu,w,j ∀j ∀u 6= sj , dj (6)

∑
v∈V

fv,dj ,j ≥ λj + T ∀j (7)∑
v∈V

fdj ,v,j = 0 ∀j (8)

∑
v∈V

m∑
j=1

fu,v,j ≤ N −B(u) ∀u ∈ V (9)

Constraints 6 to 9 together with the variable definition corre-
spond to the constraints 1 to 5 in Definition 1. Hence, they
ensure that a feasible MCF is computed. The variable T is
maximized, so that each commodity has T excess throughput
in addition to the required throughput λj . Because T ∈ Q,
a feasible solution always exists, however if T < 0 then no
feasible MCF exists.

B. Numerical Evaluation

1) Evaluation Scenario: We measure the performance of
our algorithm on a randomly generated network depicted in
Figure 1. There are in total 50 nodes, the maximal number
of channels is set to N = 3 and in each blocking function,
there is a minimal capacity of cmin = 1. We consider the 10
Omax-compliant sets that are induced by the choice of Omax ∈
{1, ... , 10}. For our network, this results in cardinalities of B
as shown in Table I.

We consider four different traffic scenarios. In the first sce-
nario there are m = 8 random source-destination pairs namely

Omax |B|
1 51
2 1.326
3 23.376
4 313.701
5 3.412.461
6 31.298.361
7 248.635.761
8 1.744.483.611
9 10.970.926.711
10 62.561.143.641

TABLE I
CARDINALITY OF B IN A NETWORK OF 50 NODES WITH N = 3 AND
MINIMAL CAPACITY OF cmin = 1 FOR DIFFERENT VALUES OF Omax

Omax

1 2 3 4 5 6 7 8 9 10
D1 • • • • • • • • • •
D2 • • • • • • • • • ◦
D3 • • • • • • • ◦ ◦ ◦
D4 • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦

TABLE II
THE DEMANDS LABELED WITH • ARE SUPPORTED IN THE NETWORK WITH

BLOCKING FUNCTIONS INDUCED BY Omax . FOR THE ◦ ENTRIES, AT
LEAST ONE BLOCKING FUNCTION WITHOUT SUITABLE MCF EXISTS.

D1 = {(2, 49, 1), (49, 46, 1), (18, 19, 1), (3, 19, 1), (22, 16, 1),
(26, 49, 1), (45, 8, 1), (20, 17, 1)}. In the second scenario we
add two further pairs, so that we have D2 = D1∪{(40, 20, 1),
(13, 2, 1)}. Subsequently, we add further commodities in the
third and fourth scenario, resulting in D3 = D2 ∪ {(7, 28, 1),
(14, 31, 1)} and D4 = D3 ∪ {(31, 34, 1), (39, 29, 1)}.

2) Stability Results: We have assessed our algorithm for
40 different combinations of demands and sets of blocking
functions in the above scenario. Table II shows the outcome of
the computation. The demands D1 are supported for all tested
choices of Omax. For the other demands, it depends on the
choice of Omax, whether worst-case stability is given. Demand
D2 with 10 commodities is guaranteed to work when at most
9 channels are blocked. For 10 or more blocked channels,
there is a blocking function that will not support all demands.
When even more commodities are added, the flexibility of the
network in terms of blocked channels is diminished further.
For D3 no more than 7 blocked channels and for D4 no more
than 3 concurrently blocked channels are supported.

3) Runtime Behavior: In Figure 2 the total number of
MCFs computed by our algorithm is shown for each setting
of Omax. Comparing this graph with the amount of potential
computations, as shown by Table I, it is clear that only
a tiny fraction of MCFs actually needs to be considered.
Still, it is also important to consider the run time of the
computation of a single MCF. The used LP formulation to
compute the MCF grows for each additional commodity by
|E| many new variables and |V | additional constraints. Still,
when considering the average runtime for the computation of a
single MCF as shown in Table III, the individual computation
is reasonably low. Overall, this results in run-times which are
below one hour in the worst case. Note that a more efficient
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Fig. 2. The total number of calculated MCFs in each run. This number
corresponds to the total number of checked blocking assignments.

D1 D2 D3 D4

- 47 ms 81 ms 120 ms

TABLE III
AVERAGE RUNTIME PER MCF ON AN AMD Phenom II X4 945 QUAD

CORE MACHINE WITH 3.0GHZ AND 8GB OF RAM; 64BIT Ubuntu 10.04
AND CPLEX 12.4. FOR D1 NO MCF WAS COMPUTED BY THE

ALGORITHM, AS THIS DEMAND IS TRIVIALLY SUPPORTED.

implementation of the MCF calculation could further reduce
the runtime.

4) Remarks: Our backtracking algorithm enables an ef-
fective checking of stability conditions in reasonably sized
networks. It accomplishes this by cutting large parts of the
backtracking tree, enabling to skip most blocking assign-
ments. The algorithm provides an example blocking function,
whenever the demand is not supported due to bottlenecks in
capacity. For example, for D4 and Omax = 4, the algorithm
identifies a bottleneck around node 31. If in total more than
3 channels are blocked out on the nodes 20 and 12, demand
D4 cannot be supported anymore. This information can be
used iteratively to improve the stability: Either certain blocking
functions are excluded or more capacity. A further solution
would reduce the traffic or could introduce priorities among
the traffic flows. When the bottleneck has been taken care of,
the algorithm is run again to either identify further problematic
areas or verify stability.

Furthermore, we note that the packet and delay bounds
obtained in our main results can be significantly improved
by our model-checking algorithm. The bounds are obtained
by summation over all possible blocking functions. However,
with our model-checking algorithm we calculate a set of MCFs
that work for all possible blocking functions. Typically, this
set of MCFs is significantly smaller than B. For the bounds,
it is enough to summarize over this much smaller set.

V. CONCLUSION

In this work, we present a novel approach for network
stability analysis under adversarial worst-case conditions. We
first introduce a network model that considers three key

network parameters: topology, traffic and capacities. Next,
we formulate an infinite game upon our network model with
which we model adversarial capacity changes in the network.
This allows us first to derive the stability region of a dynamic
network under adversarial conditions without specifying the
routing algorithm. Furthermore, we can provide conditions
under which a delay bound exists for these networks. A
further benefit of our infinite game formulation, not present
in related work, is that it enables us to construct a model-
checking algorithm which determines for a practical instance
whether the network stays stable. If network stability can not
be provided, the tool identifies the traffic pairs that cause the
network to become unstable as well as the nodes for which
this happens.

Finally, our routing game framework allows for future
research. For example, augmenting the model with a notion of
maximum burstiness similar to Andrews et al. [7] or assuming
channel sensitive transmission where each packet transmission
blocks a dedicated channel on source and destination, yields
the question how to characterize the games winnable by rout-
ing agent. How does the adversarial traffic relate to MCFs?
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