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ABSTRACT

Upcoming low-latency machine-to-machine (M2M) applica-
tions are currently attracting a significant amount of inter-
est from the wireless networking research community. The
design challenge with respect to such future applications is
to allow wireless networks to operate extremely reliably at
very short deadlines for rather small packets. To date, it is
unclear how to design wireless networks efficiently for such
novel requirements. One reason is that existing performance
models for wireless networks often assume that the rate of
the channel code is equal to the Shannon capacity. However,
this model does not hold anymore when the packet size and
thus blocklength of the channel code is small. Although it
is known [1] that finite blocklength has a major impact on
the physical layer performance, we lack higher-layer perfor-
mance models which account in particular for the queueing
effects under the finite blocklength regime.

A recently developed methodology [2] provides probabilis-
tic higher-layer delay bounds for fading channels when as-
suming transmission at the Shannon capacity limit. Based
on this novel approach, we develop service process character-
izations for fading channels with finite blocklength channel
coding, leading to novel probabilistic delay bounds that can
give a fundamental insight into the capabilities and limita-
tions of wireless networks when facing low-latency M2M ap-
plications. In particular, we show that the Shannon capac-
ity model significantly overestimates the delay performance
for such applications, which would lead to insufficient re-
source allocations. Finally, based on our (validated) analyt-
ical model, we study various important parameter trade-offs
highlighting the sensitivity of the delay distribution under
the finite blocklength regime.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design - Wireless communication
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1. INTRODUCTION

While state-of-the-art wireless systems have mostly been
designed for human users, it is expected that next genera-
tion systems will be strongly utilized by so-called machine-
to-machine communications (M2M). In such applications,
automated distributed processes communicate over wireless
networks and thus require quite different network features
than typical human-related applications. Despite these new
requirements, wireless systems offer many advantages for
M2M applications, such as reduced cabling cost, increased
flexibility, and higher robustness [3]. Thus, M2M applica-
tions for traffic safety, the smart electricity grid, or in the
context of industrial automation systems are currently of
high interest in the domain of 5G cellular networks [4] .

One of the biggest distinguishing factors between M2M
and human-related applications are the requirements with
respect to the delay. For instance, in factory automation
there are often closed-loop control systems, where sensors,
controllers, and actuators must exchange information with
cycle times (i.e. delays) of 5 ms and below while requiring
reliability levels of 1 — 10™° and higher (with respect to the
deadline). Despite these tough requirements, packet sizes
for these applications are typically rather small, i.e. only
a few bytes need to be transmitted per datagram. Thus,
the academic and industrial research community faces the
question how wireless networks can be designed to support
such novel application types, also referred to as low-latency
applications.

This turns out to be a difficult question. Despite the huge
interest, we lack a solid theoretical base for modeling the
performance of such systems due to the short time spans
and small packet sizes involved. Many existing performance
models assume that channel coding can provide error-free
transmissions in a noisy channel, and that those codes of-
fer a data rate equal to the Shannon capacity. However,
this model only holds in the limit of channel codes with in-
finite blocklength. In low-latency applications with small
packet sizes and small blocklengths, there is always a prob-
ability that transmissions fail due to noise. Furthermore,
for high reliability, data must be encoded at a rate which
is significantly lower than the Shannon capacity. Regard-
ing the pure physical layer behavior, Polyanskiy et al. [1]



derived an information-theoretic performance model of the
finite blocklength regime, which quantifies these effects.

In order to characterize the possibilities and limitations of
wireless networks with respect to low-latency M2M applica-
tions, such finite-blocklength performance models need to be
extended up to the application layer, where queueing effects
are taken into account. One factor that causes queueing is
channel fading, which means that the signal strength and
thus the data rate of a wireless channel changes randomly
over time. In general, it is difficult to analyze the queueing
performance of fading channels due to the difficulty of find-
ing a stochastic characterization of the random data rate.
When the physical layer model also considers finite block-
length effects, the analysis at the application layer becomes
even more challenging.

In this paper, we address this fundamental challenge. Al-
Zubaidy et al. [2] recently provided a methodology for wire-
less network performance analysis in fading channels with
the Shannon capacity model. By applying stochastic net-
work calculus in a transform domain, they were able to de-
rive probabilistic delay bounds in closed form. Based on this
novel approach, we provide a performance model for wireless
systems that operate at finite blocklength. In particular, the
core contributions of this paper are:

e We derive probabilistic delay bounds for wireless sys-
tems that use channel coding at finite blocklength.

e We provide a fast and efficient method to compute the
bounds for Rayleigh fading channels. The computation
requires solving an integral, which we accomplished
through several series expansions, leading to an infinite
number of infinite sums. However, we demonstrate
that the series converges very quickly for reasonable
channel parameters.

e We validate the analytical delay bounds by simula-
tions.

e Our results quantify the performance difference be-
tween the Shannon capacity model and the finite
blocklength model in [1]. We show that finite block-
length effects can be significant and must be taken
into account, in particular for low-latency M2M appli-
cations.

The rest of the paper is structured as follows: In Sec-
tion 2 we discuss related work. In Section 3 we present the
basic assumptions and the problem formulation of our work,
while in Section 4 we present a brief review of stochastic net-
work calculus. Our main analytical contribution follows in
Section 5, while we validate this work and present further
numerical results in Section 6. Finally, we conclude our work
in Section 7.

2. RELATED WORK

The characterization of channel codes at finite blocklength
by Polyanskiy et al. [1] has renewed the research interest in
this area. Most notably, Yang et. al [5] performed stud-
ies for finite blocklength coding in fading channels. They
analyzed systems where the transmitter does not adapt the
rate according to the instantaneous SNR of the channel and
computed the maximum achievable rate for a certain error
probability. It was found that for many fading distributions,

including Rayleigh, the difference between the infinite and
the finite blocklength model is very small. In another work
[6], they investigated the tradeoff between transmit diver-
sity and the cost of learning the channel. However, none of
these results apply to our scenario where the rate is always
adapted to the current SNR of the channel. Furthermore,
they do not consider queueing effects. Wu and Jindal [7]
considered queueing effects in a simple ARQ system but did
not address the delay.

Performance analysis of wireless networks in fading chan-
nels has often been based on discrete/finite-state channel
models such as the Gilbert-Elliott channel or finite-state
Markov channels (FSMC), e.g. [8, 9]. However, such dis-
crete models cannot provide exact solutions when the fading
channels show a continuous distribution of the SNR.

The (min,X) network calculus approach developed in [2]
was used for transmit power minimization for process au-
tomation under delay constraints [10]. However, the service
was characterized by the infinite blocklength Shannon ca-
pacity model.

Finite blocklength effects in wireless networks were stud-
ied by Gursoy [11], who applied the effective capacity frame-
work [12] to fading channels at finite blocklength and proved
that there is a unique optimal tradeoff between the rate and
the error probability. This work is the closest to our work. It
was extended to the scenario where a codeword is distributed
across multiple coherence blocks [13]. The downside of the
effective capacity framework is that it provides results only
for constant arrivals and that it analyzes the tail of the de-
lay distribution, meaning that it works only for relatively
large delays [12]. Furthermore, the authors in [11] provided
no analytical method to compute the effective capacity at
finite blocklength, which means that numerical integration
is necessary.

Apart from the work by Gursoy, only a few authors have
worked on the higher-layer analysis of wireless networks in
the finite blocklength regime. Zhang et al. [14] provide a
network calculus analysis of an AWGN channel without fad-
ing. However, they ignored that the error rate is no longer
zero and assumed a deterministic service curve.

3. SYSTEM MODEL

We consider data transmission between a data source,
(e.g. a sensor in an industrial automation system) to an-
other device (e.g. a control unit) over a wireless channel. A
discrete-time model is used, i.e. time is divided into time
slots with duration T'. In each time slot i, the source gen-
erates a; data bits and stores them in a queue. Then the
queued data bits are transmitted over the wireless channel.

3.1 Wireless Channel Model

The wireless link is modeled as a single-antenna Rayleigh
fading channel, where the signal-to-noise ratio (SNR) at the
receiver varies over time. We assume a block-fading model
where the SNR +; remains constant during each time slot
and varies independently from one time slot to the other.
Hence, the SNR values in different time slots are indepen-
dent and identically distributed (i.i.d.) with exponential dis-
tribution:

fn) = L% (1)

k2 ’7 )
where 7 is the average SNR at the receiver, which depends
on the transmit power at the source, among other parame-



ters. In each slot, the system transmits N symbols, which
consist of n symbols for data transmission and np; symbols
for headers and channel estimation, as well as for feedback
and acknowledgments from the receiver. The system thus
occupies a bandwidth of N/T' [Hz].

In each time slot ¢, the transmitter uses a channel code
of length n and rate R; to encode the first nR; bits in the
queue and then transmits the codeword to the receiver. The
receiver replies with an acknowledgment, which is assumed
to be instantaneous and error-free. Furthermore, we assume
that the transmitter has perfect estimates of the instanta-
neous SNR ~; and adapts the coding rate R; according to
~vi. A standard rate model that is often applied in wire-
less networking research, including in [2], assumes that the
achievable rate R; in bits per (complex-valued) symbol is
equal to the Shannon capacity of the channel, and no errors
occur:

Ri,Shannon = 10g2(1 + ’yl) (2)

We will refer to the standard rate model as Shannon model.
The Shannon capacity is an upper bound for codes which
only holds when the blocklength n tends to infinity.

At finite blocklength, there is always a probability € > 0
that a transmission error occurs. This error probability can
be reduced by decreasing the rate of the code. It was shown
by Polyanskiy et al. [1, Thm. 54] that for an AWGN channel
with SNR ~; at a blocklength n and error probability €, the
achievable rate in bits per symbol can be closely approxi-
mated by

Rulm o) ~logy (1470 — | L0 Ologe, (3

where 7; is the instantaneous SNR of the channel, Q' ()
the inverse of the Gaussian Q-function, and the channel dis-
persion V is given as’

1
V=1 E=AES (4)
The achievable rate expression in Eq. (3) is a tight approx-
imation for an information-theoretic bound. Even though
current coding and modulation schemes cannot yet fully
achieve this rate, this model provides a much better descrip-
tion than a simple Shannon model. A comparison between
the information-theoretic bounds and current LDPC channel
codes can be found in [1]. Furthermore, it was also proven
that Eq. (3) closely approximates the converse bound, which
means that even the best future coding schemes cannot ex-
ceed this rate.
At very low SNR ~;, the expression for R;(n,€) can be-
come negative. Therefore, the achievable rate must be lower-
bounded by zero:

R} (n,€) = max (R;(n,¢€),0). (5)

We assume in the following that there exist codes with
blocklength n and error probability e that achieve the rate
R} (n, €) exactly. The throughput in time slot i is n- R (n, €)
bits if no transmission error occurs.

3.2 Queueing Model

For the system-level analysis of a wireless communication
network, we use the same stochastic system-theoretic model

"We use a different notation than [1] and put log, e as a
separate factor in Eq. (3).

as in [2]. The a; data bits that are generated at the source
correspond to the arrival process of the queueing system
during time slot i. The departure process d; describes the
number of bits that arrives successfully at the destination.
The departures depend both on the number of bits wait-
ing in the queue and on the service offered by the wireless
link. The service process s; is equal to nRj (n,€) when the
transmission is successful and a positive acknowledgment is
received. When there is a transmission error, we set s; to
zero. This means that the bits remain in the queue; they
will be transmitted again in future time slots. Therefore, all
data will eventually be transmitted to the destination and
the queueing system is lossless. The wireless link transmits
the data from the queue in FIFO (first-in first-out) fashion.

In order to derive delay bounds, we need to define the
cumulative arrival, service and departure processes in the
time interval [7,t):

t—1 t—1 t—1
Art) =) a,  S(rt)=)Y_s,  D(rt)=> d.

The delay W (t) at time ¢ describes the number of time slots
it takes for an information bit arriving at time ¢ to be re-
ceived at the destination. It is defined as

W(t)2inf{u>0: A(0,t) < D0, t+u)}. (6)

3.3 Problem Statement

We are interested in finding a probabilistic bound on the
delay W (¢t). Thus, we define a target delay w. The prob-
ability that the delay is larger than w, i.e. that some data
bits are not received within a certain deadline, is denoted
by the delay violation probability p.(w)

pv(w) =P{W(t) > w}. (7)

We assume that a system is reliable when only a very small
percentage py () of bits is received after the deadline w. Our
main goal in this work is to find an estimate for the delay
violation probability py (1) when the rate of the channel code
is given by the finite blocklength model. Furthermore, we
investigate how the proposed model can be used to aid the
design of communication systems that operate at low delay.

4. STOCHASTIC NETWORK CALCULUS

In this section, we provide an overview of the results de-
rived in [2], where stochastic network calculus in a transform
domain was used to derive an upper bound for the delay.
Even for coding at infinite blocklength, the major problem
in deriving stochastic performance bounds for fading chan-
nels is the nonlinear mapping of SNR to achievable rate as
R = log,(1 + SNR). While the probability distribution for
the SNR is usually given in a simple form as in Eq. (1),
the statistics of the rate cannot be stated in a simple closed
form. This problem remains when the achievable rate ap-
proximation R*(n,¢€) for finite blocklengths is used because
the mapping is essentially still logarithmic except for some
penalty term.

4.1 Network Calculus in the SNR Domain

The authors in [2] solved this problem for infinite block-
length by analyzing the system in the exponential domain,
also referred to as SNR domain. Instead of describing the



cumulative service and arrival S(r,t) and A(7,t) in the bit
domain, they are converted to the SNR domain as follows:

A(r,t) = e S t) = 51, (8)

The arrivals can then be interpreted as a series of power
or SNR demands on the system. Due to the exponential
function, the cumulative arrival and service processes are
now multiplicative instead of additive:

t—1 t—1
A(r,t) = H e’ S(r,t) = H e, (9)

As s; is usually a logarithmic function of the SNR, switch-
ing to the SNR domain (i.e. taking the exponential function)
eliminates the logarithm. Then, closed-form statistical anal-
ysis becomes possible through stochastic network calculus.

Stochastic network calculus allows the description and
analysis of queueing systems through simple linear input-
output relations. In the bit domain it is based on a (min,+)
dioid algebra on (R U {+oc0}) where the standard addition
is replaced by the minimum (or infimum) and the standard
multiplication replaced by addition. Similar to the convolu-
tion and deconvolution in standard algebra, there are defini-
tions for convolution and deconvolution operators in (min,+)
algebra. The convolution and deconvolution operators in
(min,+)-algebra are often used for performance evaluation.
The reader is referred to [2] for more information.

In the SNR domain network calculus, the arrival, service
and departure processes become multiplicative instead of
additive. This requires using a (min,x)-algebra instead of
(min,+) where X denotes the standard multiplication. The
non-commutative convolution and deconvolution operators
are defined as

XY(r,t)= Tirlltf;t{X(T, w) - Y(u,t)}, (10)
XoY(rt) & sup { 3\;((5:?) } . (11)

Many of the input-output relationships of the queueing
system can be expressed using these operators. The delay
can be bounded as follows [2]:

W) <inf{u>0:A0S8(t+u,t) <1}, (12)

which means that the delay violation probability p(w) =
P{W(t) > w} can be bounded as [2]:

pv(w) <P{A@S({t+w,t) >1}. (13)

This bound cannot be computed directly. However, it can
be upper-bounded again by using the Mellin transform. The
Mellin transform Mx(s) of a nonnegative random variable
X is defined as [2]

Max(s) EE[x°71]. (14)

We denote the Mellin transform of a bivariate process X (7, t)
as Mx (s, 7,t) and choose values for s € R.

The Mellin transform is used to formulate the moment
bound, which is given for a > 0 and s > 0 as [2]

P(X >a) <a "Mx(l+s). (15)

The moment bound follows directly from Markov’s inequal-
ity as P(X > a) = P(X° > o) for any s > 0. The moment
bound with @ = 1 on Eq. (13) results in

pv(w) < Maps(l+s,t+w,t). (16)

The Mellin transform of the (min,X)-deconvolution of two
processes can be upper-bounded for s > 0 [2]:

M.A@S(l + S, T, t) S ZM.A(l + S, U, t) : Ms(l - S,’LL,T)~
u=0
(17)
Therefore, a bound on py(w) can be computed from the
Mellin transforms of the arrival and service processes.

4.2 Mellin Transform of the Arrival Process

Analogue to [2] we focus on (o(s), p(s))-bounded arrivals
where the log-moment generating function (log-MGF) of the
cumulative arrivals in the bit domain is bounded by

élogE [eSA<T’t)] <p(s)-(t—7)+o(s). (18)

To simplify notation, we restrict the following analysis to
values (o, p) that are independent of s, which is true for con-
stant arrivals. Using Egs. (18) and (8), the Mellin transform
of the SNR-domain arrival process can be upper-bounded:

Mals,7,t) = B[A(r, )] < 700074 (19

4.3 Mellin Transform of the Service Process

When the service, i.e. the achievable rate in time slot %
can be written as s; = n - log, g(vi) = 5 - Ing(y:), and
when the s; of different time slots are i.i.d. (independent
and identically distributed), then the Mellin transform of
the cumulative service Ms(s, 7,t) can be computed from the

Mellin transform of g(+;), which will be derived in Sec. 5:
t—1 s—1
Ms(s,7,t) = E <H gmm)

(20)

4.4 Delay Bound

When the Mellin transforms of the arrival and service pro-
cesses are known, one can combine Eq. (17) with Eq. (16),
which must hold for all s € RT, to compute a bound on the
delay violation probability p.(w):

po(w) < ;gg {K (s,t+w,t)}. (21)

where K (s,t 4+ w, t) is defined as

¢
K(s,t+w,t) 2 ZMA(l—Fs,u,t) - Ms(1 = s,u,t+w).
u=0
(22)
Note: K (s,t + w,t) is essentially the right side of Eq. (17),
except that the upper limit of the sum was changed from
t + w to t. This change was proven in [2].
When using the bounded arrival model in (19), the service
model in (20), and

Y (s) & Mgy (1 - %s) ,



then K (s,t + w,t) can be computed as

t
K (s,t+w,t) <Y e (") 7"V (s)
u=0
t

— V()" 3 (Y ()"

v=0
__ os wl— (epsy(s))t+1
=e7°Y (s) T—ery(s)
The queueing system is stable if
e”Y(s) < 1. (23)

In a stable queueing system, we can obtain a bound on the
function K (s,t+ w,t) by letting ¢ — oo:

1

K(S,t‘f’ w,t) S QUSY(S)U}TS}/(S).

(24)

S. SERVICE CHARACTERIZATION IN
THE FINITE BLOCKLENGTH REGIME

When using stochastic network calculus, the computa-
tion of delay bounds requires the computation of the Mellin
transform of e®’, i.e. the service process in the SNR do-
main. We assume in the following that s; follows the finite
blocklength model.

At finite blocklength, there is always a chance that errors
will occur. The error probability is denoted as e. In Sec. 5.1,
we will show how to compute the Mellin transform of the
service process when transmission errors occur.

Apart from the chance that errors occur, coding at finite
blocklength also causes a rate loss, which depends on the
instantaneous SNR ~; and makes the computation of the
Mellin transform difficult. In Sec. 5.3, we show how to ap-
proximate the Mellin transform by approximating the rate
loss as a constant. In Sec. 5.4, we compute the Mellin trans-
form through a number of series expansions, which allows
approximation of the Mellin transform with arbitrary accu-
racy.

5.1 Characterization of Transmission Errors

In Sec. 4.3, we showed that if the offered service in the
bit domain is given as s; = n - log, g(7:), then the Mellin
transform of the cumulative service S(r,¢) in the SNR do-
main can be computed from the Mellin transform of g(~;).
However, when coding at finite blocklength there is always
a chance that an error occurs. In case of error, the offered
service s; is zero. The service model needs to be modified to
describe transmission errors. We use the Bernoulli random
variable Z; € {error,success} to describe the error event.
Then, the service in the bit domain depends on two random
variables:

| nlogy h(i) if Z; = success
iTY o0 if Z; = error

: (25)

where h(7;) will be specified later. Now, the service can be
written as s; = n - log, g(vi, Z;) with

In general, the two random variables v; and Z; might not
be independent. However, in this work we restrict the anal-

if Z; = success
if Z; = error

(26)

ysis to constant values? of the error probability e. When
the transmitter chooses a code with rate R*(n,€) according
to (5), then the rate of this code depends on the SNR ~;
but the error probability of this code is always e. Therefore,
the error event Z; is also independent of v;, and the Mellin
transform of g(v;, Z;) can be computed as

Mg('yi,Zi)(s) = ]E'Yiazi [9(717 Zi)s_l]

=(1—¢) By [(m)" '] +e
=(1—-¢€) Mp(s) +e (27)
We already know from Eq. (20) that the Mellin trans-
form of the SNR-domain service process S(7,t) can be
computed from the Mellin transform of the g()-function,
which holds also when the g()-function has two arguments.
Now, Eq. (27) showed that the Mellin transform of the g()-

function can in turn be easily computed from My, (s),
which we will derive in the following sections.

5.2 Service at Finite Blocklength

When the blocklength n and the error probability e are
fixed, the achievable rate is given by Eq. (5):

R} (n,€) = max <10g2(1 +v) — \/%Q_I(E) log, e,O) .

We define the constant

and rewrite Eq. (5):

* _ 1+
R; (n,e) = max <log2 (eﬁP> ,0).

Now, define

h(vi) = max (6‘/VP , 1) . (29)

In case the transmission is successful, the service is given as
s; = nRj(n,€) = nlog, h(vi). In case of error, the service
is zero. The Mellin transform of h(vy;) is however difficult
to obtain because the channel dispersion V given in Eq. (4)
depends on the SNR ~;.

5.3 Approximation for High SNR Values

Our first approach to find the Mellin transform of h(~;)
approximates the channel dispersion as constant, which is
accurate at high SNR values. Note that the second term of
the channel dispersion V' approaches zero when the SNR is
high. Thus, at high SNR we can approximate the channel

dispersion as
1
V=1l-———— 1. 30
(1 +7:)? (30

The penalty term +/V P becomes equal to the constant P.

2Note that varying e with SNR, e.g. allowing more errors
when the channel is bad, might result in better performance.
Investigating this effect is left for future work.



For Rayleigh fading channels, ; is distributed according
to Eq. (1) and the Mellin transform of h(+y;) is approximately

1+ ot
(max( P ,1)) :|
6P71 oo s—1
1 v 1 i 1 _x
:/ —e 7Wd'n—k/ ( +P7> Ze di.
0 Y eP—1 € Y

The first integral is simply the cumulative distribution
function of the SNR. Denote the second integral as Bo(s):

A T N 1)
w= [, () AT

Mh("/i)(s) ~E

~ N\ s—1 P
—(5) (2. (31)
€ Y
where I'(s, z) denotes the upper incomplete gamma function:
(oo}
[(s,z) = / ¢* e %dg. (32)

The Mellin transform of h(vy;) is then

ePo1

My (s) m1—e" "5 + Bo(s). (33)

Observe that if we allow P = 0, we obtain the Mellin
transform of the service process with the infinite blocklength
model, which is given in [2].

5.4 Extension to all SNR Values

In order to extend the previous result to lower SNR values,
a series expansion for the square root channel dispersion vV
is used, which is based on the following expansion of /1 — =
for -1 <z <1 (Formula 1.110 in [15]):

VIi=1+Y <1§2) (—ay

j=1
oz 2 2
- 2 8 16

With the definition®

a(1/2)] _ .
b = ( i)l 7 ’
one can write VvV as
VV = 1—#=1—§:L. (34)
T+7 ~  H O+

The convergence of the series in Eq. (34) to the actual
value is illustrated in Fig. 1. If all terms of the infinite se-
ries in (34) are ignored, then V/V is approximated to 1. This
corresponds to the approximation for high SNR as discussed
in the previous section. In order to get a better approxima-
tion, the terms in the infinite sum need to be included. It

3The signs of the binomial coefficient and (—z)7 are always
opposite

0.6

V'V (Square Root of Dispersion)

0.4 VV ~ 1 (High SNR approx.)
— — — V/V approx. with 1 term
vV approx. with 2 terms
o2y~ |- vV approx. with 3 terms
VV (exact)
0 I I I I |
-20 -10 0 10 20 30
SNR (dB)

Figure 1: Approximation for vV when the series in
Eq. (34) is limited

can be seen that three terms in the sum already lead to a
very tight approximation when the instantaneous SNR ~; is
above -10 dB.

A useful property is that when the series is approximated
by a limited number of terms, the approximation is always
larger than the actual value. The rate is reduced by a term
that is linear in v/V, so the approximation always underes-
timates the achievable rate. Therefore, the approximation
leads to higher delays, and creates a valid upper bound on
the delay.

The series expansion is used to compute the Mellin trans-
form of h(~;) given in (29). First, we must find the point
where the maximum in h(7;) becomes greater than 1. When
the high SNR approximation was used, this point was easily
found at v} = e” — 1. Now, we suggest to do a simple line
search. Near this point, the achievable rate is close to 0, and
thus any inaccuracies will only have minor impact on the re-
sult. We assume that the point is found at ~; = e —1 for
some value P’.

Then, the Mellin transform of h(~;) is:

’
Py

1
—e” 7 dvy; + B(s)
Y

M) (8) =/O

with
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where we used the power series of Eq. (34). Now, for each
factor in the infinite product, the series expansion of the
exponential function is applied, and the factors that do not
depend on y; are denoted as ¢; x:
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In addition, define the variables
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To see how the integral can be solved, first assume that
the product in B(s) includes only the first factor 7 = 1. Call
this integral Bi(s):
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When the first J factors (j = 1,...,J) in Eq. (35) are
used, and each factor is expanded according to Eq. (36),
then there are J sums, and each term includes the factor

[T hs

j=1

(39)

5

J Cj.k; v a2k
1;[ 1+V YR\ 1+

Then, similar to the computation of Bi(s), the integral
Bj(s) can be computed as

o J

By(s) Z Z“ F<5_22‘7kw g >.th’kr
k;=0  k1=0 j=1

(40)

To obtain B(s), let J go to infinity. B(s) contains an
infinite number of infinite sums. For practical SNR values,
it is however sufficient to compute only very few terms, as
the value of the incomplete gamma function decreases very
quickly with 57 and k;. We suggest to include only terms
with 377 2jk; < L, e.g. L = 10, which allows fast cal-
culations but still gives tight approximations for reasonable
SNR values. Note that the computation of the incomplete
gamma function I'(s, z) needs itself a numerical approxima-
tion. However, when computing Bjs(s), I'(s, z) needs to be
computed only for the first term through this numerical ap-
proximation. The other terms can be computed much faster
by using the recurrence relation, e.g. [16, Eq. 6.5.21].

6. NUMERICAL RESULTS

In this section, we evaluate the bounds on the delay vio-
lation probability numerically and compare it to simulation
results. Unless stated otherwise, we use a blocklength of
N = 168 symbols and set the length of one time slot to 1

ms. The choice of 168 symbols is inspired by the size of a
resource block in an LTE system, which contains 12-7 = 84
symbols and lasts 0.5 ms [17]. We assume that the channel
stays constant for 1 ms, i.e. two LTE resource blocks, and
then changes to a different value. Furthermore, for most of
our results the ns, overhead symbols are ignored. Thus, the
number of symbols for the channel code n is also 168.

For the arrivals, e.g. data generated at a sensor, we as-
sume a constant and periodic process where in each time
slot a packet of size a bits arrives into the queue. The Mellin
transform of the arrival process is then given by (19), which
is satisfied with equality, with p(s) = a and o(s) = 0.

The simulations use the same channel model as used by
the analysis, i.e. the coding rate is assumed to be equal
to information-theoretic bound in Eq. (3) for finite block-
lengths.

6.1 Validity of the Bounds
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Figure 2: Simulation results and delay bounds for
average SNR 4 = 2 dB, with arrivals a = 24 bits.
T =1 ms, n =168. The optimal error probability was
found at € = 0.0138. 10*! simulations were performed.

For an average SNR of 2 dB, Fig. 2 shows the delay vi-
olation probability p.(w) for different target delays . In
each time slot, a = 24 bits were generated at the source.
When the effects of coding at finite blocklength are taken
into account, the delay increases significantly. The analyt-
ical bounds that were obtained with the Shannon capacity
model would underestimate the actual delays.

Fig. 3 shows a similar effect at an average SNR of 10 dB
with a = 240 bits arriving in each time slot. Here, the differ-
ences between the Shannon model and the finite blocklength
model are smaller than in Fig. 2. This result is reasonable:
at high SNR, the absolute rate penalty of finite blocklength
codes is nearly constant. Thus, with higher SNR and higher
rate, the relative penalty becomes smaller.

The analytical bounds are extremely useful for predicting
the system performance even though there is a difference be-
tween the analytical bounds and the simulation results. The
difference was also observed in [2] and [18] and seems to be
unrelated to the finite blocklength model. Despite the dif-
ference, the slope of exponential decay of the delay violation
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Figure 3: Simulation results and delay bounds for
average SNR 74 = 10 dB, with arrivals a = 240 bits.
T =1 ms, n = 168. The optimal error probability was
found at ¢ = 0.0046. 10" simulations were performed.

probability matches with the simulation results. In addition,
the horizontal distance between analytical and simulation
results is small. When the bounds predict a delay of e.g. 8
ms for a certain delay violation probability, the actual delay
is e.g. 6 or 7 ms. Most importantly, the analytical results
provide upper bounds for the delay violation probability, so
a system that achieves the rate R(n,¢€) will perform better
than those bounds. When allocating resources, we would
rather allocate a bit more resources than necessary and get
a system that performs better than required.

To compute the delay bounds efficiently, we must use an
approximation for the integral B(s), which uses the infi-
nite sum in Eq. (40) where only terms with 3372 2jk; < L
are considered. The resulting delay bounds for different
values of L are shown in Fig. 4 for different SNR values.
At each SNR, the maximum possible size a of the arriv-
ing packets was chosen such that the best approximation
with L = 20 still satisfies the delay requirements w = 7 ms,
pv(0) < 1075. When using fewer approximation terms, the
delay bounds become more loose. Those bounds are still
valid upper bounds, but they do not estimate the actual
performance of the system well. It can also be seen that
very few terms are sufficient. For the selected parameters,
we find that the approximation with L = 8 is already very
accurate. At high SNR, even simpler approximations are
acceptable.

6.2 Resource Allocation

An analytical method can help a system in deciding how
much bandwidth and resources must be allocated to a cer-
tain application. When dimensioning a system, we require
that py (@) must be smaller than some target delay violation
probability p. Thus, the delay requirements are represented
by the tuple (w, p).

In Fig. 5 we show the minimum average SNR at the re-
ceiver for different requirements on the delay. We set a fixed
target delay violation probability of p = 107°, but we vary
the target delay @ at which the system must satisfy this
target. In each time slot 7' = 1 ms, a packet with a = 120
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Figure 4: Delay bounds for finite blocklength n = 168
with different approximations for the integral B(s).
At each SNR, the packet size a was chosen such that
the delay bound with the tightest approximation L =
20 is at p, () = 107° for a target delay 1 = 7 ms.
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Figure 5: Minimum SNR for different requirements
on the delay. For each target delay w, we required
py(1) <107°. n = 168, a = 120 bits.

arrives.  When the system demands very small delays w,
the required SNR increases, so the transmitter should choose
a higher transmit power. For very small target delays, the
difference between the Shannon model and the finite block-
length model is more than 3dB. This is a significant dif-
ference that must be taken into account when allocating
resources.

Instead of allocating more resources to the system, per-
haps there is a way to reduce the demand on the system.
In the example of a sensor that generates data, one could
perhaps reduce the accuracy of the sensor readings in order
to meet the delay requirements. This is shown in Fig. 6 for
different SNR values and fixed delay requirements of w = 7
ms and p = 107°. Here, the Shannon model would again
overestimate the performance of the system.

6.3 Optimal Error Probability



©
o
o

—>— Shannon Model
Finite blocklength n=168 -

@

o

o
T

Maximum arrival packet size a
n w S [ D ~
o o o [=] o o
o o o o o o

-
o
o

0 . . . . .
0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

Figure 6: Maximum packet size a (in bits) of the
arrival traffic for different SNR. n = 168, T' = 1 ms.
Delay requirements: @ =7 ms and p = 107°.

102 ‘
Simulation
Bound (L=10)
103 E
’{,;\
g
[in]
A
5 107 F E
<
<
&
105 F E
10 : :
1074 107 1072 1071

Block Error Prob. e

Figure 7: The delay violation probability p.(w) for
w = 5 ms depends on the the block error probability
e. Parameters: y=2dB, T =1 ms, n = 168, a = 24
bits. 2-10'° simulations were performed.

When coding at finite blocklength, there is always a prob-
ability e that the data cannot be decoded at the receiver.
Fig. 7 shows that the analytical delay bounds can be used
to find an optimal value for e. For a blocklength n = 168,
SNR 2 dB and a = 24 bits arriving in every time slot, the
optimum is at € = 0.0138. For higher values of €, too many
transmissions are lost, and the delay increases. For smaller
values of ¢, the system chooses very small transmission rates,
such that the queue cannot be served fast enough and the
delay also increases. Our simulation results confirm that the
analytical bounds can be used to find the value of € leads to
the best performance.

In all results presented so far, we have chosen the optimum
value for e. Fig. 8 shows the optimal values that were used
for the analysis in Fig. 5. It shows that when the delay
requirements are very strict (small @), the system should
operate at a very small error probability € and thus at very
low rate. When larger delays are acceptable, then the system

performs best when it uses higher rate and accepts a higher
probability of error.
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Figure 8: Optimal ¢ for the parameters in Fig. 5

6.4 Optimizing the Blocklength

In a fading channel, the instantaneous SNR. varies ran-
domly over time. If this instantaneous value remains too
small for some time, then only very little data can be trans-
mitted, and the data experiences a long delay. By making
the channel variations faster, it becomes less likely to ex-
perience a long delay. Although a system cannot influence
directly how fast the channel changes, it can employ fre-
quency hopping. The SNR values of channels at sufficiently
different frequencies can be assumed to be independent.
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Figure 9: Delay violation probability at w = 5 ms
for different blocklengths. 57 = 10 dB, a = 150 bits,
np = 84 symbols. The blue lines are located at n = 84
and n = 168.

Without the impact of finite blocklength effects and with-
out any overhead from metadata, channel estimation and
feedbacks, a queueing system should change the channel as
quickly as possible, i.e. change the frequency as often as
possible. This is no longer true when the overhead and the
effects of finite blocklength are taken into account. In that
case, varying the channel too quickly creates a lot of over-
head. On the other hand, the channel still needs to change



often enough to avoid long delays. How quickly should it
change?

In the following example, we assume that the channel re-
mains constant for a long time, but after each transmission
of duration 7T, frequency hopping is employed so that the
SNR changes to a different and independent value. As in the
previous examples, we assume that it takes 1 ms to transmit
12 - 14 = 168 symbols. However, we change the number of
symbols n in multiples of 12. We assume that the overhead
is always np = 84 symbols. Thus, the duration T" of one
time slot is now assumed to be "fﬁ’gh ms.

Fig. 9 shows the delay violation probabilities for a target
delay of 5 ms for different blocklengths. When considering
the Shannon model, the best performance is obtained for a
blocklength of n = 96 symbols. Thus, it would be best to
transmit 84 + 96 symbols, so T = 1.07 ms, and then hop
to a different frequency. In contrast to that, when finite
blocklength effects are considered, the optimal blocklength
is at 132 symbols, so the system should transmit a block
of 84 + 132 symbols (7' = 1.29 ms). The difference might
increase further when the system is only allowed to change
the duration in multiples of 0.5 ms, as visualized by the
vertical blue lines. Then the system would choose T' = 1 ms
with the Shannon model, but the finite blocklength model
would perform best with 7' = 1.5ms.

7. CONCLUSION

In this work, we use a stochastic network calculus ap-
proach to compute probabilistic delay bounds for delay sen-
sitive wireless systems in terms of the fading channel param-
eters. We provide a service characterization for the underly-
ing fading channel in the finite blocklength regime. We then
use a recently developed (min,x ) network calculus method-
ology to compute the desired bounds. The finite blocklength
channel model leads to analytical challenges that we over-
come by using multiple series expansions which converge
quite rapidly. We use simulations to validate the obtained
delay bounds. Our analysis shows that the infinite block-
length assumption can significantly overestimate the perfor-
mance of a system that operates at finite blocklength, es-
pecially at low SNR. Thus, low-latency M2M applications
require more power or bandwidth than a simpler analysis
with infinite blocklength models would predict.

The obtained results can be used for network dimension-
ing and parameters optimization. In future work, the ob-
tained results can be extended to multi-hop settings with
cross traffic and variable arrival traffic. Further research
may also investigate less idealized channel models with ef-
fects like time-correlated fading, imperfect channel state in-
formation, or lost acknowledgment packets.
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