
Exploiting Multi-core Systems for

Parallel Network Simulation

Von der Fakultät für Mathematik, Informatik und
Naturwissenschaften der RWTH Aachen University zur Erlangung
des akademischen Grades eines Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von

Dipl.-Inform.
Georg Johannes Kunz

aus Emmerich, Deutschland

Berichter:

Prof. Dr.-Ing. Klaus Wehrle
Prof., Phd. George Riley

Tag der mündlichen Prüfung: 01.03.2013

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Abstract

Discrete event simulation constitutes a fundamental methodology in the design, de-
velopment, and evaluation process of communication systems. Despite their abstract
nature, simulation models often exhibit considerable computational complexity, re-
sulting in extensive simulation runtimes. To counteract the runtime demand of
complex simulation models, parallel discrete event simulation distributes the work-
load of a simulation model across multiple processing units. Traditionally, parallel
discrete event simulation focused on investigating large scale system models utilizing
distributed computing clusters.
In the last decade, however, two developments have fundamentally changed the es-
tablished state-of-the-art in parallel discrete event simulation. First, multi-core sys-
tems have become the de facto standard hardware platform for desktop and server
computers. In contrast to distributed computing clusters, multi-core systems pro-
vide different hardware characteristics, notably shared memory. Second, the focus of
interest in the research community shifted from wired to wireless communication sys-
tems. Contrary to wired networks the simulated network entities are tightly coupled
due to detailed modeling of physical layer and wireless channel effects, thereby hin-
dering efficient parallelization. This thesis addresses the challenges resulting from
these two developments by designing algorithms and tools to enable and support
efficient parallel simulation of tightly coupled systems on multi-core systems. In
particular, we make four distinct contributions:
Our first contribution is parallel expanded event simulation, a modeling paradigm
extending discrete events with durations that span a period in simulated time. The
resulting expanded events form the basis for a conservative synchronization scheme
that considers overlapping expanded events eligible for parallel processing. We fur-
thermore put these concepts into practice by implementing Horizon, a parallel
expanded event simulation framework specifically tailored to multi-core systems.
The durations carried by expanded events provide a deeper insight into event de-
pendencies. Yet, they typically do represent the true dependencies among events.
Hence, our second contribution, probabilistic synchronization, exploits the globally
shared memory space of multi-core systems to observe the behavior of a simulation
at runtime and learn accurate dependencies between events. Three different heuris-
tics subsequently exploit the dependency information to guide speculative event
execution.
While the previous two contributions focus on speeding up individual simulation
runs, our third contribution exploits the massively parallel processing power of GPUs
to reduce the runtime demand of entire parameter studies. To this end, we develop
a multi-level parallelism scheme that bridges the gap between the fundamentally
different processing paradigms underlying expanded event simulation and GPUs.
Finally, the performance of any parallelization scheme heavily depends on the struc-
ture of a given simulation model. Hence, we specify a performance analysis methodol-
ogy that enables model developers to identify and eliminate performance bottlenecks
in simulation models. In combination, our four contributions provide the means for
efficient parallel simulation on multi-core systems.

Kurzfassung

Ereignisbasierte Simulation stellt ein grundlegendes Werkzeug im Entwicklungs-
und Evaluationsprozess von Kommunikationssystemen dar. Trotz eines abstrakten
Modellierungskonzepts weisen akkurate Simulationsmodelle oftmals eine erhebliche
Berechnungskomplexität auf, welche wiederum zu beträchtlichen Ausführungszeiten
der Simulation führt. Parallele ereignisbasierte Simulation wirkt dem Zeitbedarf
komplexer Simulationsmodelle entgegenwirken, indem die Arbeitslast eines Simula-
tionsmodells auf mehrere Berechnungseinheiten aufgeteilt wird. Der Fokus paralleler
ereignisbasierter Simulation lag dabei traditionell auf der Untersuchung hochverteil-
ter Systeme, z.B. Peer-to-Peer Netzwerke, mittels verteilter Rechnerverbünde.

Zwei Entwicklungen führten jedoch in den vergangenen zehn Jahren zu weitreichen-
den Veränderungen der Voraussetzungen, die den etablierten Parallelisierungstech-
niken zu Grunde liegen. Erstens sind Mehrkernprozessoren zum de-facto Standard
für Server und Arbeitsplatzcomputer geworden. Im Gegensatz zu verteilten Rechn-
erverbünden weisen Mehrkernsysteme andere Hardwareeigenschaften auf, wie etwa
durch Rechenkerne gemeinsam verwendbaren Speicher. Zweitens verlagerte sich der
Interessensfokus in der Forschung von drahtgebundenen zu drahtlosen Kommunika-
tionssystemen. Im Unterschied zu drahtgebundenen Netzen besteht aufgrund der
detailgetreuen Modellierung des drahtlosen Kanals eine enge Kopplung zwischen den
Komponenten drahtloser Netze. Diese Arbeit befasst sich mit den Herausforderun-
gen, die aus diesen beiden Entwicklungen erwachsen. Konkret werden in dieser
Arbeit vier Lösungsansätze erarbeitet und vorgestellt:

Beim ersten Lösungsansatz handelt es sich um “parallel expanded event simulation”,
ein Modellierungsparadigma welches zeitdiskrete Ereignisse derart erweitert, dass sie
eine Periode in simulierter Zeit überspannen. Die daraus resultierenden erweiterten
Ereignisse bilden die Basis für ein konservatives Parallelisierungsschema, welches
eine effiziente Synchronisation eng gekoppelter Systeme ermöglicht.

Unter Ausnutzung der Eigenschaften von Mehrkernsystemen, insbesondere des ge-
meinsam verwendbaren Speichers, zielt ein probabilistischer Synchronisationsalgo-
rithmus darauf ab akkurate Abhängigkeitsrelationen zwischen Ereignissen zur Sim-
ulationslaufzeit zu bestimmen. Diese Abhängigkeitsrelationen erlauben folglich eine
spekulative parallele Ausführung nicht überlappender erweiterter Ereignisse.

Während die beiden vorigen Ansätze eine Laufzeitreduktion einzelner Simulation-
släufe abstreben, befasst sich der dritte Lösungsbeitrag mit der Laufzeitreduktion
von Parameterstudien, die mehrere einzelne Simulationsläufe umfassen. Hierzu
nutzt ein Mehrebenen-Parallelisierungsverfahren die hochparallele Rechenleistung
von Grafikprozessoren und überbrückt die grundlegenden architekturellen Unter-
schiede zwischen Grafik- und Standardprozessoren.

Zu guter Letzt umfasst der vierte Lösungsansatz ein Leistungsanalyseverfahren,
welches Entwicklern von parallelen Simulationsmodellen ermöglicht Leistungseng-
pässe zu identifizieren. In ihrer Kombination legen diese vier Lösungsansätze die
Grundlage für eine effiziente parallele ereignisorientierte Simulation von Kommu-
nikationssystemen auf Mehrkernsystemen.

Acknowledgments

The genesis of this thesis was significantly influenced by students, colleagues, friends,
and family.

I would like to express my sincere gratitude to my both my advisers, Klaus Wehrle
and James Gross. Klaus paved the way for my PhD not just by teaching me how
to create posters and slides, but also by ensuring that the center of my personal
life could remain in Aachen. Moreover, his valuable feedback, advice, and ideas laid
the foundations for this thesis. James openly welcomed me into his group, despite
my evidently poor knowledge of physical layer modeling and statistical methods.
His dedication and the fruitful discussions revolving around my research topic con-
tributed considerably to this thesis. He never grew tired motivating me throughout
periods of doubt and uncertainty. I would also like to thank George Riley for re-
viewing my thesis and for acting as second opponent.

I am very grateful for the opportunity to work with four highly talented students.
Their tremendous efforts actively shaped the contributions of this thesis and the
corresponding implementations. Remembering long and lively discussions, I would
like to thank Mirko Stoffers for his influence on probabilistic synchronization and
Horizon, Simon Tenbusch for his enthusiasm regarding optimization problems,
Daniel Schemmel for his programming skills and CUDA knowledge, and Marc Peiter
for his work on load balancing algorithms.

Over the years, my colleagues have been a constant source of valuable input and
personal distraction. I owe Hanno Wirtz a special “thank you” for gracefully endur-
ing my diversions into the non-research related corners of the Internet. Similarly,
Raimondas Sasnauskas is not just a motivating role model of a successful researcher
to me, but also a close friend. Many thanks to Oscar Puñal and Donald Parruca for
taking good care of me at UMIC as well as allowing me to use and benefit from their
simulation models. Moreover, I’d like to thank René Hummen for his friendship
throughout our time as diploma and PhD students. Stefan Götz showed me how to
approach and solve research problems in a structured manner and Tobias Heer was
an example in discipline and dedication to me. I’d like to thank Olaf Landsiedel for
recommending me as a PhD student to Klaus and for his interest in sharing and
discussing new ideas. In addition, a big “thank you” goes to Dirk, Elias, Florian,
Hamad, Henrik, Ismet, Janosch, Jó, Marco, Martin, Matteo, Nico, and all members
of ComSys and MNP for the scientific adventures and for having a nice time with
you.

Finally, my project “PhD” was only made possible by the unconditional support of
my family. By believing in me, Rolf, Lili, and Julia provided the motivation for
pursuing my PhD. Above all, I am very grateful to Simone for accepting my last
minute decision to start a PhD in Aachen, for sacrificing many evenings of leisure
time during paper and thesis writing phases, and for pushing me through all periods
of doubts throughout my PhD.

Contents

1 Introduction 1
1.1 Problem Analysis . 2

1.1.1 Performance Factors of Parallel Discrete Event Simulation . . 2
1.1.2 Problem Statement . 3
1.1.3 Research Questions . 5

1.2 Contributions . 6
1.2.1 Interplay of Contributions and Research Questions 7
1.2.2 Relationship of Contributions 8

1.3 Outline . 9

2 Parallel Discrete Event Simulation 11
2.1 Discrete Event Simulation . 11

2.1.1 Nomenclature . 11
2.1.2 Execution Model . 12
2.1.3 Modeling Principle . 13
2.1.4 Comparison with other Evaluation Methodologies 13

2.2 Goals and Challenges of Parallelization 15
2.2.1 The Need for Parallel Discrete Event Simulation 15
2.2.2 Approaches to Parallelization 16
2.2.3 Challenges of Parallel Event Execution 18

2.3 Concepts of Parallel Discrete Event Simulation 19
2.3.1 Workload Partitioning . 19
2.3.2 Causal Correctness . 21
2.3.3 Synchronization Schemes . 22
2.3.4 Parallel Event Execution Environments 28

2.4 Parallel Discrete Event Simulation Frameworks 29
2.4.1 Overview . 29
2.4.2 Comparison and Conclusion 32

3 Parallel Expanded Event Simulation 35

3.1 Motivation . 35

3.2 Problem Analysis . 37

3.2.1 Properties of Wireless System Models 37

3.2.2 Modeling Time-Spans in Discrete Event Simulation 38

3.2.3 Goals . 39

3.3 Parallel Expanded Event Simulation 39

3.3.1 General Idea . 40

3.3.2 Expanded Events . 40

3.3.3 Sequential Expanded Event Execution Model 42

3.3.4 Parallel Expanded Event Execution Model 45

3.3.5 Determining Event Durations 47

3.3.6 Related Work . 49

3.3.7 Summary . 51

3.4 The Horizon Simulation Framework 51

3.4.1 Centralized Parallelization Architecture 52

3.4.2 Implementation of the Horizon Framework 59

3.4.3 Related Work . 61

3.4.4 Evaluation . 63

3.4.5 Summary . 73

3.5 Minimizing the Parallelization Overhead 74

3.5.1 Analyzing the Parallelization Overhead 75

3.5.2 Goals and Achievements . 77

3.5.3 Efficient Event Scheduling . 77

3.5.4 Related Work . 80

3.5.5 Evaluation . 82

3.5.6 Summary . 88

3.6 Discussion and Limitations . 89

3.6.1 Parallel Expanded Event Simulation 89

3.6.2 Horizon . 90

3.7 Conclusions . 91

4 Probabilistic Synchronization 93

4.1 Motivation . 93

4.2 Problem Analysis . 95

4.2.1 Limitations of Classic Synchronization 95

4.2.2 Complexity vs. Accuracy . 97

4.3 Related Work . 97

4.3.1 Limiting Optimism By Means of Time Windows 97

4.3.2 Probabilistic Synchronization 98

4.3.3 Lookahead Extraction . 98

4.3.4 Hybrid Synchronization Schemes 99

4.4 Probabilistic Synchronization . 99

4.4.1 Design Goals and General Concept 99

4.4.2 Arrival Pattern Heuristic . 100

4.4.3 Global Order Heuristic . 102

4.4.4 Local Order Heuristic . 103

4.5 Discussion . 106

4.5.1 Relation to Parallel Expanded Event Simulation 106

4.5.2 Relation to Horizon . 107

4.6 Evaluation . 108

4.6.1 Implementation . 109

4.6.2 Synthetic Benchmarks . 109

4.6.3 Case Study . 115

4.6.4 Synchronization Phases . 118

4.7 Conclusions . 119

5 Multi-level Parallelism on GPUs 121

5.1 Motivation . 122

5.2 Challenges of Integrating GPUs with PDES 123

5.2.1 Lockstep Execution of Threads 124

5.2.2 Memory Size, Latency, and Control Overhead 125

5.3 Related Work . 125

5.3.1 Integrating GPUs with PDES 125

5.3.2 Efficient Execution of Parameter Studies 127

5.4 Multi-level Parallelization on GPUs 127

5.4.1 SIMT-compatible workload using External Parallelism 127

5.4.2 Hiding Memory Latencies using Internal Parallelism 131

5.5 Discussion . 132

5.5.1 Integration of Parallel Expanded Event Simulation 133

5.5.2 Restrictions of the Programming Environment 133

5.5.3 Limited GPU-Memory . 134

5.6 Implementation . 134

5.6.1 Programming Interface . 134

5.6.2 Memory Management . 135

5.6.3 Pipelined Execution . 135

5.7 Evaluation . 136

5.7.1 Synthetic Benchmarks . 136

5.7.2 Case Study . 143

5.8 Conclusions . 145

6 Performance Analysis of Parallel Expanded Event Simulations 147

6.1 Motivation . 148

6.2 Problem Analysis . 150

6.3 Related Work . 151

6.3.1 Critical Path Analysis . 151

6.3.2 Synchronization Overhead Estimation 153

6.3.3 Resource-based Performance Analyzers 153

6.4 Performance Analysis Methodology 154

6.4.1 Tracing Simulation Runtime Data 154

6.4.2 Problem Definition . 155

6.4.3 Mixed Integer Linear Program Formulation 156

6.5 Scalability Improvements . 158

6.5.1 Splitting Schedules . 158

6.5.2 Eliminating Events with Insignificant Processing Times 160

6.5.3 Relaxations . 161

6.6 Evaluation . 162

6.6.1 Methodology . 162

6.6.2 Accuracy . 164

6.6.3 Scalability . 166

6.6.4 Analyzing Event Schedules for Performance Optimization . . . 170

6.7 Discussion and Limitations . 171

6.8 Conclusions . 172

7 Summary and Conclusions 175

7.1 Contributions and Achievements . 176

7.1.1 Parallel Expanded Event Simulation 176

7.1.2 Probabilistic Synchronization 177

7.1.3 Multi-level Parallelism using GPUs 177

7.1.4 Performance Prediction and Analysis 178

7.2 Application of our Work . 178

7.3 Future Directions . 179

7.3.1 Earliest-Completion-Time-First Scheduling 179

7.3.2 Automatic Configuration of Probabilistic Synchronization . . . 180

7.3.3 Multi-level Parallelism on GPUs 181

7.4 Final Remarks . 182

Glossary 185

Bibliography 189

1
Introduction

Discrete Event Simulation (DES) constitutes an essential methodology in the design,
development, and evaluation process of communication systems. By employing an
abstract model, i. e., a software-based implementation of a system under investiga-
tion, discrete event simulation provides a controllable and reproducible evaluation
tool at low cost. Following the design principle that simulation models should be as
accurate as necessary but as simple as possible [Box76], simulation models focus on
the relevant characteristics of a system and abstract from the properties irrelevant
to the goal of a particular evaluation study.

Despite this abstraction, simulation models often exhibit complex characteristics
which are fundamental for correctly representing the systems being evaluated. For
instance, wireless communication systems require detailed modeling of the physical
effects influencing a wireless transmission, and simulated peer-to-peer networks need
to comprise a large number of nodes to accurately capture the behavior of large scale
networks. Modeling such characteristics in detail consequently results in complex
simulation models and thus extensive simulation runtimes, which in turn hamper
the development and evaluation process.

To counteract this effect, the research community developed parallel simulation tech-
niques to harvest the processing power of multiple processing units [Fuj90a, Liu09,
Nic96, Per06b]. These techniques traditionally focus on distributed simulations run-
ning on computing clusters composed of independent computers. However, such
systems are expensive and not easily accessible to model developers and researchers.
Parallel Discrete Event Simulation (PDES) is hence not widely adopted by net-
working researchers for day-to-day simulation, except for specialized applications
developed and deployed by specialists [FPP+03, Per05, PPFR03].

Nevertheless, we observe two developments which fundamentally changed the estab-
lished situation of parallel discrete event simulation over the last decade:

• The proliferation of multi-core computer systems, and
• the shift of focus from wired to wireless networks in the research community.

2 1. Introduction

Multi-core systems have become the de facto standard hardware platform for com-
modity desktop and server systems, providing simulation developers and researches
with ubiquitously available parallel hardware. Specifically, multi-core systems con-
tain one or more processors which in turn comprise multiple processing cores, each
appearing as an individual processor to the operating system. However, while the
number of cores in these systems increased constantly, the performance of each indi-
vidual core remained stable [Sut05]. Hence, software aiming to take full advantage of
multi-core systems must make use of parallelization techniques [SL05]. As a result,
simulation developers and researchers inevitably have to transition from sequen-
tial to parallel simulations. However, due to the architectural differences between
distributed computing clusters and multi-core systems, existing parallelization tech-
niques do not efficiently utilize multi-core systems. Consequently, we identify the
need for new parallelization techniques which are explicitly tailored to the properties
of multi-core systems.

At the same time, the networking research community shifted its focus from wired
networks to wireless systems. Specifically, the availability of cheap wireless trans-
mission technologies such as IEEE 802.11 or IEEE 802.15.4 sparked extensive re-
search in domains like Mobile Ad-hoc Networks (MANETs), Wireless Mesh Net-
works (WMNs), and Wireless Sensor Networks (WSNs) [AWK+11, BLKW08]. In
contrast to simulation models of wired networks, accurately modeling wireless net-
works requires a detailed and hence computationally complex representation of the
physical effects influencing wireless transmissions. Moreover, due to the broadcast
nature of the wireless channel and the small distances between communicating net-
work nodes, the entities in wireless systems are tightly coupled. This tight coupling
in turn hinders parallelization of the corresponding simulation models and effectively
limits simulation performance [JZT+04, LN02, MB98]. We thus observe the need
for new parallelization paradigms that efficiently handle simulation models of tightly
coupled systems.

Motivated by these two developments, the goal of this thesis is to develop novel
and improve existing parallel simulation techniques that exploit the characteristics
of multi-core systems in order to efficiently execute parallel simulation models of
tightly coupled systems.

1.1 Problem Analysis

Before being able to design parallelization techniques for multi-core systems, we have
to establish an understanding of the problem space. To this end, we first analyze
the performance factors influencing a parallel discrete event simulation. We then
identify the specific problems and research questions addressed in this thesis.

1.1.1 Performance Factors of Parallel Discrete Event Simulation

The performance of a parallel discrete event simulation is subject to three factors:
i) the event synchronization algorithm, ii) the underlying hardware platform, and
iii) the simulation model (see Figure 1.1).

1.1. Problem Analysis 3

Parallel Discrete
Event Simulation

parallelizable
events

extract
p

arallelism

processing &
memory arch.

Hardware
Platform

Simulation
Model

Event
Synchronization

Figure 1.1 Three factors influence the performance of a parallel discrete event simulation:
i) the characteristics of the underlying hardware platform, ii) the ability of the
event synchronization algorithm to extract parallelizable events from a simulation
model, and iii) the number of parallelizable events provided by a model.

Event Synchronization: In discrete event simulation, events represent changes of
the state of a simulation model. The order in which these state changes occur
during a simulation naturally influences the results of the simulation. Hence,
parallel discrete event simulation employs synchronization algorithms that en-
force a correct sequential event execution order among dependent events. Yet,
to maximize the performance of a parallel discrete event simulation, synchro-
nization algorithms try to execute a maximum number of independent events
in parallel while minimizing the synchronization overhead.

Hardware Platform: A wide range of hardware platforms support parallel execution
of simulations, including general purpose platforms such as distributed com-
pute clusters and multi-core systems as well as specialized architectures like
vector computers and Graphics Processing Units (GPUs). These platforms ex-
hibit different characteristics in terms of memory structure, processing model,
and communication overhead. Hence, the design and implementation of a
parallel simulation framework has to be tailored to the characteristics of the
underlying hardware to maximize performance and efficiency.

Simulation Model: A simulation model primarily has to correctly model the system
under investigation. However, in order to foster efficient parallel execution, it
also has to exhibit a structure that supports synchronization algorithms in
extracting a maximum number of parallelizable events.

Designing an efficient and well performing parallel discrete event simulation requires
consideration of all three performance factors. In the next section, we identify
shortcomings of the current state-of-the-art with regard to these performance factors.

1.1.2 Problem Statement

Given the performance factors of parallel discrete event simulation, we now revisit
the initially identified two developments that motivate this thesis: i) the proliferation
of multi-core systems, and ii) the research focus on wireless networks. We derive
three problem statements from these developments and put them into the context
of the performance factors.

4 1. Introduction

1.1.2.1 Lack of Event Dependency Information

The shift of focus from wired networks to wireless systems exposes the inability
of discrete event simulation to express dependencies between events. Specifically,
parallel discrete event simulation employs synchronization algorithms to ensure the
correctness of the simulation results while extracting parallelizable events from a
simulation model. Ideally, synchronization algorithms allow parallel processing of
all events which do not depend on each other, i. e., which do not modify the same
state of the simulation model. A general purpose simulation framework, however, has
no knowledge of the semantics of an event and hence the state changes it performs.
Instead, the only accessible information to derive dependencies between events is
the time of occurrence of events. However, in wireless networks, nodes interact
at small timescales due to the broadcast nature of the wireless channel and the
small distances between communicating network nodes. As a result, the time of
occurrence of events fails to accurately reflect event dependencies in such tightly
coupled systems [JZT+04, LN02, MB98].

Still, events in a simulation model are often inherently dependent: In discrete event
simulation, events happen instantaneously at a single point in time and have no
means of representing time spans. Hence, to model processes that span a period
of time, e. g., sending and receiving of packets, discrete event simulation utilizes
two events: One representing the start of the process and another one indicating
the completion of the process. These two events implicitly depend on each other
since i) every “start”-event is followed by exactly one “completion”-event, and ii) the
“completion”-event will never precede the “start”-event. The event synchronization
algorithm, nevertheless, does not know about this relationship because it is missing
from the simulation model and hence handles both events individually. It thereby ig-
nores valuable dependency information, resulting in fewer parallelizable events. We
thus conclude that discrete event simulation lacks the ability to express the depen-
dency between two such events, thereby hampering efficient event synchronization.

1.1.2.2 Unsuitable Event Synchronization Algorithms

By employing techniques rooted in traditional distributed simulation, synchroniza-
tion algorithms do not fully exploit the capabilities and processing power of multi-
core systems. In distributed simulation, partitions of a simulation model are dis-
tributed across independent computers. Since all partitions of the simulation reside
in isolated local memory at the compute nodes, events and synchronization infor-
mation need to traverse a network interconnecting the nodes. As a result, the
communication overhead dominates the total synchronization overhead.

On multi-core systems, however, the performance characteristics of the underly-
ing hardware have changed significantly. A globally shared memory space provides
synchronization algorithms with immediate access to the entire simulation model,
hence enabling a deeper insight into the simulation model and its behavior. Fur-
thermore, fast thread synchronization mechanisms allow for frequent synchroniza-
tion with low overhead without the need for sending and receiving messages over
a network. Moreover, recently emerging specialized multi-core hardware such as
GPUs provide massively parallel processing power. However, GPUs implement a

1.1. Problem Analysis 5

fundamentally different processing model than classic CPUs. This fact needs to be
explicitly considered by event synchronization algorithms.

Concluding, we claim that the synchronization algorithms deployed in today’s par-
allel simulation frameworks are deeply rooted in traditional distributed simulation.
As a result, they do not make full use of the hardware characteristics of multi-
core systems, thereby failing to exploit the available processing power. Instead,
multi-core systems provide the substrate for developing novel approaches to event
synchronization.

1.1.2.3 Lack of Development Support

Parallel discrete event simulation is not widely employed today since the devel-
opment of high-performance parallel simulations is complex and challenging: In
addition to correctly modeling the system under investigation, model developers
also have to structure the simulation model such that it provides a maximum of
parallelizable events. This requires a solid understanding of parallel discrete event
simulation and event synchronization. Yet, model developers are typically experts
in their particular field of research, but not in parallel discrete event simulation.
This lack of experience and knowledge prevents a wide adoption of parallel discrete
event simulation.

However, multi-core systems constitute the current and future hardware architecture
for desktop and server systems. Since these systems demand parallel programming
to fully utilize their processing power, model developers and researchers are forced
to employ parallel discrete event simulation. The resulting large yet inexperienced
user base of parallel discrete event simulation hence requires dedicated tools to ease
the development of parallelizable simulation models. In particular, model developers
need performance analysis and prediction tools which provide a deep insight into the
behavior of parallel simulations to allow for identifying and eliminating performance
bottlenecks.

1.1.3 Research Questions

We condense the previous problem analysis in three distinct research questions. It
is our goal to provide answers to these questions in the remainder of this thesis.

Question Q1 - How to improve parallel simulation of tightly coupled systems?
We explore modeling and synchronization schemes that explicitly take the
properties of tightly coupled systems, such as wireless networks, into account
in order to achieve efficient parallel discrete event simulation.

Question Q2 - How to efficiently exploit multi-core systems?
We investigate simulation techniques and parallelization schemes for efficiently
exploiting multi-core systems and GPUs for parallel discrete event simulation.

Question Q3 - How to support developers of parallel simulations?
We study means which support model developers in developing efficiently par-
allelizable simulation models.

6 1. Introduction

1.2 Contributions

We address the aforementioned questions by making four contributions in this thesis:

i) A modeling paradigm and a corresponding parallelization scheme [KLG+10,
KLW09, KSGW11] tailored to efficiently handle tightly coupled systems.

ii) A probabilistic event synchronization scheme [KSGW12b, Sto11] which utilizes
shared memory to learn dependencies between events at runtime.

iii) A multi-level parallelization scheme [KSGW12a, Sch11] exploiting the mas-
sively parallel hardware of general purpose GPUs on multi-core machines.

iv) A performance analysis methodology aiming to support the development pro-
cess of parallel simulations in order to foster the adoption of parallel simulation
among developers and researchers [KTGW11, Ten10].

In the following, we outline the concept of each contribution in more detail.

Contribution C1 - Parallel Expanded Event Simulation
Targeting the lack of dependency information in discrete event simulations,
we propose a modeling paradigm that explicitly adds additional timing infor-
mation to simulation models in order to express dependencies among events.
Specifically, the expanded event simulation modeling paradigm assigns dura-
tions in simulated virtual time to events [KLG+10, KLW09]. The resulting ex-
panded events represent physical processes that span a period of time. Based
on expanded events, we furthermore specify parallel expanded event simula-
tion, a centrally coordinated parallel event execution scheme. This scheme
utilizes event durations to identify independent events for parallel execution.
We moreover prove that our parallelization scheme ensures the correctness of
a parallel simulation run.
In addition to this conceptual work, we implement the parallel expanded event
simulation principle in a state-of-the-art simulation framework. The resulting
extended framework, named Horizon, employs a centralized event synchro-
nization architecture that dynamically distributes events eligible for parallel
processing to a pool of worker threads. Since performance is key in paralleliza-
tion, Horizon builds on event handling and thread synchronization algorithms
that are specifically tailored to multi-core systems [KSGW11]. Our evaluation
illustrates that Horizon achieves significant performance improvements over
traditional distributed parallelization.

Contribution C2 - Probabilistic Event Synchronization
We design a probabilistic synchronization [KSGW12b, Sto11] scheme that ex-
ploits shared memory on multi-core systems to collect extensive knowledge of
event dependencies at runtime. Three heuristics utilize this dependency infor-
mation to dynamically decide if a given event should be speculatively executed
in parallel to other events or not.
This scheme combines the advantages of the two fundamental synchronization
paradigms underlying parallel discrete event simulation: Conservative and op-
timistic synchronization. By switching between conservative and optimistic
synchronization on a per event basis, the synchronization scheme is able to
extract a larger degree of parallelism from tightly coupled system models than

1.2. Contributions 7

conservative synchronization while limiting the overhead of overly optimistic
synchronization. Our evaluation confirms that probabilistic event synchroniza-
tion outperforms both traditional synchronization schemes as well as previous
work on probabilistic synchronization.

Contribution C3 - Multi-level Parallelization on GPUs
We utilize the highly parallel processing power of GPUs to cost-efficiently
reduce the runtime demand of parameter studies. Parameter studies com-
prise multiple independent simulation runs of the same model using different
parameterization to find an optimal configuration of the system under inves-
tigation. To efficiently combine GPUs with parallel discrete event simulation
despite fundamentally different programming and execution models, we employ
a multi-level parallelization scheme [KSGW12a, Sch11]. The scheme utilizes
i) external parallelism between the individual simulations of a parameter study
to integrate the processing model of GPUs, and ii) internal parallelism among
independent events within each simulation to hide the latency between CPU-
and GPU-memory. By means of a prototype implementation, we demonstrate
significant performance improvements and cost savings over traditional CPU-
based parameter studies.

Contribution C4 - Performance Prediction and Analysis
We present a performance analysis methodology that enables model develop-
ers to identify performance bottlenecks in parallel expanded event simula-
tions [KTGW11]. Given an event execution trace of an expanded event sim-
ulation, the methodology determines an optimal event-to-CPU mapping that
minimizes the simulation runtime under consideration of event dependencies
and the utilization of a given number of CPUs. By analyzing the resulting
event mapping, developers can pinpoint events that prevent parallel execution
and cause low CPU utilization.
Since this mapping problem is NP-complete [Che90, LK78], we model the
parallel expanded event simulation paradigm as a Mixed Integer Linear Pro-
gram (MILP). As a result, we leave the problem of calculating an optimal event
schedule to the efficient heuristics and algorithms of modern MILP solvers.
Moreover, to further mitigate the complexity problem, we develop performance
optimizations and relaxations of the MILP. These optimizations reduce the
scheduling problem on average from exponential to polynomial complexity,
thereby making it applicable in practice. We demonstrate that the methodol-
ogy accurately identifies optimal runtime bounds and performance bottlenecks
of parallel expanded event simulations.

These contributions were partially developed in cooperation with students in the
context of their Bachelor’s and Master’s theses [Pei12, Sch11, Sto11, Ten10]. Hence,
I’d like to explicitly thank these students for their input and their contributions to
this thesis.

1.2.1 Interplay of Contributions and Research Questions

The four contributions of this thesis provide answers to the previously identified three
research questions. However, there is no simple one-to-one mapping of contributions

8 1. Introduction

Q1: How to improve
parallel simulation of
tightly coupled
systems?

Q2: How to efficiently
exploit multi-core
systems?

Q3: How to support
developers of parallel
simulations?

C1: Parallel Expanded Event Simulation

C2: Probabilistic Event Synchronization

C3: Multi-level Parallelism
on GPUs

C4: Performance
Analysis

Figure 1.2 Overview showing the interplay of contributions and research questions. Both,
parallel expanded event simulation (C1) and Probabilistic synchronization (C2)
address multi-core systems as well as efficient simulation of tightly coupled sys-
tems. Multi-level parallelization (C3) in turn focuses solely on multi-core systems
while our performance analysis methodology (C4) answers the question of devel-
opment support.

to research questions. Instead, our contributions address the research questions
from different perspectives. Figure 1.2 illustrates the interplay of contributions and
research questions in this thesis.

Parallel expanded event simulation (C1) addresses both questions Q1 and Q2. While
the centralized architecture exploits multi-core computers, expanded events convey
dependency information about events in order to handle tightly coupled systems.
The probabilistic synchronization scheme (C2) similarly tackles questions Q1 and
Q2, yet from a different perspective. It uses shared memory to obtain detailed
knowledge of event dependencies which in turn guides speculative event execution
to mitigate the performance limitations of tightly coupled systems. Furthermore,
multi-level parallelization (C3) utilizes the massively parallel processing power of
GPUs which constitute a special-purpose multi-core architecture. The scheme makes
heavy use of shared CPU- and GPU-memory, thus contributing an answer to ques-
tion Q2. Finally, the performance analysis methodology (C4) supports simulation
developers in understanding and optimizing the performance of parallel expanded
event simulations, thereby giving an answer to question Q3. Throughout this thesis,
we compare our contributions to related efforts and illustrate how our approaches
deviate from the established state-of-the-art in dedicated related work sections.

1.2.2 Relationship of Contributions

Our four contributions are not isolated but exhibit strong relationships as illustrated
in Figure 1.3. Parallel expanded event simulation (C1) constitutes our central contri-
bution. It lays the foundation for our performance analysis methodology (C4) which
is designed to accurately reflect the behavior of parallel expanded event simulations.
Hence, these two contributions are closely linked.

1.3. Outline 9

C1:
Parallel
Expanded
Event
Simulation

C2:
Probabilistic
Event
Synchronization

C3:
Multi-level
Parallelism

C4:
Performance
Analysis

Conservative
Synchronization

Conservative
Synchronization

Figure 1.3 Relationship of our four contributions. Parallel expanded event simulation (C1)
constitutes the core contribution of this thesis, laying the foundation for the
performance analysis methodology (C4). Probabilistic synchronization (C2) and
multi-level parallelization (C3) are orthogonal to parallel expanded event simula-
tion and hence independent of expanded events. Yet both contributions can uti-
lize parallel expanded event simulation as conservative synchronization scheme.

Furthermore, parallel expanded event simulation seamlessly integrates with proba-
bilistic event synchronization (C2) and multi-level parallelization (C3): In proba-
bilistic event synchronization, parallel expanded event simulation can serve as con-
servative synchronization scheme. Similarly, multi-level parallelization can make use
of parallel expanded event simulation to conservatively identify independent events
according to its internal parallelization scheme.

1.3 Outline

The structure of this thesis is as follows. In Chapter 2, we lay the foundation of
the thesis by introducing the established techniques and the current state-of-the-art
in parallel discrete event simulation. Chapter 3 introduces the concept of paral-
lel expanded event simulation. In particular, we define a centralized parallelization
scheme, prove its correctness, and evaluate its performance. Subsequently, Chapter 4
presents our probabilistic synchronization scheme. Moreover, we show in Chapter 5
how to efficiently incorporate GPUs in parallel discrete event simulation. In addi-
tion to those efforts, we address the challenge of creating efficient parallel simulation
models in Chapter 6 by designing and evaluating our performance analysis method-
ology. Finally, Chapter 7 concludes the thesis by summarizing our contributions and
discussing future work.

10 1. Introduction

2
Parallel Discrete Event Simulation

Parallel Discrete Event Simulation (PDES) is the subject of extensive research for
more than two decades. Consequently, the literature on PDES comprises a rich
set of theoretical and practical results [Fuj90a, Kun10, Liu09, Nic96, Per06b]. This
chapter introduces the relevant basics that lay the foundation for this thesis. To this
end, we first introduce the fundamental concepts of Discrete Event Simulation (DES)
and motivate the need for parallelization. Based on this motivation, we then discuss
the key challenges of parallelization, classify basic parallelization techniques, and
define relevant terms. Finally, we give a brief overview of state-of-the-art parallel
simulation frameworks.

2.1 Discrete Event Simulation

The purpose of Discrete Event Simulation (DES) is to model the behavior and the
properties of a particular system under investigation, for instance a communication
network. Specifically, DES aims at enabling a controllable and repeatable evaluation
process at low cost and with short development cycles. It provides the primary means
for evaluating complex systems before prototyping and deployment. DES achieves
these goals by abstracting from the system under investigation and instead relying
on a simplified, purely software based implementation, denoted a simulation model.

2.1.1 Nomenclature

This thesis clearly distinguishes between the simulation framework and the simula-
tion model. The simulation framework provides basic functionality for implementing
and executing simulation models. Simulation models in turn define the behavior of
a system under investigation. To this end, simulation models maintain a state and

12 2. Parallel Discrete Event Simulation

represent state changes by means of events. In a communication system, for in-
stance, an event might model that a simulated network node sends a packet and
increases its sent-packet-counter state variable.

To add a notion of temporal relation to state changes, a discrete event simulation
maintains a global virtual time, denoted simulated time, that represents the time
within a simulation model. Events change the state of the simulation model at
discrete points in this simulated time. To this end, every event carries a timestamp,
specifying its time of occurrence in simulated time, and an event handler function.
The event handler function is code of the simulation model that modifies the state of
the simulation and potentially creates new events with a timestamp equal or larger
than the current simulated time. For example, a send-packet-event might create a
new event representing the next sending operation at a future point in simulated
time. During a simulation, the Future Event Set (FES) holds all events available for
execution sorted in increasing timestamp order.

Moreover, we define the terms event type and event instance as follows: The type
of an event is given by the event handler function and possibly additional meta-
data. An event instance, in turn, is an incarnation of a unique event type. Drawing
a comparison with the terminology of object oriented programming, an event type
corresponds to a class definition while an event instance is a particular object created
from a class definition. In the remainder of this thesis, we use the term event as
synonym for event instance unless explicitly stated otherwise.

Formally, we define the following terms used throughout the remainder of this thesis:

• E = {e1, . . . , en} is the finite set of all events occurring in a simulation,
• F ⊆ E is the subset of events in the FES,
• T ⊆ R≥0 denotes the virtual simulated time, and
• t : E → T is a function that assigns a timestamp to each event e ∈ E.

Note that F changes over time as events are created and processed. Hence, we can
consider F to be a function of time, mapping a given point in simulated time to a
subset of E, i. e., F : T → P(E). However, we refrain from using this notation in
this thesis for the sake of simplicity and to avoid redundancies: Where needed, we
explicitly state relevant events in F as e ∈ F and denote their timestamps as t(e),
thereby indicating the simulated time.

2.1.2 Execution Model

The execution model of a discrete event simulation is as follows. An event scheduler
drives a simulation run by continuously i) dequeueing the first event from the FES,
ii) setting the simulated time to the timestamp of the event, and iii) executing the
event handler function associated with the event.

During execution of the event handler function, the simulated time remains con-
stant, i. e., events happen instantaneously and last zero units in simulated time.
Since the FES is sorted with respect to increasing timestamps, simulated time hence
advances i) monotonically and ii) in discrete steps. The first property guarantees
a causally correct execution of the simulation in which the cause (events with an
earlier timestamp) always precedes its effect (events with a later timestamp). The

2.1. Discrete Event Simulation 13

second property decouples simulated time from the continuous notion of real time,
called simulation time. As a result, simulated time may advance both faster as well
as slower than simulation time, depending on the complexity of the model and the
processing power of the simulation platform. A simulation run finally ends when
either the FES is empty or a predefined termination condition is met.

2.1.3 Modeling Principle

The primary modeling principle underlying simulation is abstraction. In line with
the famous quote of George Box that “essentially, all models are wrong, but some
are useful” [BD87], the goal of a model developer is to design a model of a system
under investigation that is as accurate as necessary but as simple as possible. This
means in particular, that a simulation model is designed specifically towards the
goals of an evaluation study while leaving out details and aspects not relevant to
the study.

For instance, in models of wired networks, the physical effects of a transmission are
generally ignored since the error rates on a wire are negligibly. In contrast, modeling
the physical effects of the wireless channel in wireless networks is imperative for
correctness. A further example is headers in simulated network packets. Typically,
simulation model abstract from real world technicalities such as bit fields and byte
orders when modeling packet headers. Instead, header fields might just be member
variables of a C++ packet class. If, however, the simulation contains real code or
interacts with real system, utilizing bit-based headers might be necessary.

Along the same line of reasoning, the system parameters as well as the results and
statistics generated by a simulation model depend on the properties being studied.
Hence, a simulation model should only provide and vary those parameters which are
necessary to collect the statistics of interest with respect to the goals of an evaluation
study. In conclusion, the goal of abstraction is to limiting the model complexity in
order to obtain understandable, maintainable, and verifiable simulation models.

2.1.4 Comparison with other Evaluation Methodologies

Simulation plays an integral role in the design and evaluation process of commu-
nication systems. Nevertheless, its primary principle – abstraction – is both boon
and bane as it allows for fast development as well as abstraction beyond correct-
ness. Hence, simulation constitutes only a single step in a thorough evaluation pro-
cess [KLW10]. In the following, we briefly introduce three evaluation methodologies
complementing simulation and put all methodologies in context.

Analytical Modeling: Based purely on mathematical models, analytical modeling
typically exhibits a higher level of abstraction than simulation. Hence, an
analytical model represents a specific property of a system by means of a for-
mula, for instance the throughput in TCP [MSMO97, PFTK98]. In contrast,
simulation models are usually abstract implementations of a specific protocol
that is conceptually similar to a real protocol implementation. As a result, an
analytical system model provides a clean, fast, and often provable evaluation

14 2. Parallel Discrete Event Simulation

Analytical Modeling Simulation Emulation Prototypes / Testbeds

Level of Abstraction

Figure 2.1 Comparison of the four major evaluation methodologies available for the devel-
opment of communication systems. The level of abstraction from real-world
systems is the highest for analytical models and steady decreases over simulation
and emulation towards prototypes and testbeds.

methodology, assuming the problem formulation is efficiently solvable. How-
ever, devising an accurate analytical model demands extensive mathematical
knowledge and typically relies on strong assumptions. Moreover, representing
the involved behavior of distributed systems in a purely mathematical fashion
often results in complex and computationally intractable models [GG10].

Emulation: In the context of communication systems, emulation refers to a sim-
ulation based evaluation process that involves production code as used in
real systems [JM05], or even incorporates real systems in the simulation pro-
cess [Fal99]. Please note that in other domains, emulation refers to highly
accurate simulation models, for instance of hardware and/or software sys-
tems [Bel05]. Due to the inclusion of real system components in the network
simulation, emulation exhibits a significantly lower level of abstraction than
simulation, yielding evaluation results closer to reality. At the same time,
however, real components increase the complexity of the evaluation setup and
limit scalability in comparison to simulation. Moreover, the simulation has to
handle headers of network packets on a bit level, or at least provide function-
ality to convert real packets to and from an abstract representation used by
the simulation.

Prototypes and Testbeds: Testbeds built from prototypes or real systems consti-
tute the means for the final evaluation process of a system before deployment
in a production environment. Since prototypes comprise the (almost) finalized
hard- and/or software, they provide a precise insight into the system behavior,
performance, and implementation bugs. Nevertheless, to aid evaluation, anal-
ysis, and debugging, testbeds might employ unobtrusive means of abstraction
such as a wired side-channel in a wireless sensor network testbed [ASW05].
The most prominent limitations of testbeds, however, are the cost of purchas-
ing and maintaining a testbed, thereby restricting scalability, as well as a lack
of repeatability due to uncontrollable side-effects, thus impeding evaluation
and debugging [SPBP06].

Figure 2.1 compares discrete event simulation with the evaluation methods discussed
above in terms of the level of abstraction from real world systems. We observe that
analytical models exhibit the highest level of abstraction which steadily decreases
for simulation and emulation towards prototypes and testbeds.

2.2. Goals and Challenges of Parallelization 15

Unfortunately, the evaluation methods are typically incompatible in terms of pro-
gramming interfaces. Hence, transitioning between different methods often requires
re-implementing the system under investigation. In order to eliminate the need for
re-implementations, abstraction layers provide a common programming interface
across different evaluation and deployment platforms. As part of our overall work,
we contributed to the development of an abstraction layer [LKGW09] targeting pro-
tocol development and experimentation [KLGW09].
Due to the high level of abstraction, simulation aims at the initial phase of the de-
velopment process, allowing for quickly estimating the performance of a system. In
practice, however, simulation models exhibit considerable computational complex-
ity, thereby hampering the ability for rapid performance estimation. This thesis
investigates parallelization techniques to retain this fundamental property of simu-
lation.

2.2 Goals and Challenges of Parallelization

In this section, we first motivate the need for parallel discrete event simulation in
greater detail. We then discuss different means of parallelization before formalizing
the central challenges of parallel discrete event simulation.

2.2.1 The Need for Parallel Discrete Event Simulation

Simulation models must accurately reflect the properties of a given system to allow
for correctly investigating its properties. In general, the complexity of the system
under investigation carries over to the respective simulation model. As a result, accu-
rate models of complex systems, such as communication systems, exhibit non-trivial
computational resource requirements in terms of computing power and memory de-
mands. These resource requirements in turn hamper thorough evaluation studies,
e. g., due to extensive runtimes, and hence hinder efficient development and evalua-
tion of new systems.
Abstraction is the primary means in simulation to limit model complexity. An
abstract model focuses only on the relevant aspects of a system and ignores the
irrelevant ones [GG10]. However, as abstraction is a trade-off between accuracy and
complexity, the level of abstraction is naturally limited if a high degree of accuracy
is required [JZTB06]. If a (computationally) complex system property is impor-
tant for capturing the behavior of the system, the corresponding simulation model
cannot entirely abstract from this property but instead has to model this property
appropriately. For instance, investigating wireless communication systems relies on
detailed radio propagation, interference, and signal coding models. Those operations
exhibit a significant computational complexity – often exceeding the computational
complexity of all other events in a simulation model by orders of magnitude as il-
lustrated in Figure 2.2. In addition, large scale communication systems involving
thousands or even millions of entities, such as the Internet or peer-to-peer networks,
show characteristics, such as delay, latency, and churn, that cannot be observed
in networks of smaller size. Hence, representative simulation models have to com-
prise a large number of network nodes to accurately reflect the behavior of the entire

16 2. Parallel Discrete Event Simulation

10-7 10-6 10-5 10-4 10-3 10-2 10-1

Event Processing Complexity [real-time seconds]

10-1

100
101

102
103
104
105

106

Nu
m

be
r o

f E
ve

nt
s

SINR Calculation

Figure 2.2 Histogram showing the computational complexity and number of occurrences of
events in a simulation model of a wireless cellular communication network. The
complexity of computing the Signal-to-Interference-plus-Noise Ratio (SINR) for
all nodes exceeds the complexity of the other events by orders of magnitude.
The model is used to investigate resource allocation algorithms in LTE networks.

system [CNO99, SW05, LGW06]. Since each simulated network node occupies mem-
ory and generates events, such large scale models require considerable memory and
computational resources [FPP+03, WGLW12].

The direct effects of those extensive resource requirements on the evaluation pro-
cess are two-fold: i) extensive simulation runtimes due to computation complexity,
thereby hindering an efficient design space exploration, and ii) limited size of the
simulation model due to memory constraints, thereby limiting researchers to poten-
tially unrealistic scenarios.

Parallelization constitutes a possible solution for both limitations. First, distributing
large simulation models over multiple computing nodes, i. e., individual computers
in a cluster, allows for utilizing the combined memory of all machines. Thus, the
simulated network can scale to a realistic size. Second, utilizing multiple processing
units, e. g., Central Processing Units (CPUs), allows for processing complex events
in parallel, thus reducing the overall runtime of the simulation. The importance of
parallelization is further amplified by the fact that in recent years the speed of an
individual CPU core remained relatively constant. Hence, when faced with a pro-
hibitively complex computation problem it is no viable solution anymore to simply
wait until next generation of CPUs are powerful enough to handle the problem. In-
stead, the number of cores in a CPU increases, forcing developers to apply parallel
programming techniques [GK06, SMD+10].

2.2.2 Approaches to Parallelization

We distinguish three orthogonal approaches to parallelizing a discrete event simu-
lation (see Figure 2.3). Since the workload of a simulation is structured in events,
parallelization can target i) the code within the event handlers, denoted as intra-
event parallelization, or ii) the execution of multiple events in parallel, referred to as
inter-event parallelization. Furthermore, iii) inter-simulation parallelization denotes
the execution of entire simulation runs in parallel, each using a different parameter
set or random seed.

2.2. Goals and Challenges of Parallelization 17

parallel_for (...){
 parallel_for (...){
 compute()
 }
}

CPU CPU CPU

(a) Intra-event paralleliza-
tion distributes the
workload of a single
event to CPUs.

CPU CPU CPU

simulation

future event set
e1 e2 e3 e4 e5

(b) Inter-event paralleliza-
tion distributes individ-
ual events to CPUs.

sim1 sim2 sim3

CPU CPU CPU

(c) Inter-simulation par-
allelization distributes
entire simulations to
CPUs.

Figure 2.3 Comparison of three approaches to parallelization: Intra-event, inter-event, and
inter-simulation parallelization.

Intra-event Parallelization: The event handlers of a given simulation can generally
contain computationally complex code. In this case, parallelizing the code
within such event handlers is a viable approach (see Figure 2.3(a)). Specifically,
this approach reduces the overall runtime of a simulation by shortening the
processing time of complex events through parallelization, yet events are still
executed sequentially.
A variety of threading libraries such as Intel Threading Building Blocks [Rei07],
OpenMP [DM98], or Cilk [BJK+95] provide a rich set of features for paralleliz-
ing complex event handlers. For instance, these libraries allow for conveniently
parallelizing computations involving loops over arrays of data, as often the case
when computing the characteristics of the wireless channel. In case loop it-
erations are independent, the workload can easily be distributed to multiple
worker threads, coordinated by the threading library.

Inter-event Parallelization: Instead of executing one parallelized event at a time,
inter-event parallelization aims at processing multiple events of the same sim-
ulation in parallel (see Figure 2.3(b)). This approach builds upon the observa-
tion that events in a simulation model do not necessarily interfere or depend
on each other. For example, handling a network packet in the local protocol
stack at two separate nodes is inherently independent. Thus, the fundamental
idea of inter-event parallelism is to automatically identify such independent
events which are suitable for parallel execution.

Inter-simulation Parallelization: In contrast to inter- and intra-event paralleliza-
tion, inter-simulation parallelization is a nearly trivial approach to paralleliza-
tion. It relies on the fact that individual simulation runs with different param-
eters and seeds are inherently independent, thus allowing for parallel execution
(see Figure 2.3(c)). Since thorough evaluation studies typically investigate a
given parameter space, this parallelization scheme is in fact widely used –
particularly on computing clusters.

The efficiency of intra-event parallelism heavily depends on the workload character-
istics of the given simulation model. For example, in simulation models of large scale
peer-to-peer networks, the complexity of each event is negligible, but the multitude
of events creates a large computational load. Thus, intra-event parallelism is not
suitable for such models, hence lacking general applicability. Moreover, if only a

18 2. Parallel Discrete Event Simulation

subset of events in a simulation model possess reasonable complexity, the overall
reduction in runtime is limited by the fraction of runtime these events contribute
to the total simulation runtime. This observation follows directly from Amdahl’s
Law [Amd67].

Most importantly, intra-event parallelism requires solid knowledge and experience to
(re-)structure a given event handler, i. e., algorithm, such that it supports efficient
parallel execution. Additionally, every event handler needs to be modified manually
by the model developer. Instead, in inter-event parallelization the burden is on the
simulation framework to identify parallelizable events while the modeler can focus
on the semantics of the model. Consequently, inter-event parallelization is model
agnostic.

Finally, inter-simulation parallelization exhibits two drawbacks: First, it does not
reduce the runtime of individual simulation runs, thereby hindering rapid prototyp-
ing. Second, to fully utilize a multi-core computer, we need to run one simulation
instance per CPU. However, the memory requirements of large scale simulation
models might prevent running a sufficiently large number of instances on a multi-
core computer.

In conclusion, intra-event parallelization lacks general applicability while inter-si-
mulation parallelization does not improve the runtime of individual simulation runs.
Because of these limitations, inter-event parallelization constitutes the primary ap-
proach to parallel discrete event simulation. As a result, we focus entirely on inter-
event parallelism in the remainder of this thesis.

2.2.3 Challenges of Parallel Event Execution

Recall from Section 2.1.2 that a sequential discrete event simulation is causally
correct if all events execute in monotonically increasing timestamp order. It is crucial
that a parallel simulation fulfills this correctness requirement as well to retain its
applicability as a deterministic evaluation tool. At the same time, parallel discrete
event simulation aims for increasing simulation performance by executing events in
parallel. Hence, the key challenge of parallel discrete event simulation is maintaining
the correctness of the simulation while maximizing simulation performance.

To illustrate that this challenge is indeed non-trivial, consider a naïve approach to
parallelization. The simple approach iteratively assigns all events e ∈ F in the FES
to the available processing units. We consider a simple example shown in Figure 2.4
to illustrate that this approach however cannot guarantee causal correctness, i. e., a
monotonically increasing simulated time:

Assume a simulation model which is split into multiple components c1 and c2, in
accordance with common software engineering practice. Let furthermore each com-
ponent maintain an own local virtual time tc1 and tc2 . Assume moreover two events
e1, e2 ∈ F ⊆ E with t(e1) < t(e2). According to our simple parallelization approach,
we execute e1 and e2 in parallel on two separate CPUs. Thus, the local time of
ci advances to t(ei), i ∈ {1, 2} according to the general execution model of discrete
event simulation. In general, the event handler of e1 at c1 can create a new event
e3 with t(e1) < t(e3) < t(e2), scheduled for execution at component c2. However,

2.3. Concepts of Parallel Discrete Event Simulation 19

component 1

component 2

e1

e2

local simulated time

local simulated time

e3

1 2 3

1 event execution order event creation causal violation

Figure 2.4 Naïve, i. e., unsynchronized, parallel event execution cannot guarantee causal
correctness: Processing e2 before e3, which is created by e1 and hence arrives
later than e2 in the FES, results in a causal violation because t(e3) < t(e2).

executing e2 at c2 already set the local time of c2 to t(e2) which is later than t(e3).
Consequently, executing e3 sets the local time back to t(e3), thereby resulting in a
causal violation, i. e., out-of-order event execution.

We conclude from this example that parallelization needs to synchronize and co-
ordinate parallel event execution to achieve causally correct simulation execution.
To solve this challenge, parallel discrete event simulation employs specific modeling
concepts and synchronization algorithms, which we discuss in the next section.

2.3 Concepts of Parallel Discrete Event Simulation

This section introduces the fundamental concepts underlying parallel discrete event
simulation. Specifically, we first introduce schemes for partitioning a simulation
model, followed by a formal definition of causal correctness. Finally, we briefly
discuss two classes of synchronization schemes and distinguish three different event
execution environments.

2.3.1 Workload Partitioning

A parallel simulation needs to partition the workload of a simulation run to make
use of multiple processing units. In the following, we briefly sketch three different
partitioning schemes.

Space-parallel Partitioning: The de facto standard partitioning scheme in PDES
is space-parallel partitioning [Fuj90a]. This scheme splits a simulation model
into groups of simulated entities which in turn form a partition. In case of
network simulations, these entities correspond to network nodes and their
subcomponents such as protocol stacks, network cards, routing tables, etc.
Since simulation models typically exhibit a modular structure corresponding
to those entities, this scheme is generally applicable.
In a special case of space-parallel partitioning, a simulation model is distributed
across different simulation frameworks, called federates. The purpose of this
approach is to couple specialized simulators to take advantage of their par-
ticular features and simulation models. For instance, in order to evaluate the
hardware design of a network router, a network simulation can simulate the

20 2. Parallel Discrete Event Simulation

(a) Space-parallel partitioned
model of a wired net-
work. Clusters of local
nodes map to partitions.

(b) Channel-parallel parti-
tioned model of a cel-
lular network. Non-
neighboring cells map
to partitions.

simulated time

partition 1

partition 2

partition 3

Legend:

(c) Time-parallel partitioned
simulation run. Different
periods of the simulated
time map to partitions.

Figure 2.5 Overview of space-, channel-, and time-parallel partitioning. In all three exam-
ples, the workload is distributed over three partitions.

surrounding network and its traffic while a hardware simulator models the
internals of the router. However, despite a different terminology (federates in-
stead of partitions), the parallelization challenges and corresponding solutions
are equivalent. Hence, we do not explicitly consider federated simulation in
the remainder of this thesis.
A key goal of the partitioning process is to achieve an equal distribution
of workload over all partitions while limiting inter-partition communication.
Thus, depending on the properties of a given simulation model, assigning en-
tities to partitions follows different strategies. For instance, large wired net-
works, such as the Internet, lend themselves to partitioning along backbone
links as shown in Figure 2.5(a). Assuming that the majority of network traffic
is between local nodes, this strategy maps clusters of local nodes to partitions
in order to minimize cross-partition communication. In contrast, small and
local wireless ad-hoc networks do not posses such backbone links. Instead,
partitioning such networks often bases on the simulated geographic location of
a network node.

Channel-parallel Partitioning: A partitioning scheme specific to network simula-
tion is channel-parallel partitioning [LA96, LA97]. The scheme leverages the
fact that wireless communication on non-interfering channels is independent.
It partitions a simulated network according to non-interfering channels and
forms clusters of network nodes communicating on the same channel. This
scheme finds application primarily in simulations of cellular communication
systems such as GSM, UMTS, or LTE in which neighboring cells use non-
interfering channels (see Figure 2.5(b)). Nevertheless, it is not well suited
when neighboring channels overlap such as in IEEE 802.11g/n or if the whole
network transmits on the same channel, for instance in Code Division Multiple
Access (CDMA) systems.

Time-parallel Partitioning: An even more specific partitioning scheme is time-par-
allel partitioning [LL91]. This scheme subdivides the time-domain of a sim-
ulation into distinct periods p0, . . . , pn and assigns each period to a separate

2.3. Concepts of Parallel Discrete Event Simulation 21

processing unit for parallel execution. Hence, each partition comprises the
whole state of the simulation, but at different times of a simulation run as il-
lustrated in figure 2.5(c). Since, however, the initial state of period pi depends
on the resulting state of period pi−1, the simulation framework initializes a
new simulation run by assigning randomly generated or user-provided initial
states to each period. Subsequently, the simulation framework executes all
periods in parallel and checks if the resulting state of pi−1 matches (approxi-
mately [Kie05]) the initial state of pi. If the states do not match, the simulation
iteratively repeats simulating period pi with the final state of period pi−1 until
both states converge.
This scheme is only applicable to simulations with a small state space, for
instance queueing systems, to allow for fast convergence of initial and final
states. The state of a network simulation is in general too large, thus rendering
the scheme infeasible for time-parallel partitioning.

In summary, space-parallel partitioning is the conceptually most intuitive approach
and the only generally applicable one. Thus, in the remainder of this thesis, the term
“partitioning” refers to space-parallel partitioning if not explicitly stated otherwise.

2.3.2 Causal Correctness

The example of a naïve yet incorrect parallelization scheme presented in Section 2.2.3
illustrates the fundamental challenge in PDES: Enabling parallel event execution
while maintaining a valid ordering of events. In the following, we formally define a
distributed event handling scheme and a formal criterion for guaranteeing a causally
correct event ordering.

2.3.2.1 Logical Processes

A partitioning scheme merely determines how the workload of a simulation is clus-
tered and distributed across multiple processing units but it does not define a scheme
for distributed event handling and the interaction among partitions. Hence, we in-
troduce the notion of a Logical Process (LP). An LP resembles a sequential discrete
event simulation which is restricted to a subset of a larger simulation model. Specif-
ically, each LP maintains a partition of a simulation model, a local FES, and a
local virtual clock. By applying the sequential event handling scheme presented in
Section 2.1, each LP forms an independent subsimulation.

However, LPs cannot simply execute in parallel as isolated simulations since each
LP comprises only a fraction, i. e., a single partition, of a simulation model. Instead,
activities in a simulation model spanning multiple partitions, consequently involve
multiple LPs. Examples include a network packet traversing a space-parallel parti-
tioned network, or a simulation entity reading from and writing to a data storage
entity at a remote LP, e. g., a routing table. To handle inter-LP communication
and data access, LPs exclusively communicate by exchanging timestamped events,
thereby explicitly prohibiting direct data access or remote procedure calls. The rea-
son for this restriction is that only timestamped events traverse the event scheduler

22 2. Parallel Discrete Event Simulation

and thus enable a synchronization algorithm (see Section 2.3.3) to coordinate correct
parallel event execution.

2.3.2.2 Causal Correctness

Based on the definition of logical processes, Fujimoto defines the Local Causality
Constraint as a criterion for the order of event execution at each LP:

Definition 1 (Local Causality Constraint)
“A [parallel] discrete event simulation, consisting of logical processes that interact ex-
clusively by exchanging timestamped [events], obeys the local causality constraint if and
only if each logical process executes events in non-decreasing timestamp order.” [Fuj90a]

Building on the notion of the local causality constraint, a parallel discrete event
simulation is causally correct if it fulfills the following criterion:

Definition 2 (Causal Correctness)
A parallel discrete event simulation is causally correct if and only if it obeys the local
causality constraint.

2.3.3 Synchronization Schemes

In order to fulfill the local causality constraint, parallel discrete event simulation
employs synchronization algorithms. These algorithms generally fall into one of two
categories: Conservative or optimistic synchronization. Conservative synchroniza-
tion strives to strictly avoid causal violations during a simulation run. In contrast,
optimistic synchronization allows causal violations to occur, but provides means for
detecting and correcting causal violations.

The following sections briefly introduce both classes, compare their properties, and
discuss combined and alternative synchronization schemes. However, over the last
two decades, the research community has proposed numerous extensions, additions,
and improvements of these basic algorithms. For the sake of brevity, we deliberately
discuss only the fundamental techniques and algorithms in this background chapter
to give a basic understanding of the general idea. We address relevant related efforts
in depth in dedicated related work sections later throughout this thesis.

2.3.3.1 Conservative Synchronization

Conservative synchronization aims at strictly avoiding causal violations during sim-
ulation runtime. Thus, conservative synchronization only allows executing events
which are independent and hence safe for parallel execution. More formally, given
two events e1 and e2, conservative synchronization needs to determine whether or
not parallel event execution will result in a causal violation. Hence, conservative
synchronization aims at achieving two goals:

i) Determine whether or not events are independent before executing them, and

2.3. Concepts of Parallel Discrete Event Simulation 23

ii) maximize the set of independent events for maximizing parallel performance.

A general purpose discrete event simulation framework has no insight into the se-
mantics of a simulation model, i. e., no knowledge of the causal relationship of events.
As a result, the only property available a-priory execution is the timestamps of the
events in the FES. Hence, conservative synchronization needs to take the synchro-
nization decision solely based on time information. The most fundamental time
information in this regard is the lookahead:

Definition 3 (Lookahead)
The lookahead in a conservatively synchronized parallel discrete event simulation, con-
sisting of logical processes lp0, . . . , lpm, is the lower bound on the difference in simulated
time between the execution of an event e at lpi and the arrival of an event e′ created by
e at lpj, i 6= j.

We conclude from this definition that all events within the lookahead from one LP to
another LP are independent. To see why, consider the following example. Assume
a simulated communication network consisting of two nodes n1, n2 connected via
a single link. Each node maps to a separate LP and the simulated link has a
hypothetical propagation delay of 1 s. Then, the lookahead equals 1 s since any
packet sent by n1 at simulated time t takes 1 s to reach n2. Therefore, any event e at
n2 with t ≤ t(e) ≤ t+1 s is safe for parallel processing as no event with a timestamp
smaller than t+ 1 s can arrive at n2 from n1.

We furthermore define the event density as follows:

Definition 4 (Event Density)
The event density denotes the number of events per unit of simulated time.

In combination with the event density, the lookahead is a highly performance critical
factor in conservative synchronization. A large lookahead with regard to the event
density covers a large number of independent events. Consequently, with respect
to the second goal of conservative synchronization stated above, it is imperative to
extract the largest possible lookahead from a simulation model. Potential sources of
lookahead are the propagation delay on a network link, the service time in a queueing
system, or the processing delay of a hardware component. These examples indicate
that the lookahead highly depends on the system under investigation. Revisiting the
network example from above, we observe that intercontinental Internet links exhibit
a latency of several milliseconds. In contrast, the propagation delay of wireless links
in a WiFi network is in the range of merely nanoseconds. Moreover, the lookahead
is often reduced further due to interference on the wireless broadcast medium. As
a result, the lookahead constitutes the performance limiting factor in conservative
synchronization [BT02, LN02, MB98, MB99].

Finally, to determine the set of independent events, each conservatively synchronized
LP computes and maintains two time values:

Earliest Output Time (EOT): The EOT is the lowest bound on the absolute sim-
ulation time at which an event sent from one LP can affect a neighboring LP.
Thus the EOT is given by the current local time of the LP plus the lookahead
to its neighbors.

24 2. Parallel Discrete Event Simulation

simulated time

barrier1 barrier2 barrier3

LP lp1

LP lp2

LP lp3

e1

e2

e3

e4

e5

e6

lookahead

(a) The EIT among all LPs determines a barrier
in simulated time. All events between two
barriers are eligible for parallel processing.

wall clock time

barrier1 barrier2 barrier3

CPU c1

CPU c2

CPU c3

CPU busy CPU idle

(b) All LPs need to arrive at a barrier before a
new round can start. Hence, per round all
but one CPU exhibit an idle phase.

Figure 2.6 Illustration of synchronous, i. e., barrier-based, synchronization algorithms in sim-
ulated and simulation time.

Earliest Input Time (EIT): The EIT denotes the lowest bound on the absolute sim-
ulation time at which an event from a neighboring LP can take effect at the
local LP. Hence, the EIT is the lowest EOTs of all neighboring LPs. In the
literature [Fuj90a, Per06b], the EIT is also referred to as Lower Bound on
incoming Time Stamps (LBTS).

Based on these values, all events e ∈ F of an LP with t(e) ≤ EIT are safe for parallel
processing: Since no events with a timestamp lower than EIT can arrive at an LP,
no causal violations can occur by executing all events up to EIT. However, if the
EIT is smaller than the timestamp of all events in the local FES, an LP blocks until
the EIT increases.
Conservative synchronization algorithms are further subdivided into two fundamen-
tal categories: Synchronous and asynchronous algorithms. The following sections
present the general concepts as well as one selected algorithm from each category.

Synchronous Algorithms

Synchronous algorithms advance the simulation in rounds alternating between global
synchronization among all LPs and parallel event execution. At the beginning of
each synchronization round, all LPs communicate the timestamp of their next local
event plus the lookahead to all other LPs. Using this information, all LPs compute
a minimal global EIT, i. e., barrier. Subsequently, all LPs process events up to this
barrier and re-synchronize (see Figure 2.6(a)).
The primary advantage of this class of algorithms is their simplicity and their ability
to deal with zero lookaheads between LPs, since the global synchronization process
considers the timestamp of actual events in the local FESs. However, global synchro-
nization can become a performance bottleneck and limit scalability. For instance,
since all LPs need to arrive at a barrier before a new round can start, early arriving
LPs are blocked for a potentially long time. This in turn results in idling CPUs
and a sub-optimal resource utilization (see Figure 2.6(b)). Moreover, due to the
communication overhead of global synchronization, these algorithms typically find
application in multi-threaded simulation using shared memory synchronization prim-
itives [PVM09, Seg09]. Nevertheless, modern distributed communication libraries

2.3. Concepts of Parallel Discrete Event Simulation 25

LP1

LP3

LP2 EIT: 9

EIT: 10

EIT: 11

t(enext): 12

t(enext): 12

t(enext): 12






(a) The NMA deadlocks due
to a cyclic dependency:
All LPs wait for a mes-
sage from their neigh-
bors.

LP1

LP3

LP2 EIT: 13

EIT: 10

EIT: 11

t(enext): 12

t(enext): 12

t(enext): 12

lookahead: 2

null-msg:
EOT:13






(b) An EOT update via a null-
message increases the EIT
of LP2 beyond the times-
tamp of its next event.

e1 e2 null2 null3 null4 null1

simulated time
lookahead

with null messages

without null messages

(c) Time creeping problem:
Small lookaheads cause
excessive numbers of
null-messages between
events.

Figure 2.7 The Null Message Algorithm uses null-messages to break deadlocks (Figures (a)
and (b)). However, small lookahead can cause large numbers of null-messages,
thereby causing the time creeping problem (Figure (c)).

such as the Message Passing Interface (MPI) provide global collection operations,
e. g., MPI_ALLgather, which foster the use of synchronous algorithms in distributed
simulation [BBC+12, PR11].

Asynchronous Algorithms

Asynchronous algorithms alleviate the drawbacks of global synchronization by let-
ting all LPs continuously and independently distribute EOTs to the neighboring LPs.
Using these EOT-updates from their neighbors, LPs continuously advance their own
local EIT. To reduce the communication overhead of the update messages, LPs can
piggyback updates on top of ordinary events sent to neighboring LPs. However,
a fundamental limitation of this approach is deadlocks. Figure 2.7(a) illustrates a
simple example in which three LPs block due to a cyclic dependency. All three LPs
wait for a message from a neighboring LP which would allow for increasing the EIT.
However, due to the cyclic waiting condition, no messages will ever be sent and the
simulation deadlocks.

The Null Message Algorithm (NMA) [CM79] solves this issue by means of additional
synchronization messages. Every time an LP blocks or updates its local EOT, it
proactively sends the current respectively the new EOT to all neighboring LPs to
enable them recomputing their EITs. Since this update message does not carry
any meaning in terms of the simulation model, it is hence called null-message. In
the example in Figure 2.7(b), sending null-messages upon blocking allows all LPs
to iteratively advance their local EIT until actual simulation events are eligible for
processing. Nevertheless, a critical restriction of the Null Message Algorithm is its
requirement for non-zero lookaheads. Otherwise LPs would indefinitely send null-
messages with identical EOTs, hence preventing the receiving LPs to update their
EIT resulting in a livelock.

A further limitation of the NMA is the Time Creeping Problem that arises in con-
junction with small lookaheads and low event densities [Fuj99b]. The root of the

26 2. Parallel Discrete Event Simulation

problem is that null-messages iteratively advance EITs, but the amount of simu-
lated time by which the EIT can be advanced depends on the lookahead. In case
the lookahead is much smaller than the time intervals between events, an excessive
number of null-messages is needed to advance the simulation time to the next event
as shown in Figure 2.7(c). For instance, assume an LP with a current local time of
10 and a local event e with t(e) = 100. Assuming furthermore a lookahead to its
neighboring LP of 1, this LP needs to receive 90 null messages, in the worst case,
until the EIT reaches 100, making the event eligible for processing. This limita-
tion is a consequence of the asynchronous nature of the NMA and not present in
synchronous algorithms due to global synchronization.
Despite these limitations, the NMA is widely applied in distributed parallel simula-
tion. Since it is one of the earliest proposed algorithms, many different flavors of the
NMA exist today [BT02, Fuj90a, Nic96, Per06b]. These flavors differ in the details,
e. g., in the exact methods of computing EITs or the laziness of disseminating EOTs,
yet the basic concept corresponds to the one presented here.

2.3.3.2 Optimistic Synchronization

Conservative synchronization often unnecessarily blocks parallel execution of inde-
pendent events if it cannot yet determine their independence, mainly due to small
lookaheads (cf. time creeping problem). To solve this problem, optimistic synchro-
nization generally assumes that two events are independent and do not interfere. It
thus executes all events speculatively as soon as they are available in the FES.
However, since speculative execution inevitably results in causal violations when two
events do in fact interfere, optimistic synchronization provides means for detecting
and correcting causal violations. Following the definition of the local causality con-
straint, optimistic synchronization detects a causal violation if an LP lpi receives
an event e with t(e) < t(lpi), i. e., a timestamp smaller than its current local time.
In order to correct a causal violation, optimistic synchronization algorithms employ
either state saving or reverse computation techniques, as discussed in the following.

State Saving Algorithms

State saving algorithms, most notably the Time Warp Algorithm [Jef85], continu-
ously save the state of all LPs at simulation runtime in the form of checkpoints.
Upon detecting a causal violation at LP lpi, the algorithms roll back the state of
lpi to a correct state by restoring a previously stored checkpoint, typically the one
directly preceding the timestamp of the conflicting event.
However, the invalid state of the simulation model is not restricted to lpi, but any
LP that received a message from lpi since the last checkpoint may be in a potentially
incorrect state. In order to restore their states as well, lpi sends for each message
sent since the respective checkpoint one so called anti-message to its neighbors. If
a message and its corresponding anti-message coincide in the FES of an LP, i. e.,
the original message was not processed yet, both messages cancel each other out.
If, however, the original message was already processed when receiving the anti-
message, the respective LP performs a rollback as well. Eventually, this recursive
rollback scheme eliminates all invalid messages and states from the simulation model.

2.3. Concepts of Parallel Discrete Event Simulation 27

Reverse Computation Algorithms

An inherent problem of the state saving approach is extensive memory consump-
tion. Reverse computation [CPF99, TPF+05] mitigates the memory consumption
problem by trading computational load for memory resources. Specifically, for every
invalid instruction performed since the timestamp of the conflicting event, reverse
computation executes an inverse instruction undoing the incorrect state changes.
Put simply, this synchronization scheme reverts the effects of an erroneous addition
by performing a corresponding subtraction. Modelers can either manually provide
inverse event handlers for each event occurring in the simulation or employ compiler-
based techniques to generate corresponding inverse events.

However, reverse computation still needs to maintain additional state information for
two reasons. First, in order to correctly reverse an event handler, the scheme needs
to follow the exact inverse control flow path of the previous erroneous execution.
Hence, for each instruction influencing the control flow, e. g., conditional branches
or loops, a control-flow-state holds information allowing for constructing the reverse
control flow path, e. g., the branches taken or the number of loop iterations. Second,
not all operations in a computer are accurately reversible. For instance, floating
point operations introduce rounding errors and operations such as modulo eliminate
information about the original operands. To handle such destructive instructions,
reverse computation resorts to state saving. Thus, reverse computation achieves an
actual reduction in the memory consumption if the total size of the control flow and
the destructive instructions state is smaller than the entire data state of a simulation
model.

2.3.3.3 Comparison of Conservative and Optimistic Synchronization

Although conservative synchronization algorithms achieve distributed coordination,
their actual implementation is far less complex than that of optimistic algorithms. If
no safe events are available, conservative synchronization simply suspends execution
of further events and waits for safe events to become available again. Hence, resource
utilization, particularly memory consumption, is lower, thus benefiting the scalabil-
ity of the simulation model. However, the key performance factor of conservative
synchronization is the lookahead which in turn strongly depends on the particular
system under investigation. As a result, conservative synchronization is too pes-
simistic when confronted with a small lookahead, thus hindering parallel execution
of actually independent events.

In contrast, optimistic synchronization is largely independent of the lookahead avail-
able in a given simulation model. This makes optimistic synchronization particularly
suitable for simulation models with small lookaheads, such as models of wireless net-
works. Moreover, as long as no causal violations occur at simulation runtime, opti-
mistic synchronization does not impose additional communication overhead since it
does not make use of synchronization messages. However, in order to avoid frequent
rollbacks, optimistic synchronization requires uniform progression of all LPs through
simulated time. Large differences in simulated time at the LPs increase the risk of
receiving a message with a timestamp preceding the local time of the receiving LP.
Furthermore, the implementation of optimistic synchronization algorithms is highly

28 2. Parallel Discrete Event Simulation

Conservative Optimistic
Synchronization Synchronization

Key advantages simplicity independent of lookahead

Key drawbacks too strict high memory usage,
too aggressive

Implementation complexity simple complex
Performance factors lookahead uniform progress of LPs,

Table 2.1 Comparison of conservative and optimistic synchronization in terms of key advan-
tages & drawbacks, implementation complexity, and performance factors.

complex due to the need for efficient memory management, checkpointing, or com-
piler supported reverse computation. In particular, extensive memory utilization
severely limits the scalability of simulation models.

Table 2.1 summarizes and compares the properties of conservative and optimistic
synchronization in terms of implementation complexity, performance factors, and
key advantages as well as drawbacks.

To mitigate the drawbacks of purely conservative and purely optimistic algorithms,
the research community proposed combinations of both schemes [JB94, NL02, Per05,
RAT93]. For the sake of brevity we do not detail on these approaches here, but defer
the discussion of related efforts on combined synchronization to the dedicated related
work sections later throughout this thesis.

2.3.4 Parallel Event Execution Environments

Until now, PDES merely denotes the general concept of processing multiple events
in parallel on different processing units. This concept, however, does not specify the
runtime environment, i. e., the hardware and software platform, used for actually
executing the simulation. In the context of this thesis it is important to differentiate
between three parallel execution environments: i) distributed simulation, ii) multi-
threaded simulation, and iii) distributed multi-threaded simulation.

Distributed Simulation: A distributed simulation typically runs on a computing
cluster consisting of multiple individual compute nodes. Each compute node
contributes computing resources, e. g., processing power, memory, and stor-
age space, to the cluster. Communication between compute nodes utilizes a
communication network, for instance based on commodity IEEE 802.3 Ether-
net [iee] or specialized, low-latency interconnects such as Myrinet [BCF+95]
or InfiniBand [inf].
Each compute node executes one or more partitions (or federates) of a dis-
tributed simulation as an individual process. As compute nodes communicate
solely across the interconnect, no globally shared memory space is available
to the processes. Hence, synchronization between partitions relies entirely on
message passing.

2.4. Parallel Discrete Event Simulation Frameworks 29

Multi-threaded Simulation: A multi-threaded simulation executes on a multi-pro-
cessor computer which provides all available computing resources. In contrast
to distributed simulation, a multi-threaded simulation runs in a single process
comprising multiple worker threads. These worker threads share a common
global memory space which enables them to access the entire state of the
simulation model and share the workload, i. e., event processing. Moreover,
as threads share a common memory space, multi-threaded simulation utilizes
in-memory synchronization primitives such as mutexes, barriers, and spinlocks.

Distributed Multi-threaded Simulation: Due to the proliferation of multi-proces-
sor computers, compute nodes in a cluster provide multiple processors. As a
result, distributed multi-threaded simulation follows a hierarchical approach
by distributing multiple partitions of a simulation model to a compute node
which in turn utilizes its processors to execute local partitions in parallel.

The goal of this thesis is to develop efficient parallel simulation techniques which
are specifically tailored to the characteristics of multi-core systems. Since multi-core
systems provide fast and scalable thread synchronization mechanisms utilizing a
globally shared memory space, multi-threaded simulation constitutes a natural foun-
dation for our work. Furthermore, we aim at making desktop and server multi-core
systems available to model developers and researchers as cheap and simple-to-use
basis for parallel simulations. Considering the cost and complexity of a distributed
simulation setup, the remainder of this thesis hence focuses solely on multi-threaded
simulation.

2.4 Parallel Discrete Event Simulation Frameworks

As a result of the extensive research in the domain of parallel simulation, a wide range
of simulation frameworks support different flavors of parallel simulation. This section
briefly reviews the state-of-the-art in parallel simulation frameworks and their key
properties. We complement this overview with in depth discussions of particular
related efforts later throughout this thesis in dedicated related work sections.

2.4.1 Overview

In the following, we present a brief overview of related efforts targeting parallel dis-
crete event simulation. This overview differentiates between simulation frameworks
created by the research community and commercial frameworks.

2.4.1.1 Simulation Frameworks based in the Research Community

Parallel discrete event simulation is in the focus of the research community for over
two decades. Consequently, the combined efforts of the community resulted in a
multitude of excellent parallel simulation frameworks.

30 2. Parallel Discrete Event Simulation

OMNeT++: The OMNeT++ framework [Var01] is an open source, general pur-
pose discrete event simulation environment. In terms of parallel simulation,
it supports distributed simulation synchronized by means of the Null Message
Algorithm [SVE03]. Despite not featuring multi-threaded simulation, multi-
ple processes of a distributed simulation can operate on a single multi-core
machine, thereby utilizing all CPUs.
In order to be suitable for parallel simulation, simulation models are restricted
to static topologies with non-zero link delays to accommodate the Null Mes-
sage Algorithm and the space-parallel partitioning scheme. OMNeT++ en-
ables transparent cross-partition communication by means of proxy gates and
placeholder modules. Each partition knows about the entire topology of a
given simulation model, however, modules not mapped to a particular parti-
tion are replaced by placeholder modules which send incoming events towards
the real modules.

Parallel/Distributed ns (pdns): Building on top of the widely used ns-2 network
simulator [BEF+00], pdns [RFA99] extends ns-2 with parallel simulation ca-
pabilities. Specifically, Parallel/Distributed ns (pdns) connects multiple in-
stances of ns-2, called federates, to form a distributed simulation. Moreover,
it utilizes the RTIKIT [FH98] runtime which enables communication and con-
servative synchronization between federates. Like OMNeT++, pdns exploits
multi-core machines by placing multiple federates on one machine despite not
supporting multi-threaded execution.
Each federate handles one partition of a space-parallel partitioned simulation
model. In contrast to OMNeT++, each federate only knows about the net-
work nodes mapped to its partition in order to minimize the memory footprint
of large scale simulation models. Hence, to allow for defining and creating log-
ical connections between simulated nodes, pdns extends the model description
language with unique (IP address, port)-identifiers which can be used across
partition boundaries.

GTNetS: Based on the experiences gained during the development of pdns, scala-
bility is a primary concern in the architectural design of GTNetS, the Georgia
Tech Network Simulator [Ril03]. In terms of parallelization, it builds upon a
similar architecture as pdns. Thus, GTNetS utilizes remote links for connect-
ing nodes across a space-parallel partitioned and conservatively synchronized
simulation model. In contrast to ns-2 however, GTNetS replaces the RTIKIT
with MPI which allows for distributed simulation on computing clusters and
multi-core machines. More importantly, it eliminates the dual Tcl/C++ pro-
gramming language approach of ns-2 and solely focuses on C++, resulting in
a significant reduction in memory consumption. The distributed simulation
architecture of GTNetS eventually became a fundamental building block of
ns-3.

ns-3: Like its predecessor, ns-3 [HRFR06] supports conservatively synchronized dis-
tributed simulation of space-parallel partitioned simulation models. In con-
trast to ns-2, inter-partition communication and synchronization rely on MPI
instead of RTIKIT. ns-3 achieves conservative synchronization by determin-
ing a global Lower Bound on incoming Time Stamps (LBTS) across all links

2.4. Parallel Discrete Event Simulation Frameworks 31

between all partitions in a round based fashion. As a result, partitioning a
simulation model is restricted to so called point-to-point links which provide
a propagation delay used as lookahead.

In addition to distributed simulation, the ns-3 project conducted efforts to-
wards multi-threaded simulation [Seg09]. Despite applying the same synchro-
nization and partitioning techniques as in distributed parallelization, this effort
however was discontinued due to the runtime and maintenance overhead in-
volved with a thread-safe simulation core. Instead, ns-3 recommends using the
shared memory communication capabilities of MPI for utilizing the CPUs of
multi-core computers by means of distributed parallelization.

SSF (SSFNet / DaSSF): Despite its name, the Scalable Simulation Framework
(SSF) [CON02] is in itself not a simulation framework, but rather a speci-
fication of a simulation API targeting efficient parallel simulation. SSFNet
and DaSSF constitute concrete implementations of SSF for the Java and C++
programming language, respectively. SSFNet applies solely a multi-threaded
parallel execution scheme, whereas DaSSF supports both multi-threaded as
well as distributed simulation over MPI.

PARSEC / GloMoSim: PARSEC (PARallel Simulation Environment for Complex
Systems) [BTC+98] is a programming language and environment specifically
designed for parallel simulation – in contrast to the aforementioned simula-
tors which regard parallelization as an additional feature. It hence supports
distributed as well as multi-threaded simulation utilizing conservative and op-
timistic synchronization. Using PARSEC as substrate, GloMoSim (Global
Mobile system Simulator) [ZBG98] is a collection of simulation models target-
ing scalable simulation of wireless network. Despite considerable development
effort, the public maintenance and development of both PARSEC and Glo-
MoSim ended over a decade ago.

ROOT-Sim: The only simulator discussed here that explicitly supports optimistic
synchronization is ROOT-Sim [PVQ11]. It follows the classic state saving ap-
proach (full and incremental), yet employs sophisticated memory management
techniques to minimize runtime overhead.

Simulation models consist of individual entities, i. e., LPs, which map to simu-
lation kernels, i. e., distributed simulation processes communicating over MPI.
ROOT-Sim thus uses space-parallel partitioning for enabling distributed sim-
ulation. Originally targeting only distributed simulation, recent efforts extend
ROOT-Sim with multi-threaded simulation capabilities [VPQ12].

2.4.1.2 Commercial Simulation Frameworks

Following the success of multi-core computers, commercial simulation frameworks
provide parallel event execution capabilities to their customers. However, since the
source code of commercial tools is typically not publicly available, the research com-
munity depends on white papers to gain an insight into the proprietary techniques
underlying these tools.

32 2. Parallel Discrete Event Simulation

OPNET Modeler

OPNET Modeler [Cha99, opn] by OPNET Technologies is a commercial simulation
tool focusing on communication systems, in particular wireless networks. It pro-
vides support for both multi-threaded simulation as well as distributed simulation
on computing grids. Moreover, OPNET is compatible with the IEEE 1516 High
Level Architecture (HLA), thereby enabling heterogeneous compositions of different
simulation frameworks.

Based on experience, parallel simulation on multi-core computers is largely trans-
parent to model developers. The framework merely requires setting a compile time
option in order to enable parallel execution. Unfortunately, the algorithms and tech-
niques employed by OPNET are not available to the general research community.
Hence, we are not able to accurately analyze and compare the techniques used by
OPNET with the contributions of the research community, including our own work.

Qualnet

Qualnet [qua] by Scalable Network Technologies is the commercial version of the
GloMoSim simulation framework. Similarly to OPNET, Qualnet also provides a
rich set of models for communication systems. In terms of parallelization, it offers
multi-threaded as well as distributed simulation execution, the latter also supporting
the HLA standard. Although based on GloMoSim, Qualnet might utilize proprietary
parallelization techniques which are not publicly available. We hence cannot assess
the techniques of Qualnet.

2.4.2 Comparison and Conclusion

Table 2.2 summarizes the properties of the previously discussed simulation frame-
works. Clearly, conservative synchronization constitutes the de facto standard in
terms of synchronization. We ascribe this to a considerably lower implementation
effort. Moreover, conservative synchronization offers a higher degree of transparency
to the user by not requiring explicit memory management or reverse event handlers.
Overall, this results in a better adoption of parallel simulation.

In addition, due to the origins of parallel simulation in computing clusters, the
majority of simulation frameworks employ distributed simulation techniques. By
mapping multiple processes of a distributed simulation to multi-core machines, dis-
tributed simulation implicitly supports multi-core architectures. However, we argue
in this thesis that this simple mapping does not fully and efficiently exploit the
processing power and capabilities of multi-core computers. Instead, we claim that
parallel simulation on multi-core systems has to explicitly make use of the char-
acteristics of the underlying multi-core hardware platform. In particular, utilizing
shared-memory and fast thread synchronization opens new possibilities for novel
approaches towards efficient parallel discrete event simulation.

Based on this reasoning, we present parallel expanded event simulation [KLG+10,
KLW09] and the corresponding Horizon simulation framework in the next chapter.
Parallel expanded event simulation constitutes a new modeling paradigm aiming for

2.4. Parallel Discrete Event Simulation Frameworks 33

Synchronization Scheme Parallel Event Execution
Conservative Optimistic Distributed Multi-threaded

OMNeT++ 4 8 4 8

ns-2 4 8 4 8

ns-3 4 8 4 4

GTNetS 4 8 4 8

PARSEC 4 4 4 4

ROOT-Sim 8 4 4 4

DaSSF 4 8 4 4

OPNET 4 8 4 4

Qualnet 4 8 4 4

Horizon 4 4 (8)* 4

Table 2.2 Comparison of state-of-the parallel discrete event simulation frameworks in terms
of the supported synchronization and parallel event execution schemes. *: Hori-
zon is based on OMNeT++ and thus inherits the distributed simulation capabil-
ities of OMNeT++, yet without support for parallel expanded event simulation.

efficient parallelization of tightly coupled systems such as wireless networks. Hori-
zon, in turn, is an extension of OMNeT++ that implements parallel expanded event
simulation and hence puts the new modeling paradigm into practice. Both con-
tributions focus specifically on multi-core systems and heavily utilize their shared
memory capabilities. Hence, Horizon deliberately does not support parallel ex-
panded event simulation in a distributed environment simulation, despite inheriting
the distributed simulation capabilities of OMNeT++ (see Table 2.2).

34 2. Parallel Discrete Event Simulation

3
Parallel Expanded Event Simulation

This chapter presents parallel expanded event simulation, a novel modeling paradigm
that explicitly represents the processing time of physical processes by extending dis-
crete events to span a period of simulated time. Based on the notion of expanded
events, we define a conservatively synchronized parallelization scheme in which over-
lapping expanded events are eligible for parallel processing. We furthermore show
the viability of our approach by implementing and evaluating parallel expanded event
simulation in Horizon, a parallel simulation framework extending OMNeT++.

3.1 Motivation

Discrete event-based network simulation currently faces two significant changes:
First, recent advances in wireless communication technology demand highly accurate
simulation models, resulting in a steep increase in model complexity and runtime re-
quirements. Second, multi-core computers constitute the de facto default hardware
platform even for desktop systems, thus providing a cheap yet powerful parallel pro-
cessing platform. As a result, parallel discrete event simulation significantly gained
in importance and is therefore (again) in the focus of active research.

Model Complexity

Simulation models of wireless networks require considerably more detailed models
of the lower network layers than models of wired networks [WGG10]. In particular,
wireless transmissions rely on precise models of the physical layer and the wireless
channel to capture the subtle effects and interactions of advanced wireless com-
munication technologies such as OFDM [KRT02] or turbo coding [BGT93]. With
the advent of even more complex systems using MIMO transmissions [GSS+03] or
successive interference cancellation [HAW08], this trend will intensify in the near fu-
ture. In conjunction with these systems, the MAC layer depends on highly accurate

36 3. Parallel Expanded Event Simulation

timing. It is hence important to reflect even short delays, such as the processing
time of algorithms and hardware components, accurately in simulation. Moreover,
the computational complexity of simulation models is further amplified by the fact
that the wireless channel is a broadcast domain. This causes a tight coupling be-
tween simulated network nodes resulting in a higher number of nodes involved in
individual transmissions than in wired networks. Consequently, simulation runtimes
increase drastically which in turn hampers development and in-depth evaluation of
communication systems.

Researchers often work around these issues by trading accuracy for shorter run-
times [HBE+01, JZTB06]. Such trade-offs, however, need to be applied carefully as
they may lead to incorrect simulation results [TMB01]. Furthermore, studies of the
long-term behavior of complex systems, i. e., the impact of changing system loads
over the course of a day, require efficient simulation execution to restrict simulation
runtimes to reasonable lengths. Consequently, we identify the need for parallel ex-
ecution of discrete event simulations to successfully deal with complex simulation
models.

Multi-core Computers

The major trend in processor design over the last five to ten years is to move from
single-core designs towards multi-core chips. The driving factor behind this devel-
opment is that the traditional means of increasing performance through higher clock
speeds has reached physical limits. In accordance with Moore’s Law [Moo65], stat-
ing that the density of transistors on a chip doubles every year, miniaturization of
circuits allowed for continuously increasing clock speeds, thus resulting in improved
performance. As a result, common practice suggested that if a computational prob-
lem was not sufficiently fast solvable, waiting for the next generations of CPUs in
fact solved the problem. However, due to excessive power dissipation, the steady
increase in clock speed could not be upheld.

Still, Moore’s Law proved to hold over time. Hence, chip vendors started to invest
increasing transistor counts in duplicate functionality, i. e., multiple cores on a single
die, while clock speeds remained relatively stable. The direct consequence of this
development is that a gain in performance is not for free anymore. Given a sequen-
tial program, e. g., a discrete event simulation, its performance does not improve
significantly with new generations of CPU, as it did before. Instead, simulations
must explicitly employ parallel algorithms to efficiently exploit the processing power
of today’s and future multi-core systems.

The research community dedicated considerable efforts to investigating the feasi-
bility and scalability of parallel simulation [Fuj90a, Liu09, Nic96, Per06b], thereby
laying the foundation for parallel simulation frameworks [pdn, CS05, CON02, Ril03,
Var01, BFBC06]. Traditionally, the primary focus of many of these works is on
distributed simulation on computing clusters. However, such hardware is not avail-
able to the average simulation user and large scale simulations are difficult to setup
and maintain [FPP+03]. Thus, parallel simulation is still restricted to very large
simulations and does not find wide spread application in small or medium sized
simulations on small or medium sized parallel computers. In particular, modern
workstations at every networking researcher’s desk constitute such medium sized

3.2. Problem Analysis 37

multi-core computers, lending themselves to parallel simulation. We conclude from
these observations the need for a simple-to-use parallel simulation framework that
allows researchers to take advantage of the parallel processing power readily available
in modern multi-core computers.

3.2 Problem Analysis

In the previous section, we derived the need for parallel simulation techniques which
enable an efficient execution of complex simulation models on multi-core systems.
This section analyzes the challenges we are facing towards this goal. In particular,
we investigate the properties of wireless system models and identify a fundamental
modeling mismatch between reality and simulation which jointly hinder efficient
parallelization.

3.2.1 Properties of Wireless System Models

Large scale models of wired networks, e. g., peer-to-peer systems, were traditionally
the primary application of parallel network simulation. Yet, the proliferation of
wireless transmission technology has shifted the focus of interest in the research
community from wired to wireless networks.

This shift results in a significant increase in computational complexity: The isolated
and almost error-free transmission medium of wired networks allows for abstracting
almost entirely from physical layer details. In contrast, models of wireless networks
require detailed modeling of the transmission medium, i. e., the wireless channel, to
capture interference and physical layer effects such as pathloss, fading, and shadow-
ing. The corresponding computations are complex and cause extensive simulation
runtimes which in turn create the need for parallelization. However, the true chal-
lenge of parallelization, and thus this thesis, is not the computational complexity. In
fact, if it is possible to execute sufficiently many computationally complex events of
a wireless network model in parallel, the speedup and the resulting runtime reduc-
tion is excellent. Hence, the true challenge of parallelization is to identify whether
or not events are independent, i. e., eligible for parallel processing.

In this regard, the key difference between wireless and wired systems is a much
tighter coupling of the entities in wireless systems [LN02]. This is due to two prop-
erties: i) The wireless channel is a broadcast domain, and ii) wireless networks are
generally of smaller size than wired networks. In terms of parallel simulation, these
properties have two implications:

Small Lookahead: Models of wireless networks exhibit substantially smaller looka-
heads than models of wired networks. Recall that the source for lookaheads
in network simulation is typically the propagation delay along links which
cross the boundaries of partitions (cf. Section 2.3.3.1). For this reason, (space-
parallel) partitioning of large scale wired networks, e. g., the Internet, divides
the network along long-haul backbone links. These links, often abstracting

38 3. Parallel Expanded Event Simulation

from single network devices, such as routers and switches, feature delays rang-
ing from micro- up to milliseconds [MTK06]. In wireless networks, however, no
such abstract backbone links exist. Instead, wireless links just range between
tens of meters (e. g., Bluetooth) up to a few kilometers (e. g., Global System
for Mobile Communications (GSM)). Since signals along these links travel at
the speed of light, propagation delays span merely nanoseconds (e. g., 33 ns for
10m) to low microseconds (e. g., 3.3 µs for 1 km).
As introduced in Section 2.3.3.1, the lookahead and the event density are
of key importance for achieving good performance in conservatively synchro-
nized parallel simulations. While the event density in wireless network models
is higher than in wired system models due to accurate modeling of MAC pro-
tocols, a key defining factor of the event density is the traffic rate, i. e., number
of packets per second in the network. Since the traffic rate is low in relation to
the size of the lookahead, i. e., only few events are covered by the lookahead,
conservative synchronization algorithms struggle to identify parallelism and
achieve good performance [LN02, MB98].

High Connectivity among Network Nodes: Inherently, the wireless channel is a
broadcast domain, i. e., every transmission reaches every node in range and
also influences every other transmission in range in terms of interference. As
a result, many wireless networks, such as wireless mesh networks, comprise a
highly connected topology. This in turn hinders space-parallel partitioning as
the network cannot easily be divided in loosely connected clusters of network
nodes for efficient parallel simulation. Instead, each LP handling a partition
is connected to many neighboring LPs, thereby increasing the synchronization
overhead in conservative synchronization. Moreover, the high degree of con-
nectivity among LPs increases the chance for receiving a conflicting event from
the past in optimistic synchronization, thus, resulting in frequent rollbacks and
poor parallel simulation performance.

3.2.2 Modeling Time-Spans in Discrete Event Simulation

We claim that the default approach to modeling virtual time in discrete event sim-
ulation does not closely reflect the behavior of real systems. While this mismatch
does not result in invalid models, it nevertheless hides dependency information be-
tween events which allow for more efficient parallel simulation. In the following, we
elaborate on this in more detail.
Physical real-world processes generally span non-zero intervals of wall-clock time.
Examples for such processes are switching delays of the hardware, the computing
time of algorithms, and physical effects such as signal propagation. In contrast, the
fundamental modeling paradigm in discrete event simulation is that events occur
at specific points in simulated time, as defined by their timestamp, yet handling
an event does not advance simulated time beyond the timestamp (cf. Section 2.1).
Consequently, a single event by itself cannot represent a process spanning a period of
simulated time. Still, discrete event simulation is of course fully capable of modeling
such processes, for instance by means of two separate events indicating the beginning
and the end of a process. However, we argue that using two events hides dependency
information that is valuable for parallel simulation:

3.3. Parallel Expanded Event Simulation 39

Assume a simulation model that represents a process spanning a period of simulated
time by means of an event es indicating the start and ec modeling the completion of
the process. In this scenario, we can derive simple facts about the relation between
es and ec:

i) if es occurs in the model, then ec occurs as well,
ii) ec will always succeed es,
iii) the time span t(ec)− t(es) is equal to or larger than zero.

Considering these relations in the synchronization algorithm allows for more efficient
event scheduling due to a better insight into the ordering and timing of events.
Yet, synchronization algorithms are not able to derive similar conclusions since the
relationship between es and ec is not known to them. As a result, they handle es
and ec separately.

Summarizing, wireless systems constitute a highly challenging application for paral-
lel discrete event simulation because of a tight coupling between simulated entities.
Due to small lookaheads and a high connectivity among network nodes, conserva-
tive as well as optimistic synchronization algorithms suffer from performance lim-
itations. The problem of small lookaheads is further aggravated by the fact that
discrete event simulation cannot express dependencies among events which model
time spans. Thus, we conclude the need for an extended modeling paradigm that
enables efficient parallel simulation of tightly coupled systems.

3.2.3 Goals

Based on the observations stated in the motivation and the problem analysis, we
define three goals for this chapter:

Goal 1 - Define an Extended Modeling Paradigm:
We aim at eliminating the modeling mismatch between physical processes and
discrete event simulation. To this end, we need to develop a novel modeling
paradigm that extends events with processing durations.

Goal 2 - Exploit the Extended Modeling Paradigm for Parallel Simulation:
The extended modeling paradigm provides additional event dependency infor-
mation in comparison to classic discrete event simulation. Hence, we target
the development of a parallelization scheme that exploits this dependency in-
formation.

Goal 3 - Make Efficient Use of Multi-core Computers:
The parallelization scheme should make explicit use of the properties of multi-
core systems. This involves in particular the globally shared memory space for
efficient synchronization and load balancing.

3.3 Parallel Expanded Event Simulation

This section presents parallel expanded event simulation, our approach to achieve
the previously stated goals. At first, we briefly sketch the general idea of our par-

40 3. Parallel Expanded Event Simulation

t [simulated time]

e2: encode_packet

e1: index_data

e3: send_packet

Figure 3.1 Determining independent events: The simple example shows three expanded
events that span a certain period of simulation time each. The events e1 and e2
cannot depend on each other due to their temporal overlapping and can thus be
executed in parallel. e3 must follow sequentially.

allelization scheme before specifying it formally. We furthermore discuss techniques
for obtaining expanded events and review related efforts.

3.3.1 General Idea

The core idea of our approach is to augment simulation models with additional
domain specific information to support synchronization algorithms in identifying
independent events. As pointed out previously, discrete events occur instantaneously
at discrete points in simulation time. However, let’s assume we extend this modeling
principle with the ability to handle events that span a period of simulated time.
Given such functionality, we can annotate events with durations which naturally
model the delay of simulated processes and algorithms.

Figure 3.1 shows a simple example of three augmented events e1, e2, and e3 rep-
resenting a “data indexing”, a “packet encoding”, and a “packet sending” process.
We observe that for the particular timing chosen in this example, e1 and e2 overlap
in time while e3 follows after the end of e2. The overlapping implies that e2 cannot
depend on any results generated by e1 because e2 already begins while e1 is still
processing, i. e., its results are not yet available. Consequently, we conclude that
both events are independent and can thus be processed in parallel. However, we
cannot conclude whether or not e3 is independent from the other two events since it
begins after the earlier events have finished. In this example, it is indeed dependent
on e2 which calculates the encoded packet that is sent by e3.

In general, it is the task of the model developer to specify durations for the events of
a simulation model. Although this constitutes additional modeling effort, we argue
that model developers have a profound understanding of the system under investi-
gation and can hence specify event durations with reasonably low effort. Hence, our
approach requires a larger modeling effort than traditional parallel discrete event
simulation, but we aim for exploiting the additional modeling information for im-
proved parallel simulation performance.

3.3.2 Expanded Events

Building on the ideas of the previous example, we now specify a novel modeling
paradigm that explicitly augments events with time spans. Since such events extend
discrete events to span a period of simulated time, we refer to them as expanded

3.3. Parallel Expanded Event Simulation 41

ts(e) tc(e)

expanded event e
t [simulated time]

td(e)

Figure 3.2 An expanded event e spans a period of simulated time ranging from its starting
time ts(e) to its completion time tc(e). The period between ts(e) and tc(e) is
the event duration td(e).

events (see Figure 3.2). Consequently, we denote a simulation implementing this
modeling paradigm an expanded event simulation.

Definition 5 (Expanded Event)
An expanded event is defined by a distinct starting time and a distinct completion time.
We refer to the difference in simulated time between start and completion time as event
duration. Formally, we define the following functions:

• ts : E → T, e 7→ t maps an event e to its starting time in simulated time T ,
• tc : E → T, e 7→ t maps an event e to its completion time in simulated time T ,
• td : E → T, e 7→ t maps an event e to its duration in simulated time T .

The event duration td(e) of an expanded event e is td(e) = tc(e)− ts(e) ≥ 0.

We explicitly allow ts(e) = tc(e) in order to represent traditional discrete events
for two reasons. First, this provides backwards compatibility to existing simulation
models and enables their seamless transition to duration based modeling. Second,
simulation models may use discrete events to perform maintenance tasks such as
propagating metadata via side channels. Such tasks do not map to real physical
processes and thus do not span concrete event durations. It is nevertheless possible
to assign pseudo durations to these events to achieve better parallel performance, as
discussed in Section 3.4.4.4.

For now, we assume that the event duration td(e) of a given event e is predefined
and static. Section 3.3.3.1 details on how to integrate dynamic event durations in
the modeling and event execution process of an expanded event simulation. Never-
theless, given an event duration, we define a restriction on the starting time of newly
created events. To this end, we first define a successor relationship among events.

Definition 6 (Successor Event)
Event e2 is a successor of e1 if and only if e1 creates e2, denoted by e1 y e2.

Based on the successor relationship, we restrict the starting time of all successor
events as follows.

Definition 7 (Starting Time of Successor Events)
For all expanded events e1, e2 with e1 y e2 holds tc(e1) ≤ ts(e2).

This means that new events may only start after the event (i. e., a physical process)
that creates them has finished. This corresponds to the assumption previously stated
in the example in Figure 3.1 that the results of an expanded event may only become
visible to the entire system after the event has been processed.

42 3. Parallel Expanded Event Simulation

3.3.3 Sequential Expanded Event Execution Model

In order to specify a sequential execution model for expanded event simulation, we
need to consider the extended time information of expanded events. Specifically, we
address three questions: i) How to integrate event durations in the modeling process?
ii) How to advance the global simulation time when executing an expanded event?
iii) How to sort expanded events in the FES? The following discussion illustrates
our design choices. Finally, we define a sequential expanded event execution model
and show its causal correctness.

3.3.3.1 Modeling Event Durations

From a modeling perspective, the duration of an expanded event is not static in
general. Much like the processing duration of physical processes, it can depend on
dynamic inputs, e. g., packets of varying length. Hence, the actual extend of event
durations can often only be determined dynamically at runtime. Thus, we integrate
dynamic modeling of event durations in the event execution model of expanded
event simulation as follows: Just before the event scheduler executes an instance of
an expanded event, it hands the event instance to the simulation model. The model
then determines the exact event duration based on its current state and the state of
the event.

This in turn means that a model developer does not need to specify the event
duration when creating a new expanded event. The reasoning for deferring the
specification of the event duration from the creation of an event to right before its
execution is two-fold:

i) Determining the duration just before executing an expanded event prevents
outdated timing information. This is due to the fact that an arbitrary num-
ber of events can occur between creating and actually executing an event.
These events can change the state of the simulated system, resulting in differ-
ent event durations. For example, the transmission rate in a wireless system
might change between scheduling a packet for transmission and the actual
transmission due to variations of the wireless channel.

ii) Assuming again a componentized software structure of the simulation model,
the component creating an expanded event does not know which event duration
the receiving component would assign to the event. For instance, a sending
node in a network cannot know how long it takes a receiving node to process
an incoming packet – and in fact it should not know for the sake of the model
structure. As a result, the event scheduler queries the receiving component for
the exact event duration before executing the event handler.

Given this integration of event durations in the event scheduling process, we distin-
guish three approaches to modeling event durations: i) Static durations per event
type, ii) static durations per event instance, and iii) dynamic durations per event
instance.

Static Duration per Event Type: For all events of the same type, the duration is
static and predefined. Examples for such kind of events comprise operations
with a constant runtime, for instance generating packets of fixed length.

3.3. Parallel Expanded Event Simulation 43

t [simulated time]

e2 e1 e3

ts(e1) ts(e2) ts(e3)

(a) Our approach: Advancing the simulated time
according to the starting times of the events.

t [simulated time]

e2

e1

ts(e2) tc(e1) <

(b) Discarded approach: Gradually advancing
the simulated time from ts(e) to tc(e) may
result in jumps backwards in time.

Figure 3.3 Two possible approaches to advancing the global simulated time in expanded
event simulation.

Static Duration per Event Instance: The simulation model determines a differ-
ent duration for each event instance, yet during event execution the duration
remains constant. For example, this method allows for assigning different du-
rations to “send-packet”-events according to the size of the packets or a given
probability distribution.

Dynamic Duration per Event Instance: Upon handing over an event to the sim-
ulation model, it merely determines a minimum event duration. During exe-
cution of the event handler, the model explicitly (and stepwise) increases the
duration, depending on the actual code paths taken. This allows for a maxi-
mum degree of accuracy if the duration of the physical process is not known
in advance, for instance when modeling the exact runtime of a routing table
lookup.

To simplify the notation in the remainder of this thesis, the terms tc(e) and td(e)
for an expanded event e ∈ E always refer to the final completion time and event
duration, i. e., the final values after dynamic extension, unless stated otherwise.

3.3.3.2 Advancing the Global Simulated Time

A traditional discrete event simulation advances the global simulation time by setting
it to the discrete timestamp of the next event being executed (see Section 2.1).
During event execution, the global simulated time furthermore remains unchanged.
In contrast, in expanded event simulation, events e ∈ E carry two timestamps, ts(e)
and tc(e), and span a period of simulated time. Hence, we need to define how to
advance the simulated time when executing expanded events. Possible approaches
include setting the simulated time to either ts(e), tc(e), or even advancing it gradually
from ts(e) to tc(e). In view of these alternatives, we define the scheme as illustrated
in Figure 3.3(a):

Before executing the event handler of an expanded event e, the event scheduler sets
the global simulation time to ts(e). Furthermore, the global time remains constant at
ts(e) throughout the entire wall-clock processing time of e. Thus, despite spanning
a period of simulated time, the global virtual clock does not explicitly advance from
ts(e) to tc(e). From a model developer’s perspective, when requesting the current

44 3. Parallel Expanded Event Simulation

simulated time from the simulation framework in an event handler, it always returns
ts(e). In addition, model developers can access and dynamically advance td(e) inside
an event handler.

Despite the possibility to adjust td(e), i. e., the duration of an event, we explicitly
decide against gradually advancing the current global simulated time from ts(e) to
tc(e) during the execution of an event handler – neither automatically by the simula-
tion framework nor manually by the model developer. Automatically adjusting the
simulated time requires mapping the simulated time to the wall-clock execution time
of an event handler. In general, however, due to the abstract nature of simulation,
no such mapping exists as there is no relation between the instructions of an event
handler and the modeled physical process.

Still, even if the model developer advances the simulated time manually from within
the event handler, overlapping expanded events make the global virtual clock jump
back and forth in simulated time as shown in Figure 3.3(b). Consider two overlapping
expanded events e1 and e2 with ts(e1) < ts(e2) and tc(e1) < tc(e2). If the sequential
simulation first executes e1, the simulated time would range from ts(e1) up to tc(e1).
For the subsequent execution of e2, the simulated time would need to be set back
to ts(e2) which is smaller than tc(e1). This in turn contradicts the definition of a
causally correct simulation in which the time advances only monotonically.

For the same reason, we refrain from using the completion time of expanded events
as a basis for the simulated time. If, for instance, the completion time of e2 precedes
the completion time of e1, advancing the simulated time first to tc(e1) and then to
tc(e2) < tc(e1) again contradicts causal correctness.

3.3.3.3 Event Ordering in the Future Event Set

As pointed out in Section 2.1, discrete event simulation sorts events in the FES in
increasing order according to their timestamp. Since an expanded event e ∈ E is
defined by two timestamps, ts(e) and tc(e), sorting can utilize either timestamp,
combinations of both, or even the event duration td(e). Taking the considerations
of the previous section into account, our choice is to use the starting time ts(e) as
relevant sorting key. Moreover, similar to traditional discrete event simulation, the
FES is sorted according to increasing timestamps, i. e., starting times.

Note that in practice (discrete/expanded) event simulation frameworks apply addi-
tional sorting keys as tie breakers between events with equal (starting) timestamps.
These tie breakers, e. g., the insertion order into the FES, user defined priorities, or
event IDs, are needed to achieve a deterministic event ordering. In the remainder of
this thesis we abstract from these tie breakers.

Based on these definitions, the sequential execution model of an expanded event
simulation is as follows:

Definition 8 (Sequential Execution Model of Expanded Event Simulation)
The event scheduler continuously dequeues the first event e from the FES, sets the global
time to ts(e), executes the associated event handler, and inserts newly created successor
events in the FES.

3.3. Parallel Expanded Event Simulation 45

Procedure: SequentialEventScheduler()
1: while F 6= ∅ do
2: e = first event in F
3: global time = ts(e)
4: determine [minimal] td(e)
5: execute e [and update td(e)]
6: enqueue newly created events e′ in F
7: end while

Algorithm 1 Sequential event execution model of expanded event simulation. The terms in
square brackets refer to the case of dynamic extension of event durations.

Algorithm 1 illustrates the sequential event execution model in a more formal man-
ner. Based on this formal representation we argue that sequential expanded event
simulation obeys the causality constraint and is hence causally correct.

3.3.3.4 Causal Correctness

Based on the previous definitions, we now show that the sequential execution model
of expanded event simulation fulfills the causal correctness criterion stated in Sec-
tion 2.3.2: A simulation is causally correct if the simulated time increases only
monotonically. In the following, we present an informal proof based on the three
key properties of expanded event simulation.

i) Analogously to discrete event simulation, the event scheduler in sequential
expanded event simulation continuously removes the first event e ∈ F from the
FES for execution. We specified in Section 3.3.3.3 that the FES in expanded
event simulation orders events according to their starting time. Hence, the
event scheduler in fact dequeues the event e with the smallest starting time
among all events e′ ∈ F , i. e., ts(e) ≤ ts(e′), ∀e′ ∈ F .

ii) We defined in Section 3.3.3.2 that sequential expanded event simulation sets
the global simulated time to the starting time ts(e) of the event e ∈ E that is
currently being processed. As shown in i), the scheduler selects the event with
the smallest timestamp from the FES. Thus, the simulated time is set to the
smallest timestamp of all events currently in the FES.

iii) Definition 7 specifies that for all events e ∈ E, the starting time ts(e′) of all
successor events e′ ∈ E with e y e′ can only be larger than the completion
time tc(e) of the parent event e. Hence, the starting time of all successor events
is larger than the current simulated time. Consequently, the scheduler cannot
set the simulated time to a value preceding the current simulated time.

From these observations, we conclude that the simulated time advances only mono-
tonically. As a result, sequential expanded event simulation is causally correct.

3.3.4 Parallel Expanded Event Execution Model

In this section, we extend the sequential event execution model to a parallel one.
To this end, we first analyze the impact on the event handling process resulting

46 3. Parallel Expanded Event Simulation

ts(e) tc(e)
trigger processing fetch results

expanded event e

parallelization window

t [simulated time]
td(e)

Figure 3.4 Execution scheme of an expanded event e: The results of a simulated continu-
ous task are not needed in the simulation before tc(e). Hence, the simulation
scheduler offloads e to a worker CPU at ts(e) and fetches the results at tc(e),
allowing other events to be processed in-between.

from associating durations to events. Based on this analysis, we specify the parallel
expanded event execution model and finally prove its correctness.
As stated in Section 3.3.1, an expanded event e represents a physical process starting
at ts(e) and ending at tc(e). We assume that the output of such a physical process
is neither available nor visible to the entire system before the completion of the
process. For instance, the result of a computation is only available for further use
after it is complete, a network packet is only available for further processing after
it was entirely received and stored, etc. Based on this reasoning, we define that all
overlapping expanded events, i. e., all events e′ starting between ts(e) and tc(e) of
an expanded event e, are independent of e. We argue that an overlapping event e′
cannot depend on e because the input of e′ cannot include the output of e which is
not yet available at ts(e′) < tc(e). As a result, the interval between ts(e) and tc(e)
naturally opens a window for parallelization as shown in Figure 3.4.
In terms of event processing, this means that when the global simulated time reaches
ts(e) for a given expanded event e, the simulation framework begins executing e.
Specifically, the simulation kernel offloads e for parallel processing to an available
processing unit and continues handling further events. When reaching tc(e) in sim-
ulated time, the results of e are available and needed in the model. Thus, the
simulation blocks at tc(e) and waits for the processing unit to finish executing the
offloaded event. Figure 3.5 illustrates the resulting parallel event execution model
visually.
We formally define overlapping expanded events as:

Definition 9 (Overlapping Expanded Events)
Two expanded events e1, e2 overlap in simulated time, denoted by e1 ‖ e2, if and only if
the duration intervals intersect:

e1 ‖ e2 ⇔ [ts(e1); tc(e1)] ∩ [ts(e2); tc(e2)] 6= ∅.

Finally, we state the central modeling paradigm of parallel expanded event simula-
tion:

Definition 10 (Parallel Processing of Overlapping Expanded Events)
If two expanded events overlap in simulated time, they are considered to be independent
and can hence be executed in parallel.

3.3. Parallel Expanded Event Simulation 47

t [simulated time]

parallelization window of event en:
execute independent events

past of en:
events, en might depend on

event en+4

future of event en:
events possibly depending on en

event en-1

event en-2

independent
events

event en+3

event en+2

event en+1

event en

offload for parallel processing block and fetch results

Figure 3.5 Parallel event scheduling: The central scheduler advances the global simulation
time by iteratively determining independent events, offloading them to worker
CPUs and fetching the results of completed events.

This general definition lays the foundation for our parallel simulation framework
Horizon that puts the concept of parallel expanded event simulation into practice.
Specifically designed for multi-core systems and considering ease-of-use for model
developers, Horizon employs a multi-threaded parallelization architecture utilizing
a centralized event scheduler. Section 3.4 introduces Horizon and its architecture in
more detail, proves the correctness of its parallelization scheme, and finally evaluates
its performance. However, before presenting Horizon, we first discuss techniques
for deriving exact values for event durations in the next section.

3.3.5 Determining Event Durations

Extending events with durations inevitably raises the question of how to obtain
detailed information about the timing of events. Few physical processes exhibit a
duration that is constant or easily computable at runtime. The propagation delay of
a signal, for instance, is given by the distance between sender and receiver and the
transmission medium. However, the exact duration of a physical process modeled
by an expanded event might depend on more dynamic properties as well, such as the
processing speed of the simulated hardware and/or the complexity of the simulated
software. As a result, accurately calibrated models may become highly platform
dependent. However, we argue that hardware-accurate timing is not necessarily
needed in any case, in particular considering the abstract nature of simulation.
For instance, it might suffice to meet coarse-grained timing constraints imposed
by protocol specifications, e. g., timeouts. Moreover, from a parallelization point
of view, approximate durations still increase the lookahead and hence improve the
performance.

Thus, calibrating an expanded event simulation model is a trade-off between ac-
curacy and calibration effort. In the following, we sketch five existing and well
understood techniques for calibrating expanded event simulation models with re-
spect to timing. We characterize each technique in terms of setup effort, accuracy,
cost, and applicability and summarize the results in Table 3.1 using the following
scores: ++, +, = , –, – –.

48 3. Parallel Expanded Event Simulation

Hardware Emulation Simulation
Calibration

Protocols Domain
Experts

Setup Effort – – – = ++ ++
Accuracy ++ + = – –
Cost – – – + ++ ++
Applicability = = – + ++

Table 3.1 Overview of five techniques utilizable for determining event durations. We com-
pare these techniques in terms of setup effort, accuracy, cost, and applicability
(scores: ++, +, = , –, – –).

Measurements on Real Hardware: The most straightforward approach to obtain-
ing timing information about a specific physical process is measuring a par-
ticular process on real hardware. This approach obviously provides highly
accurate results (++), yet the setup effort is considerable (–) since this tech-
nique requires actual hardware, real-world software, and accurate measurement
equipment. The latter restricts this technique in two ways: First, the costs
for purchasing the equipment are high (– –). Second, since actual hardware is
needed, this technique cannot calibrate simulation models of systems that uti-
lize new hardware which does not exist yet. Hence, the applicability is limited
to existing systems (=).

Full System Emulation: Full system emulation [Bel05, Law96, MCE+02, TLP05]
employs detailed models to exactly mimic the behavior of hardware. These
models allow for executing and measuring the processing time of physical pro-
cesses similar to real hardware, providing accurate results close to real hard-
ware (+). The downside of full system emulation however is the development
effort needed to create accurate hardware models (– –) which in turn results
in considerable (development) costs (–). As a result, the availability of such
hardware models is limited, in particular regarding new hardware platforms,
thus limiting the applicability of this calibration technique (=).

Simulation Calibration: Recent research efforts [KDL+05, LAW08, SHC+04] pro-
pose (automatic) calibration techniques for simulation models as a lightweight
alternative to emulation. Such techniques (semi-)automatically instrument
simulation models with functionality to represent the behavior of a given hard-
ware platform in terms of processing delays and energy consumption. For
instance, the TimeTossim simulation framework [LAW08] extracts from each
line of source code the number of processor cycles required for execution on
a simulated hardware platform. Based on this information, the framework
injects bookkeeping functionality into the simulation model to advance the
simulated time accordingly after passing a line of source code. A further
approach [Sch12] aims at calibrating simulation models in terms of resource
utilization and runtime requirements. To this end, a runtime profiler collects
detailed information about the resource utilization of a real system for selected
workload patterns. The resulting profile is then fed to a resource estimator
in the simulation model that determines the simulated runtime based on the
currently simulated resource utilization.

3.3. Parallel Expanded Event Simulation 49

This calibration process utilizes previously taken measurements, without the
need for detailed hardware models. In conjunction with (semi-)automatic
model instrumentation, this technique requires a significantly lower setup ef-
fort (=) and causes lower costs than emulation or manual calibration based
on precise measurements. However, in order to achieve accurate results, these
techniques depend on relatively simple hardware whose behavior can be ap-
proximated with static instrumentation mechanisms. This fact limits applica-
bility (–) and degrades accuracy (=) in case of complex hardware platforms.

Protocol Specification: Communication protocols specify timing constraints such
as minimum and maximum timeout boundaries, waiting periods, or back-off
durations. These properties provide a simple means for obtaining timing infor-
mation when no specific hardware platform is of interest. For instance, in IEEE
802.11 nodes are required to wait for a minimum period, i. e., Short Interframe
Space (SIFS), before they are allowed to acknowledge a received packet. Based
on this knowledge, durations can be assigned to events such that their timing
still conforms to the protocol specification. The technique of extracting timing
information from protocol specifications is a well known approach for maxi-
mizing the lookahead in distributed simulation [LN02, MB98, MB99]. Since
no measurements are required but the calibration bases purely on the proto-
col standard, setup effort (++) and costs (++) are excellent. Moreover, this
technique is well applicable (+) to communication protocols, yet its accuracy
is limited (=).

Domain Experts: Lastly, domain experts can manually calibrate simulation mod-
els on the basis of their knowledge. This approach obviously demands a great
amount of experience and careful judgment, but it also provides significant
flexibility. It is thus particularly well suited for the design space exploration
process early during development. Concluding, this technique is very well ap-
plicable (++) and features low costs (++) and a low setup effort (++). The
downside, of course, is limited accuracy (–) due to a lack of actual measure-
ments.

In conclusion, a wide range of existing techniques enable calibrating expanded event
simulation models. Model developers should select or combine appropriate tech-
niques on the basis of the required level of accuracy, applicability to the given sce-
nario, and the calibration effort.

3.3.6 Related Work

Previous efforts in network simulation research also extend classic discrete event
simulation with additional timing information to enhance simulation performance
and scalability. We review these efforts in the following.

3.3.6.1 Bounded Lag, Propagation Delays, and Opaque Periods

Lubachevsky [Lub88] combines three techniques to improve performance in conser-
vatively synchronized parallel simulation. The first concept is bounded lag, denoting

50 3. Parallel Expanded Event Simulation

that two events can be processed in parallel if their timestamps are within a known
and bounded time window. The second technique comprises the concept of mini-
mum propagation delays. It bases on the observation that the propagation delay
of events through a simulated system defines a minimum delay which determines
at which time in the future one simulated entity can influence another one. The
generalization of this concept is referred to as lookahead throughout this thesis.
Lubachevsky combines these two concepts by letting the sum of the propagation
delays define the upper bound for the bounded lag.

The third technique, denoted opaque periods, is closely related to the idea of ex-
panded events. An opaque period defines a period in simulated time in which a
simulated entity “promises” not to generate events. Thus, opaque periods are sim-
ilar to expanded events in the sense that the starting times ts(e′) of all events e′
generated by an expanded event e must begin after tc(e) (cf. Definition 7) because
the results of a physical process are only visible after its end. Due to the fact that
opaque periods are not bound to the concept of physical processes, they constitute a
more abstract concept. As a result, Lubachevsky needs to manually apply the con-
cept of opaque periods to a given simulation model. In contrast, we deeply embed
our approach of expanded events into an intuitive modeling paradigm which fosters
the inclusion of expanded events, or opaque periods, by the model developers.

3.3.6.2 Temporal Uncertainty

Fujimoto [Fuj99a] replaces the accurate timestamps of discrete events with time in-
tervals representing a period in simulated time in which an event can occur. This
approach is based on the observation that real-world events do not necessarily occur
at a fixed and predetermined point in time, but the actual time of occurrence is
subject to uncertainty. Thus, in a simulation implementing this approach, an event
can occur at any discrete time within the uncertainty interval. In the case of over-
lapping intervals, events can occur in different orders, depending on the actual point
in simulated time they take place. The key conclusion is that since the exact order of
events is uncertain, they can be processed in parallel. Based on this argumentation,
Fujimoto defines an approximate-time partial-order among events along with corre-
sponding synchronization algorithms. However, approximate-time partial-ordering
introduces inaccuracies in the simulation results and limits determinism and the
repeatability of simulations.

Loper et al. [LF00, LF04] extend this concept by choosing discrete timestamps from
uncertainty intervals according to a random distribution. This approach attempts
to find a compromise between approximate-time partial-order and traditional dis-
crete timestamp based simulation. Choosing discrete timestamps from uncertainty
intervals increases the available lookahead while allowing to re-use existing discrete
timestamp based synchronization algorithms. It hence solves the problem of limited
repeatability and determinism inherent to approximate time partial ordering.

In contrast to approximate time and Loper’s approach, Horizon uses time intervals
to model the duration of a physical process. The respective starting and completion
times of expanded events occur at deterministic points in simulated time, thereby
guaranteeing repeatability of the results.

3.4. The Horizon Simulation Framework 51

3.3.6.3 Interval Branching

Peschlow et al. [PML08] pick up the idea of uncertainty intervals and investigate
the effects of different event orderings resulting from overlapping intervals. To avoid
executing one individual simulation run for every possible interleaving of events,
the authors propose interval branching. In this approach, a single simulation run
branches for each possible interleaving of overlapping uncertainty intervals. For
example, given the events e1 and e2 in overlapping uncertainty intervals, interval
branching creates one branch in which e1 precedes e2 and one branch in which
e2 precedes e1. Thus, interval branching spans an execution tree representing all
possible interleavings. The key performance improvement of interval branching over
executing individual runs for each event interleaving is that equal event interleavings
in the individual runs collapse to a common path in the tree which is executed only
once. From an implementation perspective, the branching operation relies on logical
processes and simulation cloning [HF97, HF01] techniques developed for distributed
simulation.

For a simple airline simulation, the authors report a speedup of up to 10 on a four-
processor computer for the branching approach in comparison to the time needed to
conduct the corresponding number of single simulation runs. However, the branching
approach suffers from a state explosion problem. Considering accurate simulations
comprising millions of events, creating a branch for each possible event interleaving
can easily exceed the available memory resources. Hence, interval branching is not
generally applicable to complex simulation models.

Previous work [PM07] by the authors in this direction follows a similar branching
approach. In contrast to the work outlined above, this earlier work considers only
different execution orders of events with equal discrete timestamps. Even in this
simpler scenario, branching suffers from the same state explosion problem, limiting
its applicability to simulation of simple systems.

3.3.7 Summary

This section introduced parallel expanded event simulation as a novel modeling
paradigm. Based on the observation that physical processes take time to complete,
expanded events extend discrete events by spanning a period of simulated time.
We specify a sequential and a parallel event execution model, the latter based on
the definition that overlapping expanded events are independent, hence allowing
for parallel execution. Finally, we discussed techniques for calibrating simulation
models in terms of event durations and reviewed related work.

3.4 The Horizon Simulation Framework

This section introduces Horizon, a parallel simulation framework that puts the
concept of parallel expanded event simulation into practice. Horizon targets ubiq-
uitous multi-core workstations and server systems to fully utilize their processing
for simulation. Under this premise, the next sections present the architecture of

52 3. Parallel Expanded Event Simulation

Horizon in greater detail and discuss the relevant design decisions. In particular,
we illustrate the event synchronization scheme of Horizon, prove its causal cor-
rectness and briefly sketch implementation details. We then qualitatively compare
Horizon to related efforts and quantitatively evaluate its performance by means of
synthetic and real-world simulation models.

3.4.1 Centralized Parallelization Architecture

A primary goal of this thesis is to make the parallel processing power of modern
multi-core systems available to researchers. The key challenge in this context is
to provide a parallelization framework that is simple to use and tailored to the
properties of typical simulation models. We address this challenge by proposing
a centralized parallelization architecture consisting of a single FES and a global
event scheduler. In the following sections, we motivate and discuss the centralized
parallelization architecture of Horizon. Specifically, we discuss the fundamental
components of parallel simulation as introduced in Section 2.3, namely partitioning,
synchronization, and causal correctness.

3.4.1.1 Design Goals

Besides integrating the concept of parallel expanded event simulation in a practical
simulation framework, the centralized parallelization architecture of Horizon is a
direct consequence of three design goals:

Utilizing Multi-core Systems: Multi-core systems have become the de facto stan-
dard hardware for desktop and workstation computers. As a result, model de-
velopers and researchers can benefit from parallel simulation directly at their
workplace without investing the effort of porting simulations to specialized
clusters or compute servers. It is thus the first goal of Horizon to make the
parallel processing power of these small to medium scale workplace computers
available to model developers. Due to the limited number of processing cores,
typically ranging between 4 and 32, a centralized architecture is feasible. Still,
there is an upper limit on the total number of processing cores that can be
efficiently utilized with a centralized architecture as discussed in Section 3.6.

Simple Usage: In line with the argumentation above, this thesis aims to foster
parallel simulation in day-to-day research. Consequently, to achieve a wide-
spread adoption of parallel simulation, it has to be simple to use. Thus, the
second goal of Horizon is to eliminate the complexities of parallel simulation
such as load balancing and partitioning of simulation models. A centralized
approach enables automatic load balancing without the need for partitioning
the model.

Basis for Novel Synchronization Schemes: Finally and most importantly, we ex-
ploit the centralized parallelization architecture for exploring novel approaches
to event synchronization. Synchronization algorithms exploit knowledge of the
simulation state to decide which events can be processed in parallel. We argue

3.4. The Horizon Simulation Framework 53

that more detailed knowledge allows for making better synchronization deci-
sions, resulting in improved performance. Thus, the third goal of Horizon is
to establish a basis for novel synchronization schemes by providing a maximum
amount of state and dependency information to the event synchronization al-
gorithms. multi-core systems provide shared memory, thereby enabling the
synchronization algorithm to obtain global knowledge of the simulation model
and its state. Thus, in a centralized architecture, consisting of a single FES
and a central event scheduler, the entire state of the simulation is directly
available to the synchronization algorithm. Based on this property, we de-
velop novel synchronization schemes later in this thesis, namely probabilistic
synchronization (cf. Chapter 4) and GPU-based multi-level parallelization (cf.
Chapter 5).

In comparison to a traditional framework employing LPs, a centralized architecture
sacrifices scalability, of course. We discuss this and other limitations of our approach
in Section 3.6 after introducing Horizon in detail.

3.4.1.2 Partitioning

As outlined in Section 2.3.1, partitioning schemes distribute the workload of a sim-
ulation model across the available processing units. The key is to achieve an even
workload distribution to avoid idle times and maximize efficiency. Aiming for gen-
eral applicability, we focus on space-parallel partitioning and discard too specific
schemes such as time- and channel-parallel partitioning.

Space-parallel partitioning assigns (groups of) components of a simulation model
to processing units. However, the workload inflicted by the events executed on
those components is highly heterogeneous (cf. Figure 2.2). As a result, partitioning
a given simulation model is a difficult task that requires deep knowledge of event
complexities and the distribution of events. Thus, manually partitioning a given
model is a considerable additional effort a model developer has to invest to ensure
efficient parallel simulation.

Moreover, manual partitioning results in static assignments which are not well suited
for dynamic systems. To illustrate this, consider a simulation model of a cellular
network for example. The simulation model consists of base stations and mobile
devices, each associated to exactly one of the base stations. A straightforward
partitioning assigns each cell, comprising a base station and all associated mobile
devices, to one processing unit, assuming an even distribution of mobile devices.
However, due to mobility, mobile devices may leave the range of one base station
and associate to another base station, thereby shifting the workload.

In contrast, dynamic partitioning, i. e., load balancing, aims at maintaining an
equally distributed workload by adapting the assignment of components to process-
ing units at runtime [PHM07]. To this end, the simulation framework continuously
measures the workload and idle times of the processing units and migrates simulated
entities between partitions accordingly. However, the measuring infrastructure as
well as the migration process add to the complexity and the overhead of the sim-
ulation framework, and re-assigning entities might have a negative impact on the
lookahead.

54 3. Parallel Expanded Event Simulation

event flow future event set

event scheduler

worker

CPU

worker

CPU

worker

CPU
… …

Figure 3.6 Overview of the multi-threaded master-worker architecture of Horizon. The
event scheduler retrieves events from the single FES and distributes independent
events to the worker threads.

Horizon addresses these issues by means of a multi-threaded master-worker archi-
tecture that avoids partitioning altogether. Instead of splitting the FES according to
partitions, Horizon retains a single global FES. A central event scheduler thread
continuously dequeues events from the sole FES and distributes independent events
to worker threads for parallel processing. As a result, the workload of a simulation
model is evenly and automatically distributed across all available processing units,
thereby eliminating the need for an explicit load balancing mechanism. Figure 3.6
shows an overview of the resulting architecture. This architecture is a direct conse-
quence of the fact that Horizon specifically targets multi-core systems. Such sys-
tems provide a global shared memory space across all processing units and threads,
thus enabling any worker to handle any available independent event.

Despite abandoning partitioning, simulation models in Horizon exhibit a compo-
nentized structure. Besides common practice in software engineering, componenti-
zation is imperative for ensuring data consistency in our multi-threaded simulation
framework: In shared-memory parallel simulation, event handlers are able to change
the state of the entire simulation model. Thus, when executing events in parallel
threads, the corresponding event handlers should not read from and write to the
same state variables to avoid race conditions which result in an inconsistent state.
Hence, we employ componentization to encapsulate the state of the simulation model
locally within components. An event handler is thus only allowed to modify the state
local to the component it belongs to. If an event needs to change the state at a re-
mote component, it has to create a new event that takes place at this particular
component. In this regard, components in Horizon are similar to logical processes
in traditional parallel discrete event simulation.

To provide model developers with a maximum of flexibility, Horizon allows for
scheduling overlapping events that take place at the same component. In this situa-
tion, the event scheduler in Horizon ensures that within each component only one
event is active at a time. Specifically, Horizon orders the execution of overlapping
events at a common component in starting time order. This follows naturally from
the fact that the scheduler always dequeues the first event from the FES which is
sorted by starting times.

3.4. The Horizon Simulation Framework 55

3.4.1.3 Synchronization

Based on the parallel expanded event execution model introduced in Section 3.3.4
and the centralized architecture of Horizon presented in the previous section, we
now design a corresponding synchronization algorithm.

Conservative vs. Optimistic Synchronization

The most essential design decision in this context is whether the synchronization
algorithm follows either a conservative or an optimistic approach. Our design con-
stitutes a conservative synchronization algorithm for the following reasons.

Improved Lookahead: The primary purpose of event durations is to increase the
lookahead within a simulation model. As the lookahead is of utmost impor-
tance to conservative synchronization, our synchronization scheme needs to
be conservative to allow for evaluating the improvements of expanded event
simulation over traditional parallel discrete event simulation.

Simplicity: Conservative synchronization is significantly simpler than optimistic
synchronization. For instance, conservative synchronization does not require
additional memory management to enable checkpointing and rollbacks or spe-
cific compiler support to facilitate reverse computation. Additionally, conser-
vative synchronization utilizes fewer resources, in particular memory, thereby
contributing more resources to the actual simulation model.

Despite favoring conservative synchronization, this scheme is inherently limited by
the requirement to strictly avoid causal violations at runtime. Thus, we present
a probabilistic synchronization scheme in Chapter 4 that dynamically switches be-
tween conservative and optimistic synchronization to combine the best of both worlds
while eliminating the respective drawbacks.

Barrier-based Event Synchronization

The design of our conservative synchronization scheme is based on the following
reasoning. Recall that in parallel expanded event simulation overlapping events are
independent. Hence, the event scheduler continuously dequeues the first event e ∈ F ,
checks whether or not it overlaps with previously offloaded events and if so, hands it
to a worker for parallel processing. Conversely, the scheduler does not immediately
offload e if it does not overlap with all previously offloaded events. Instead, it
waits for the execution of the offloaded events to finish. As a result, the minimum
completion time among all offloaded events determines an upper bound, i. e., a
barrier , for overlapping events. Thus, the synchronization algorithm coordinates
parallel event execution by maintaining a barrier computed over all offloaded events.
Deciding whether or not an event is offloadable hence boils down to checking if its
starting time precedes the barrier.

In order to formally state the event synchronization scheme, we first define the set
O of all currently offloaded events.

56 3. Parallel Expanded Event Simulation

Procedure: ParallelEventScheduler()
1: shared variables: F,O, tb
2: tb :=∞, O := ∅
3: while F ∪O 6= ∅ do
4: if F 6= ∅ then
5: e := arg mine∈F (ts(e))
6: if ts(e) ≤ tb then
7: O := O∪{e}, F := F\{e}
8: determine [minimal] td(e)
9: tb := min{tb, tc(e)}
10: offload(e)
11: else
12: wait for ts(e) ≤ tb
13: end if
14: end if
15: end while

Procedure: ParallelWorker()
1: shared variables: F,O, tb
2: while true do
3: e := getNextOffloadedEvent()
4: execute e [and update td(e)]
5: O := O\{e}
6: update tb
7: end while

(a) Central Event Scheduler (b) Worker Thread

Algorithm 2 Parallel scheduling of expanded events.

Definition 11 (Set of Offloaded Events)
The set O ⊆ E contains all currently offloaded expanded events, i. e., all overlapping
expanded events being executed concurrently on all processing units. The sets F and O
are mutually exclusive, i. e., O ∩ F = ∅.

Based on O, we specify the synchronization barrier tb as follows:

Definition 12 (Synchronization Barrier)
The synchronization barrier tb ∈ T ∪{∞} is the minimum completion time of all events
in O or infinity if O is empty:

tb =
{

min{tc(e)|e ∈ O} , O 6= ∅
∞ , otherwise

Algorithm 2 gives a formal definition of the barrier-based synchronization scheme,
separated into the functionality of the event schedulers and the workers. The algo-
rithm uses pseudo code to describe the fundamental principles. It hence abstracts
from technicalities such as thread synchronization or inter-process communication:

Scheduler: Initially, no events are offloaded, hence, O is empty and the barrier
tb is set to infinity (Line 2). A simulation run proceeds as long as there is
at least one event in either F or O (Line 3). We explicitly check if F 6= ∅
(Line 4) to wait (by means of busy waiting in the while loop) for events in
O to either finish processing (ending the simulation) or to insert new events
in F . At runtime, the event scheduler continuously dequeues the first event
from F (Line 5) and checks if its starting time precedes the barrier (Line 6). If
so, the scheduler prepares offloading of the event by updating the sets O and
F , determining the event duration as described in Section 3.3.3.1, computes a

3.4. The Horizon Simulation Framework 57

new barrier considering the newly offloaded event, and finally hands the event
to a worker (Lines 7-10). Otherwise it waits for a worker to update the barrier
after processing its event (Line 12).

Worker: The workers continuously retrieve a previously offloaded event (Line 3)
and execute its event handler (Line 4). After executing the event handler,
they update the set O (Line 5) and modify the barrier to reflect the new state
of O. These updates eventually allow a blocked event scheduler to proceed
(Line 6).

3.4.1.4 Causal Correctness

In this section, we prove the correctness of the parallel event scheduling and syn-
chronization algorithm. We need to show that the algorithm guarantees causal
correctness, i. e., non-independent events are processed only in increasing starting
time order. To this end, we adopt the definition of causal correctness from Def-
inition 1 and modify it to match parallel expanded event simulation according to
Definition 10:

Definition 13 (Causal Correctness of Parallel Expanded Event Simulation)
A parallel expanded event simulation obeys the causality constraint if and only if each
pair of non-overlapping events is processed in non-decreasing starting time order.

We prove the correctness of the synchronization scheme along this line of reasoning:
First, we show that no events with starting times preceding the barrier are inserted
into F (Lemma 1). By means of this lemma we show that the scheduler handles
events in increasing starting time order (Lemma 2). Note that this does not imply
that events are executed by the worker threads in increasing starting time order. We
then show that only overlapping events are executed in parallel (Lemma 3). Finally,
by applying Lemma 2 and 3 we proof the causal correctness property of our event
scheduling algorithm.

Lemma 1
No event e′ ∈ E with ts(e′) < tb is inserted into F by another event e ∈ E.
Proof. Based on Definition 7, no event e ∈ O can insert another event e′ ∈ E into
F with ts(e′) < tc(e). Since tb is the minimum over the completion times of all
offloaded events, i. e., tb = min{tc(e)|e ∈ O} (since e ∈ O 6= ∅), it follows that
∀e ∈ O : e cannot insert an event e′ into F with ts(e′) < tb. This property also holds
for all e /∈ O as a non-offloaded event is not executed and hence cannot create new
events. Concluding, no new event preceding tb can be inserted into F .

Lemma 2
The central event scheduler handles events in increasing starting time order.
Proof. By contradiction. Assume two events e1, e2 ∈ E with ts(e1) < ts(e2), but the
scheduler handles e2 even if it did not handle e1 before. For all possible combinations
of e1 and e2 in F , we derive a contradiction from this assumption:

Case 1: e2 /∈ F
The scheduler cannot handle e2 because it is not in the FES. Contradiction.

58 3. Parallel Expanded Event Simulation

Case 2: e2 ∈ F, e1 ∈ F
Because of the ordering constraint of F and the fact that the scheduler only
removes the event with the smallest starting time from F (Algorithm 2(a),
Line 5), it first handles e1 and then e2. Contradiction.

Case 3: e2 ∈ F, e1 /∈ F, tb < ts(e2)
The scheduler does not handle e2, but it blocks at tb, because the condition
ts(e2) ≤ tb (Algorithm 2(a), Line 6) is not met. Contradiction.

Case 4: e2 ∈ F, e1 /∈ F, tb ≥ ts(e2)
The scheduler selects e2 for processing. However, e1 cannot be inserted into
F afterwards due to Lemma 1. Thus, e1 was either processed before or it
will never be processed. Contradiction.

All possible cases result in a contradiction. Thus, the initial assumption is wrong
and the converse is proved.

Lemma 3
The central event scheduler never offloads non-overlapping events e, e′ ∈ F, e 6 ‖ e′.

Proof. The scheduler offloads an event e to the worker pool for parallel execution
only if the starting time of e is smaller than the current barrier tb:

ts(e) ≤ tb (3.1)
⇒ ts(e) ≤ min{tc(e′)|e′ ∈ O} (3.2)
⇒ ts(e) ≤ tc(e′), ∀e′ ∈ O (3.3)
⇒ (ts(e) ≤ tc(e′)) ∧ (ts(e′) ≤ ts(e))), ∀e′ ∈ O (3.4)
⇒ (ts(e′) ≤ ts(e) ≤ tc(e′)) ∧ (ts(e) ≤ tc(e)), ∀e′ ∈ O (3.5)
⇒ [ts(e′); tc(e′)] ∩ [ts(e); tc(e)] 6= ∅ (3.6)
⇒ e′ ‖ e (3.7)

(3.1) follows directly from Line 6 of Algorithm 2(a). Similarly, (3.2) results from
Definition 12 and Lines 9 and 6 in Algorithm 2. (3.3) is a simple logical conclusion
from (3.2). We further derive from e′ ∈ O that e′ was already handled and offloaded
before e. By applying Lemma 2, we conclude that e′ exhibits a smaller or equal
starting time than e, showing (3.4). The first part of the conjunction in (3.5) is
a reformulation of (3.4), the second part results from the simple fact that event
durations must not be negative (Definition 5). The ordering of the timestamps in
(3.5) shows that the intervals do overlap, resulting in (3.6). Finally, by applying
Definition 9, we conclude that e and e′ overlap.

The previous lemmas enable us to show the following theorem:

Theorem 1
The event scheduling algorithm guarantees causal correctness according to Definition 13
by processing each pair of non-overlapping events in non-decreasing starting time order
only.

3.4. The Horizon Simulation Framework 59

Proof. Assume two events e, e′ ∈ E with e 6 ‖ e′. Following from Lemma 3, the
events are not executed in parallel. Instead, the scheduler offloads them in increasing
starting time order according to Lemma 2. Thus, causal correctness is fulfilled for
non-overlapping events.

Concluding, the parallel event scheduling algorithm of Horizon meets the causal
correctness requirement.

3.4.2 Implementation of the Horizon Framework

We now discuss the key properties and design decisions underlying the implemen-
tation of Horizon. At first, we argue for using OMNeT++ as basis for Horizon,
followed by a brief discussion of the integration of Horizon in OMNeT++.

3.4.2.1 OMNeT++ as Host Simulation Framework

We integrate Horizon in the existing OMNeT++ [Var01] simulation framework for
the following reasons.

Real-world Applicability: It is the goal and the purpose of this thesis to provide a
parallelization framework that is attractive for use in practice. However, wide-
spread usage of a simulation framework depends on the availability and quality
of compatible simulation models. Since it is neither in the scope of this thesis
nor reasonable to re-implement a large base of complex simulation models, our
parallelization framework instead must be (largely) compatible with existing
models. The OMNeT++ community maintains such a large base of simulation
models [omnb, KSW+08].
The downside of building on top of an existing simulation framework is that
integrating multi-threaded expanded event simulation creates non-trivial tech-
nical challenges. For instance, although OMNeT++ supports traditional dis-
tributed parallel simulation, it is not designed for multi-threaded simulation.
As a result, enabling thread-safe parallel event execution requires thorough
analysis and tedious modification and verification of the simulation core.

Code Availability: Implementing parallel expanded event simulation in an existing
simulation framework involves extensive changes of the core and Application
Programming Interface (API) of the host simulation framework. Thus, we
require access to the source code in order to modify it and make it available to
the research community. These requirements obviously rule out commercial,
closed source simulation tools. In contrast, the source code of OMNeT++ is
publicly available.

Model Structure: In addition to OMNeT++, the open source network simulators
ns-2 [MF99] and ns-3 [HRFR06] match the criteria stated above. Although
those frameworks may very well serve as basis for Horizon, the structure
of the models in OMNeT++ suits our parallelization and modeling paradigm
better.

60 3. Parallel Expanded Event Simulation

event scheduler

m1 m2 m3

event scheduling/execution

(a) OMNeT++: Consecutive state changes at
modules are modeled by means of individual
events.

event scheduler

m1 m2 m3

function call

(b) ns-3: Consecutive state changes at modules
are modeled by means of one event and sub-
sequent function calls between modules.

Figure 3.7 Comparison of the event execution schemes of OMNeT++ and ns-3.

Simulation models in OMNeT++ exhibit a highly modular structure of much
finer granularity than the models of ns-2 or ns-3. So called modules constitute
the atomic building blocks of models in OMNeT++ and encapsulate func-
tionality on the granularity of protocols, network cards, or routing tables, for
instance. Interaction between modules relies on events, called messages, which
traverse the event scheduler and hence allow for a fine-grained control of paral-
lel event execution (see Figure 3.7(a)). In contrast, simulation models in ns-3
compose functionality, e. g., protocol stacks, by means of function calls which
do not interact with the event scheduler.
This has two consequences: First, event handling in ns-3 is more efficient by
reducing the number of events, but this restricts the influence of the event
scheduler and hence the parallelization scheme. Second and most importantly,
events do not represent individual physical processes, but a chain of processes
(see Figure 3.7(b)), for instance a network packet traversing the protocol stack.
This modeling approach does not well suit the modeling paradigm underlying
expanded event simulation if there exist multiple paths through the processes
of a simulation model. In case of multiple possible paths, the exact type and
order of the processes actually traversed is not known in advanced, thereby
making it difficult to a priori associate durations with the entire chain of
processes.
We observe that multiple paths occur in a simulation for instance when a
network packet is multiplexed to the correct protocols when traversing the
protocol stack in upward direction, or when a packet is either correctly or
incorrectly received. Still, by dynamically updating the duration of a currently
executing expanded event according to the current physical process, ns-3 is in
principle able to support parallel expanded event simulation as well. Finally,
we decided against using ns-2 for similar reasons as well as the fact that it is
now succeeded by ns-3.

3.4.2.2 Integrating Horizon in OMNeT++

In order to foster wide-spread use of Horizon, we aim for a largely transparent
integration of Horizon with OMNeT++. For this reason, Horizon is backwards
compatible with OMNeT++, hence enabling a convenient transition to duration
based modeling. However, in order to make use of expanded events, the model must
be ported to Horizon under consideration of the following two aspects.

3.4. The Horizon Simulation Framework 61

Event Durations: Model developers need to assign durations to expanded events.
To this end, the simulation model can provide one new method per module that
determines the duration of a given event and returns it to the event scheduler
(cf. Section 3.3.3.1). If a simulation model does not implement this method,
the duration defaults to zero, hence rendering the expanded event a discrete
event for backwards compatibility.

Random Number Generation: OMNeT++ utilizes global random number gener-
ators which are not thread safe. Locking these generators does not suffice
since concurrent worker threads can access the generators in an arbitrary or-
der. This breaks determinism across multiple simulation runs despite using
the same random seed. Thus, in Horizon every module employs local ran-
dom number generators. Access to these generators is deterministic due to the
deterministic ordering of events in each module.
Local random number generators do not allow for sharing a common ran-
dom number generator across modules, yet in practice this is rarely needed.
Instead, model developers typically use multiple global random number gener-
ators to avoid correlation between random numbers. Hence, this change does
not impede model development.

In addition, the same modeling restriction applies as in distributed parallelization
using OMNeT++: Event handlers must only modify data which is local to the mod-
ule they execute on to preserve data consistency. Hence, exchanging data between
modules relies on events and global variables are forbidden.

3.4.3 Related Work

This section covers related simulation frameworks targeting multi-threaded parallel
simulation. It hence extends the general overview presented in Section 2.4. We
sketch the respective parallelization techniques of the related frameworks and com-
pare them to Horizon.

3.4.3.1 ns-3

In the context of the ns-3 project [HRFR06], Seguin [Seg09] implemented a multi-
threaded extension of the ns-3 simulation engine. Similar to Horizon, this work is
driven by the motivation to develop a parallel simulation framework that provides
model developers with efficient parallel execution on multi-core computers.

The architecture employs both the Null Message Algorithm (NMA) and a syn-
chronous barrier-based algorithm for conservative event synchronization. Due to
the time-creeping problem inherent to the NMA however, Seguin prefers the barrier-
based algorithm for synchronization. Both synchronization schemes derive the looka-
head from link delays. However, the framework only supports simple point-to-point
links with static delays, corresponding to wired connections. In terms of partitioning,
the framework handles each network node as a separate partition, thereby eliminat-
ing the need for manual partitioning and simplifying load balancing. Building on

62 3. Parallel Expanded Event Simulation

this partitioning scheme, the framework trades off thread contention and workload
balancing by assigning a subset of the partitions exclusively to worker threads while
the remaining partitions are shared among workers.

The project dedicates considerable efforts on reducing the overhead of thread syn-
chronization. This includes synchronization barriers optimized for multi-core com-
puters as well as mechanisms for thread-safe reference counting, which constitutes
a fundamental programming paradigm in the ns-3 architecture. The project reports
a 20% performance increase on the DARPA NMS Campus Network model [Nic03]
using an eight-core computer. The authors blame the limited performance improve-
ment on the overhead due to locking within the simulation framework. As a result,
research on multi-threaded parallelization is discontinued in the ns-3 project, focus-
ing instead on traditional distributed simulation over MPI [BBC+12].

3.4.3.2 HiPWiNS

HiPWiNS (High Performance Wireless Network Simulator) [PVM09] is a multi-
threaded simulation framework based on JiST/SWANS [BZvR04] aiming for efficient
parallel simulation of IEEE 802.11 networks. It partitions the simulation model on
a node-level and statically assigns equal numbers of nodes to LPs which map to
worker threads. In addition to this traditional partitioning approach, the authors
claim two major contributions that enable efficient parallel simulation.

The first contribution is a conservative event synchronization scheme that employs
extended timing information, closely related to expanded event simulation, to in-
crease the available lookahead. Specifically, event synchronization is based on a
global barrier that takes protocol- and event-lookahead into account. Protocol looka-
head, as pioneered by Liu et al. [LN02] estimates the next transmission time of a node
and contributes this timestamp to the global barrier computation. Event lookahead
is similar to event durations in the sense that it exploits the fact that physical pro-
cesses span a period of time in which they cannot influence the surrounding system.
As basis for the event lookahead, the authors propose using the delay of switching an
IEEE 802.11 transceiver from sending to receiving mode (RxTxTurnaround), since
during this switch, the transceiver can neither transmit nor receive. The barrier
itself is a tournament barrier optimized for global reductions.

The second contribution is called event-bundling and aims at reducing the number
of events exchanged between LPs. Particularly, instead of sending a receive event
to each receiving node, event bundling only sends one meta-event to each LP which
in turn generates receive events locally for all associated nodes.

Both Horizon and HiPWiNS focus on wireless networks. However, in direct com-
parison the concepts underlying Horizon are more general in nature. Specifically,
event lookahead is applied only to the RxTxTurnaround duration which in turn
is implemented by means of two events that are specially treated in the simula-
tion framework. In contrast, expanded event simulation is a generalized modeling
paradigm, thus making the RxTxTurnaround switching delay equally applicable to
Horizon. Furthermore, event bundling is only effective when utilizing LPs, yet,
the static assignment of network nodes to LPs as exercised in HiPWiNS severely
restricts load balancing in contrast to the dynamic approach of Horizon.

3.4. The Horizon Simulation Framework 63

3.4.3.3 Other Related Simulation Frameworks

PRIME (Parallel Real-time Immersive network Modeling Environment) [LLH09]
is the latest incarnation of the Scalable Simulation Framework (SSF) [CNO99].
The primary focus of PRIME is on achieving real-time simulation as basis for co-
simulation, i. e., the interaction of real networking systems with a simulated net-
work. In order to harvest the required processing power needed for large scale
networks, it combines multi-threaded simulation with distributed simulation. To
this end, the framework utilizes conservative composite synchronization [NL02] in
combination with hierarchical synchronization [LN01] to integrate multi-threaded
with distributed simulation. In contrast to PRIME, Horizon does not aim for
large scale co-simulation, but instead focuses on speeding up small to medium scale
simulations on desktop or workstation computers. Hence, architecture and event
synchronization of Horizon is considerably simpler than in PRIME.

De Munck et al. [MVB10] present a multi-threaded simulator for the evaluation
of resource management strategies in computing grids. Similar to the line of ar-
gumentation in this thesis, the authors explicitly argue for a parallel simulation
framework specifically tailored to multi-core systems. However, the architecture of
the simulator closely resembles the architectural properties of a distributed simula-
tor. Most prominently, the simulator makes use of the NMA to synchronize LPs.
Thus, although running on shared-memory which allows access to all event queues,
the synchronization scheme requires exchanging null-messages as in a distributed
scenario. As a result, the simulator unnecessarily suffers from the time creeping
problem inherent to the NMA.

3.4.4 Evaluation

We evaluate Horizon in three steps: First, we utilize synthetic benchmarks to char-
acterize the performance properties of Horizon with regard to the number of CPUs
and the workload. Second, we compare Horizon to the parallelization capabilities
of OMNeT++ which belong to the state-of-the-art in traditional distributed paral-
lelization [Fuj90a, Per06b, SVE03]. Third, we show the applicability of Horizon by
analyzing the performance gain in a real-world simulation model of a LTE network.

3.4.4.1 Benchmarking Methodology

Our evaluation of Horizon utilizes two classes of benchmark models, each targeting
a unique evaluation goal. The first class comprises purely synthetic benchmarks
models. These models do not represent a concrete system, but instead allow for
precisely adjusting the workload generated by the model. By investigating a wide
range of workload patterns, the synthetic benchmarks span a design space covering
many different real-world simulation models. Mapping concrete models into this
space allows for deducing their potential for efficient parallelization with Horizon.
In contrast, the second class of benchmarks utilizes a concrete model of a cellular
3GPP Long Term Evolution (LTE) network and acts as a case study to confirm the
synthetic performance results.

64 3. Parallel Expanded Event Simulation

m1 m3 mn-1

m2 m4 mn

…

…

m5

m6

(a) The synthetic model consists of a config-
urable number of independent benchmark
modules that schedule self-events.

t [simulated time]

m1 e1 e4

e2 e5

e3 e6

m2

m3

(b) Each benchmark module continuously exe-
cutes and re-schedules one expanded event.
All events perfectly overlap.

Figure 3.8 Structure of and event scheduling in the synthetic benchmark model.

Throughout this evaluation, we use the speedup [BT02] as a metric to characterize
the performance improvement of a parallel simulation over a sequential one. Given
the runtimes for a sequential execution tseq(S) and a parallel execution tpar(S) of a
simulation model S, the speedup is defined as

Speedup = tseq(S)
tpar(S) . (3.8)

Our evaluation bases on a prototype implementation of Horizon which builds upon
OMNeT++ 4.1. All performance results show average values collected over 30 in-
dependent runs and the corresponding 99% confidence intervals, which are however
barely visible. We utilized an AMD Opteron compute server providing 32GB of
RAM and a total of 12 processing cores, organized in two six-core CPUs running a
64-bit Ubuntu 12.04.1 LTS server OS.

3.4.4.2 Performance Characteristics of Horizon

The purpose of this benchmark is to assess the scalability of the centralized archi-
tecture of Horizon. In particular, we investigate the scalability of Horizon with
regard to the number of worker threads and the workload. In terms of workload,
the synthetic benchmark model allows for adjusting two parameters: i) the degree
of parallelism as well as ii) the computational complexity of the events. To this
end, the model consists of a configurable number of independent, i. e., not intercon-
nected, benchmark modules (see Figure 3.8(a)). Each module continuously creates
expanded events of specific computational complexity and schedules them for local
execution. By maintaining a perfectly synchronous and overlapping timing among
the events, we enable parallel execution (see Figure 3.8(b)). Since every module ex-
ecutes one expanded event at a time, we control the degree of parallelism by means
of the number of benchmark modules in the model.

Scalability in terms of CPUs

To assess the scalability of Horizon, we analyze the runtime performance of the
benchmark model while varying the number of worker threads and the computational
complexity of the events. While the motivation for changing the number of workers
is obvious, the event complexity has a less obvious yet equally important influence

3.4. The Horizon Simulation Framework 65

1 2 3 4 5 6 7 8 9 10 11
Workers

0

2

4

6

8

10

12

Sp
ee

du
p

linear speedup

Event Complexity
1.0 ms
0.1 ms
0.01 ms
0.001 ms

Figure 3.9 Speedup of Horizon in terms of the number of workers and the event com-
plexity using a continuously parallelizable workload of 110 independent events.
Horizon achieves a linear speedup for event complexities larger than 0.1ms,
while being limited to a 5-fold speedup with events of 0.01ms complexity. For
computationally insignificant events, Horizon does not deliver a speedup but
also avoids a decrease in performance caused by thread contention.

on scalability: Since every event passes through the event scheduler sequentially,
the runtime of the offloaded events needs to be long enough to enable the scheduler
to offload further events if possible. If the processing time is too short, parallel
event execution degrades to sequential execution. Based on runtime performance
profiles of publicly available simulation models [mob, KSW+08] and of our own
model [NG10] (see Figure 3.13), the event complexity ranges from 1µs to 1ms in
this benchmark. We furthermore vary the number of workers between 1 and 11. In
contrast, the degree of parallelism in this benchmark is fixed to 100 by using a total
of 100 benchmark modules. This large degree of parallelism guarantees sufficient
parallel workload for keeping the workers busy.

Figure 3.9 shows the resulting speedup for 1 to 11 workers when varying the event
complexity from 1µs to 1ms. We observe a strong dependency between the speedup
and the computational complexities of the events. For event complexities of 1ms and
0.1ms, Horizon achieves a speedup that grows linearly with the number of workers.
Note that the slight drop in performance for 9 workers results from mapping 110
independent events to 9 workers. To process a set of 110 events, 7 workers execute
12 events while 2 workers handle 13 events. Thus, while just 2 workers process their
last event, the remaining 7 workers are idle, resulting in a sub-optimal resource
utilization. We observe the same effect also for the other measurements points in
which the number of events per round is not divisible by the number of workers, yet
it is less pronounced.

When reducing the event complexity to 0.01ms, we identify a linear speedup for up
to 5 workers. Beyond 5 workers, however, the speedup converges to 5. We ascribe
this to the fact that the centralized event scheduler handles all events sequentially.
In order to offload x events for concurrent processing, the event complexity has to be
at least x times the offloading delay. Thus, given an event complexity of 0.01ms, the
scheduler is able to offload only 6 events, i. e., to keep at most 6 workers busy. For the
same reason the speedup finally degrades to one when limiting the event complexity
to merely 1 µs. In this case the scheduler is only able to offload one event at a time

66 3. Parallel Expanded Event Simulation

1 2 3 4 5 6 7 8 9 10 11
Workload [number of independent events]

0

2

4

6

8

10

12

Sp
ee

du
p

linear speedup

Event Complexity
1.0 ms
0.1 ms
0.01 ms
0.001 ms

Figure 3.10 Speedup of Horizon in terms of the parallelizable workload and the event
complexity using 11 worker threads.

because the worker finishes handling of the event before the scheduler offloads the
next event.

Scalability in terms of Workload

This benchmark evaluates the scalability of Horizon with regard to the parallel
workload given a fixed number of workers, i. e., static thread contention and event
handling overhead. Thus, we fix the number of workers to a maximum of 11 while
varying the number of benchmark modules and hence the number of parallel events
between 1 and 11. As before, the event complexity ranges from 1µs up to 1ms.

In Figure 3.10, we observe qualitatively similar results as in the previous benchmark.
We nevertheless point out minor differences in the results. Most noticeable, the
speedup curves for event complexities of 10 µs and 1 µs increase slower for smaller
workloads than in the previous benchmark. We ascribe this to the fact that in this
benchmark the number of workers is always larger than or equal to the number
of independent events. Hence, some of the worker threads are always idle. These
workers cannot contribute to the speedup, but instead utilize system resources and
cause synchronization overhead, thereby lessening the simulation performance. This
is a consequence of the push-based event offloading scheme that utilizes busy-waiting
to synchronize the worker threads. The goal of this scheme is to minimize the
offloading delay, i. e., the time between the master thread offloads an event for
parallel processing and the time a worker thread actually starts processing the event.
We present this scheme in more detail in Section 3.5 and show that it considerably
improves parallel simulation performance in comparison to a scheme that suspends
threads, i. e., without busy-waiting.

Moreover, the performance curves for event complexities of 1ms and 100 µs show no
drops in performance. This, again, is due to the fact that the number of workers
exceeds the number of independent events.

3.4.4.3 Comparison with Traditional Parallel Discrete Event Simulation

The goal of this benchmark is to analyze the performance improvement of parallel
expanded event simulation over traditional parallel discrete event simulation. To this

3.4. The Horizon Simulation Framework 67

Parameter Value(s)
Number of benchmark modules 100
Number of events per module 10,000
Lookahead/link delay 10ms - 1 µs
Send/receive event duration 10ms - 1 µs
Send event interarrival time distribution exponential, mean 1ms
Send/receive event complexity 0.1ms
Number of workers/partitions 11

Table 3.2 Configuration parameters of the synthetic benchmark model for comparing Hori-
zon and OMNeT++.

end, we compare the performance of Horizon with the performance of OMNeT++
utilizing its parallel discrete event simulation capabilities [omna, SVE03]. In or-
der to execute simulations in parallel, OMNeT++ uses the Null Message Algo-
rithm (NMA) [CM79] and space-parallel partitioning. Communication between LPs
relies on MPI which in turn exploits shared memory synchronization and inter-
process communication when running on multi-core computers. Hence, despite
not specifically designed for multi-core systems, the parallelization architecture of
OMNeT++ is suited for such systems. Considering moreover the large user-base of
OMNeT++ and recent research efforts towards parallel simulation [BRM12, KBV09,
SRTR09, SVE03, VSE03], OMNeT++ belongs to the current non-commercial state-
of-the-art in terms of parallel simulation.

In addition, comparing Horizon to OMNeT++ allows us to focus on investigating
the performance of the parallelization schemes while excluding differences in the
structure of the frameworks. Specifically, the simulation core and modeling API
of Horizon and OMNeT++ are, by design, nearly identical. This enables us to
use one basic benchmark model for both frameworks. In contrast, a comparison
between ns-3 and Horizon requires two separate simulation models that differ in
structure and run on two different simulation engines. These differences in model
structure and event handling naturally affect the performance of the benchmark,
thereby preventing a precise comparison of parallel expanded event simulation with
traditional parallelization. Hence, we refrain from a comparison with ns-3.

Benchmark Model

The key performance factors of expanded and discrete event simulation are the
lookahead and event durations. Thus, we extend the synthetic benchmark to model
these properties as follows: First, we interconnect all benchmark modules via links
with configurable delay since traditional parallelization in OMNeT++ derives the
lookahead from link delays. These links form a fully meshed topology, allowing
benchmark modules to send abstract packets to randomly selected neighbors.

Second, we add “send” and “receive”-processes spanning a period of simulated time
to each module. In Horizon, we model these processes by means of expanded
events while the OMNeT++-model resorts to using discrete start and end-events

68 3. Parallel Expanded Event Simulation

10ms 1ms 100µs 10µs 1µs

Link Delay

10
0

10
20
30
40
50
60
70

 S

pe
ed

up
/S

lo
w

do
w

n
of

 H
or

iz
on

200
400
600
800

1000
Send/Receive Duration

10ms
1ms
100µs

10µs
1µs

Figure 3.11 Illustration of the performance difference between Horizon and the Null Mes-
sage Algorithm (NMA) as implemented in OMNeT++. The NMA slightly
outperforms Horizon for large link delays and small event durations. For
small link durations, however, the runtime of the NMA increases drastically in
relation to Horizon as shown by the large speedup.

for both processes. We furthermore vary the duration of the send and receive events
analogously to the link delay since Horizon uses this information to identify inde-
pendent events. The benchmark model thus provides both parallelization schemes
with the same degree of timing information, yet differently embedded in the model.

Third, each module generates (start-)send events with uniformly distributed inter-
arrival times. These events trigger the sending process, however, only in 10% of
the cases, a packet is actually sent to one neighboring module, where it initiates
the receive process. This behavior resembles the widely used and accepted PHOLD
benchmark [Fuj90b] used to profile parallel simulations. Finally, the computational
complexity of the events is 0.1ms, which corresponds to the computational complex-
ity found in simulation models of wireless systems (see Figure 3.13). For brevity,
Table 3.2 summarizes the parameters of the model.

Results

Figure 3.11 shows the speedup (positive values) and slowdown (negative values)
of Horizon in comparison to OMNeT++ for all combinations of link delays and
send/receive durations. In general, we observe for all link delays that the perfor-
mance of Horizon relative to OMNeT++ improves with increasing event dura-
tions. Analyzing the individual results in more detail reveals that for large link
delays of 10ms and 1ms, OMNeT++ clearly outperforms Horizon in the case of
small send/receive durations (10 µs and 1 µs). Yet, for larger send/receive durations
ranging from 10ms up to 100 µs, Horizon slightly outperforms OMNeT++. On
average, however, OMNeT++ achieves a better performance than Horizon.

In contrast, for link delays of 100 µs and smaller, Horizon shows a significant
performance improvement over OMNeT++. Specifically, for a link delay of 1 µs,
Horizon outperforms OMNeT++ by a factor of 10 for send/receive durations of
1 µs, and up to a factor of nearly 900 for send/receive durations of 1 µs. We ascribe
this behavior to two properties of the frameworks: i) the interplay of the event
density and the lookahead, and ii) the use of synchronization messages.

3.4. The Horizon Simulation Framework 69

Event Density and Lookahead: The event density in combination with the looka-
head is a key performance factor in conservative synchronization (see Sec-
tion 2.3.3.1). If the event density is high and the lookahead is large, the latter
covers (on average) many events, enabling their parallel execution and hence
good performance.
As the event density in this benchmark is static and given by the exponentially
distributed interarrival time of the send and receive events, the performance
depends solely on the lookahead. Hence, for large link delays (providing the
lookahead in OMNeT++) and large event durations (providing the lookahead
in Horizon), the respective simulation frameworks achieve a noticeably bet-
ter performance than for the corresponding small values. For this reason,
OMNeT++ outperforms Horizon for large link delays (10ms and 1ms) and
small send/receive durations (10 µs and 1 µs) as these configurations constitute
the worst case for Horizon in this benchmark.

Synchronization Messages: The NMA exchanges null-messages between LPs to
guarantee deadlock-free distributed and parallel event execution. If the looka-
head does not cover an event, the NMA needs to send (multiple) null-messages
in order to advance the simulated time such that an actual simulation event
can be processed. This behavior, also known as time-creeping problem (cf.
Section 2.3.3.1), increases the runtime overhead.
In contrast, parallel expanded event simulation avoids synchronization mes-
sages altogether by focusing solely on multi-core systems which enable shared-
memory synchronization. As a result, the central event scheduler in Horizon
has a global view of the FES and can thus immediately advance the simu-
lated time to the next event. Horizon hence explicitly trades off distributed
simulation capabilities for a higher efficiency on our target platforms.
We observe the performance impact of the time-creeping problem when the
performance of Horizon improves considerably over OMNeT++ for link de-
lays of 100 µs and less. In these scenarios, the exponentially distributed inter-
arrival time of the events (mean: 1ms) is much longer than the lookahead.

We like to stress that short link delays of 1-5 µs are typical for wireless systems which
cover distances ranging from meters (e. g., Bluetooth, 33 ns for 10m) up to a few
kilometers (e. g., GSM, 33 µs for 10 km). In contrast, to obtain a link delay for which
OMNeT++ outperforms Horizon, i. e., 1ms or 10ms, the wireless links would have
to span 300 km or 3000 km, respectively. Despite work on wireless communication
systems covering such distances, e. g., satellite and space communication [RBF08,
SB07], the majority of research efforts focus on network technologies covering smaller
distances, e. g., IEEE 802.11 or IEEE 802.15.4.

In contrast, many physical processes in real systems span durations that exceed
the aforementioned link delays. For instance, the duration for sending a packet
of 1500 byte at 54MBit/s in IEEE 802.11g takes 220 µs. Hence, by utilizing event
durations, model developers can augment simulation models with valuable additional
timing information in order to improve parallel simulation performance.

We conclude from the synthetic benchmarks that Horizon i) benefits from non-
trivial processing complexities, ii) is able to equally distribute workload across worker

70 3. Parallel Expanded Event Simulation

Parameters Value(s)
Carrier frequency 2GHz
Channel bandwidth 10MHz
Mode Time Division Duplex (TDD)
Number of resource blocks 55
Subcarriers per resource block 12
Subcarrier spacing 15 kHz
Scenario Single-Input Single-Output (SISO)
Inter Site Distance 500m
Fading model Rayleigh

Table 3.3 Configuration parameters of the LTE simulation model.

CPUs, and iii) achieves considerably better performance than the NMA in networks
with small lookaheads.

3.4.4.4 Case Study: LTE Network Model

In order to underline Horizon’s applicability to real simulation models, this section
presents a case study using a complex simulation model of an LTE network.

System Model

For this case study, we utilize a model of a 3GPP-LTE [LTE06] compliant cellular
communication system, generally referred to as 3GPP Long Term Evolution (LTE).
The system model features c cells, each containing a base station (denoted Evolved
NodeB (eNodeB)) servingmmobile stations (denoted User Equipment (UE)). More-
over, the network uses a Time Division Duplex (TDD) scheme which divides the
simulated time into downlink and uplink frames, called Transmission Time Inter-
vals (TTIs). Each TTI has a duration of 1ms, however, only the downlink TTIs are
used for data transmission. In each cell, the eNodeB queues incoming packets sent
by a traffic generator and destined for the associated UEs. Prior to each downlink
TTI, the eNodeB schedules the queued packets for transmission under considera-
tion of the available transmission resources and a specific optimization goal, e. g.,
delay minimization. This optimization problem is of considerable computational
complexity, resulting in events with considerable runtimes (see Figure 3.13).

On the physical layer, the system uses Orthogonal Frequency-Division Multiple Ac-
cess (OFDMA) as transmission scheme with 55 resource blocks. Each resource block
consists of 12 subcarriers, equivalent to a frequency width of 180 kHz. For each ter-
minal/resource block pair, the channel gain varies randomly over time and frequency,
i. e., it depends on a deterministic component (path loss) and a random, time- and
frequency-variant fading component. We assume this gain to be exponentially dis-
tributed based on a multi-path propagation environment with no dominant path.
For a more detailed discussion of the system model and the optimization problem,

3.4. The Horizon Simulation Framework 71

Downlink TTI (1ms)

packet scheduling sending wireless channel

receiving

packet scheduling

packet scheduling

sending

sending

receiving

receiving

receiving

receiving

wireless channel

wireless channel

wireless channel

wireless channel

simulated time

Figure 3.12 Integrating parallel expanded event simulation into a time-slotted LTE model.
Based on the specification that each TTI lasts 1ms, we assign pseudo durations
that jointly span the entire TTI. Moreover, the event durations of equal event
types overlap to enable parallel execution.

we refer to the work of Bohge et al. [BGMW07]. A summary of the key system
parameters is shown in Table 3.3.

Time Calibration

The LTE model utilizes a TDD multiplexing scheme which divides the simulated
time in up- and downlink TTIs of 1ms each. Consequently, the timing of the events
in the model is highly regular: All events regarding one downlink TTI take place at
the beginning of the respective TTI at the same point in simulated time. In fact, a
timer event indicates the beginning of each downlink TTI and triggers a recursive
creation of all subsequent events, i. e., a send event creates a channel event which in
turn creates a receive event and so on. All these events occur at the same point in
simulated time and the ordering of the events is naturally given by their successor
relationship.
Since all events of a TTI exhibit the same timestamp, we actually do not require
explicit event durations to enable parallel execution. Instead, we consider discrete
events taking place at the same point in time as expanded events with zero-time
duration that in fact overlap. Hence, we execute all events occurring at the same
point in time in parallel. Furthermore, event durations do not unlock additional
performance in this model since all events eligible for parallel execution occur at
the same timestamp anyway. In particular, the model needs to finish one TTI, i. e.,
all events at the current point in time, before it can proceed to the next TTI, i. e.,
events with future timestamps. For this reason, we leave the LTE model unchanged
in terms of timing and do not associate durations with events.
Nevertheless, we stress that parallel expanded event simulation is applicable to this
kind of system model. To this end, we briefly sketch how to assign event durations
to the simulation model based on the protocol specification technique outlined in
Section 3.3.5. The general idea is to exploit the fact that TTIs last exactly 1ms.
Specifically, we assign pseudo durations to the events of a TTI such that the resulting
expanded events i) jointly span an entire TTI, and ii) overlap according to physical
processes that occur concurrently. Figure 3.12 shows a schematic visualization of this
approach. We observe that the expanded events spread across the entire length of
the TTI while equal event types overlap in simulated time, thereby enabling parallel
execution.

72 3. Parallel Expanded Event Simulation

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Event Processing Complexity [real-time seconds]

100
101

102
103
104
105

106
107

Nu
m

be
r o

f E
ve

nt
s

SINR calculation

packet scheduling

CSI management

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 T

ot
al

 R
un

tim
e

Number of Events Fraction of Total Runtime

Figure 3.13 Distribution of event processing complexities in the LTE model (12 cells, 50
MS/cell) and their corresponding fraction of the total simulation runtime (black
dashed CDF). The figure further indicates the three most complex types of
events: Channel State Information (CSI) management, packet resource schedul-
ing, and Signal-to-Interference-plus-Noise Ratio (SINR) calculation. Note the
logarithmic scales on the x and the left y axis.

Methodology

This case study only studies the performance of Horizon but does not attempt to
compare Horizon with OMNeT++. The primary reason for this decision is that
the simulation model contains a central component that interacts with all eNodeBs
with zero lookahead. It hence cannot be assigned to any partition, i. e., cell, without
degrading the lookahead to zero for the whole model. We can circumvent this
problem by applying pseudo-link-delays similar to the pseudo-durations as outlined
above. Yet, as for the pseudo-durations, this requires considerable re-engineering
and re-validation of the model. We hence refrain from modifying the model.

We furthermore analyze the workload characteristics of the LTE model to estab-
lish a foundation for understanding the performance results and to put them into
perspective with respect to the findings of the previous section. Figure 3.13 shows
a histogram illustrating the distribution of events processing complexities in the
model. The majority of events comprise a processing complexity of 1 µs to 100 µs
(note the logarithmic scales). These events account for simple functionality such as
traffic generation, queue management, etc. Moreover, the figure shows that a large
number of events exhibit considerable complexity, ranging from approx. 400 µs to 4 s
(as indicated by the labeled peaks). The dashed line in the figure is a Cumulative
Distribution Function (CDF) over the total runtime, illustrating that the events
with processing complexities larger than 400 µs contribute almost exclusively to the
total runtime of the simulation model, hence making them a primary target for
Horizon’s offloading scheme.

Summarizing, the LTE model exhibits the two key properties of modern wireless sim-
ulation models: i) a small/zero propagation delay (i. e., lookahead) and ii) computa-
tionally complex modeling of physical layer effects, making it a well-suited use-case
scenario for Horizon.

3.4. The Horizon Simulation Framework 73

1 2 3 4 5 6 7 8 9 10 11
Workers

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Sp
ee

du
p

100 UEs
200 UEs
300 UEs

Figure 3.14 Speedup over sequential execution for workers for a network of 10 cells with a
total of 100, 200, and 300 UEs.

Results

At first, we investigate the performance of Horizon for a variable number of worker
threads over fixed workloads. To this end, we define three workload scenarios com-
prising 10 eNodeB and 100, 200, and 300 UEs, respectively. We execute all three
scenarios sequentially and in parallel using 1 to 11 worker threads. Figure 3.14 shows
the resulting speedups.
We observe that the speedup increases in all scenarios in conjunction with the num-
ber of worker threads, reaching a speedup of 2.5 for 100 UEs, 3.5 for 200 UEs, and
4.5 for 300 UEs. Hence, the speedup strongly depends on the workload provided by
the simulation model. Analyzing the workload and the simulation model in more
detail furthermore reveals that the workload is characterized by two components:
The number of (parallel) events as well as the event complexity.
When increasing the number of UEs in the given simulation model, both properties
change as follows. A larger number of UEs requires more channel state computa-
tions. These computations are independently modeled by individual events, hence
increasing the number of parallelizable events in the model and thus the speedup.
Moreover, the resource allocation algorithm performed on each eNodeB gains in
complexity with increasing numbers of UEs. Since the algorithms execute in par-
allelizable events, the efficiency of the parallel simulation improves due to larger
chunks of parallel work.
We confirm this reasoning by varying the workload over a fixed number of CPUs.
Specifically, we vary the number of eNodeBs between 5, 10, and 15 and distribute
a total of 100, 200, and 300 UEs among those eNodeBs. Figure 3.15 illustrates the
resulting speedups. We observe that the speedup again increases with the number
of UEs as well as with the number of eNodeBs.
In conclusion, this case study shows the viability of horizontal parallelization and the
successful application of Horizon to complex wireless network simulation models.

3.4.5 Summary

This section presented Horizon, a parallel simulation framework on the basis of
OMNeT++ that puts parallel expanded event simulation into practice. Horizon

74 3. Parallel Expanded Event Simulation

5 eNodeBs 10 eNodeBs 15 eNodeBs0

1

2

3

4

5

6

Sp
ee

du
p

100 UEs
200 UEs
300 UEs

Figure 3.15 Speedup of Horizon using 11 workers over sequential execution for different
workloads comprising networks of 5, 10, and 15 cells with a total of 100, 200,
and 300 UEs.

features a centralized parallelization architecture aiming to i) make use of ubiquitous
small to medium scale multi-core systems, ii) simplify usage by eliminating load
balancing and partitioning, and iii) form a basis for novel approaches towards event
synchronization as discussed in the next two chapters.

The evaluation of Horizon illustrates that the framework scales with the num-
ber of CPUs and the workload, however, the centralized architecture requires non-
trivial event complexities to generate a speedup. Horizon significantly outperforms
OMNeT++ for small lookaheads due to enhanced time information conveyed within
expanded events and the absence of the time-creeping problem.

3.5 Minimizing the Parallelization Overhead

Independent of the actual parallelization concepts, e. g., modeling paradigms and
synchronization algorithms, implementing a parallel simulation framework that de-
livers satisfying speedup is challenging. The key reason is that parallel event exe-
cution imposes considerable overhead on the event handling routines of a parallel
simulation framework due to thread synchronization and/or inter-process commu-
nication. As a result, we face a dilemma: We want to gain performance by means
of parallelization, but this comes at the price of increased event handling overhead.
The latter has a specifically negative impact on simulation models whose individual
events exhibit only small computational complexity such as peer-to-peer networks,
for example. In those models, the ratio of event handling overhead to actual event
processing is particularly disadvantageous.

Horizon specifically targets multi-core systems. As part of this philosophy, Hori-
zon employs a centralized event handling architecture. While this architecture
avoids the need for explicit load balancing mechanisms, its downside is that all
events need to traverse the central event scheduler sequentially. Thus, the event
scheduling process is critical in terms of performance as it can easily become a
bottleneck. In simulation models of wireless systems, events exhibit a non-trivial
complexity, thereby lending themselves to Horizon’s architecture. However, the
event complexity in other classes of simulation models, e. g., peer-to-peer networks,
is considerably smaller. Thus, by minimizing the event handling overhead, Hori-

3.5. Minimizing the Parallelization Overhead 75

event flow synchronization ops. lock / condition variable

 get next event

 determine parallelizability

 offload event to work queue,
 notify workers

 check work queue for events,
 sleep if empty

 de-queue and process event

 en-queue new events

 worker action  scheduler action

future event set

event scheduler

worker worker worker

CPU CPU CPU

work queue









… …





Figure 3.16 Event offloading and synchronization operations in a straightforward, pull-based
scheme. Concurrent access to the work queue is coordinated by classic locks
and condition variables.

zon not just increases its performance, but also becomes an attractive simulation
platform for simulation models of low complexity.

Because of these reasons, we take special care to minimize the parallelization over-
head of Horizon [KSGW11]. The following sections illustrate the essential opti-
mizations towards this goal.

3.5.1 Analyzing the Parallelization Overhead

The centralized event scheduling approach of Horizon exhibits two primary advan-
tages in comparison to the classic distributed event handling of parallel simulators.
First, it drastically reduces the overhead incurred by distributed synchronization al-
gorithms [CM79, Fuj90a, Per06b]. Instead, all required information for deriving safe
event execution is readily available in one place (the event queue) and processed by
one entity (the event scheduler). Second, it allows for an even distribution of work
load across CPUs without the need for load balancing algorithms which again im-
pose overhead. Horizon takes a master-worker approach in which a pool of worker
threads dynamically handles events marked for parallel execution.

Nevertheless, the parallelization architecture of Horizon causes two particular
kinds of parallelization overhead: The event offloading overhead and the barrier
synchronization overhead. In the following, we discuss both kinds of overhead in
detail.

3.5.1.1 Event Offloading Overhead

Figure 3.16 illustrates a straightforward implementation of the centralized event han-
dling scheme of Horizon. In this implementation, the scheduler buffers all events
eligible for parallel processing in a work queue from which worker threads retrieve
tasks. Moreover, the workers insert new events in the central FES. Consequently,
both queues need protection by locks to prevent data corruption. For this purpose,

76 3. Parallel Expanded Event Simulation

multi-threaded operating systems provide synchronization primitives such as locks,
barriers, or condition variables to achieve thread synchronization in multi-threaded
programs. The fundamental principle underlying these synchronization primitives
is that threads, which need to block, are suspended by the operating system until
they can proceed. The reasoning behind this approach is that threads which can-
not perform useful work release the CPU for use by other threads that in fact can
proceed.

In case of Horizon, worker threads block and suspend when either the locks pro-
tecting the queues are occupied or when the work queue is empty. In both scenarios,
the sleeping period is short, thereby resulting in frequent suspend and resume op-
erations. While suspending and resuming of threads is considered resource efficient
due to freeing up the CPU, it generates significant threading overhead because of
a large number of context switches and system calls to the Operating System (OS)
kernel. This in turn significantly increases the offloading delay, i. e., the time be-
tween offloading an event and actually processing it: Assume an empty work queue
which causes all worker threads to suspend. Upon inserting an event into the queue,
the OS wakes up one of the worker threads, loads its context into the registers of
the CPU, and finally resumes the thread. Subsequently, this thread in turn needs
to acquire the lock protecting the work queue, dequeue an event, and release the
lock again before it can finally execute the event. Performing these non-trivial oper-
ations hence delays the execution of the event. This is particularly disadvantageous
for simulation models that mainly comprise events of short processing times.

3.5.1.2 Barrier Synchronization Overhead

Expanded events that span a period of simulated time are a fundamental design
property of Horizon. Since such events exhibit distinct starting and completion
times, a straightforward integration in the simulation framework builds upon us-
ing two discrete events to represent both extremes of the interval. Thus, for every
expanded event in a simulation model, the framework transparently maintains two
discrete events in the central event queue accordingly. The scheduler then con-
tinuously removes the first event from the queue which can be of either type: If it
represents the start of an expanded event, it is handed to the workers, i. e., the event
is offloaded and executed in parallel. If it indicates the completion of an expanded
event, the scheduler blocks until the associated worker has finished processing this
event. Hence, we denote the latter barrier events.

This approach, although easy to understand and implement, imposes a consider-
able performance bottleneck on the simulation framework. It effectively doubles
the number of events the simulation framework needs to handle – including oper-
ations such as creation, deletion, insertion to and removal from the event queue.
In particular, complex simulations suffer from this extra amount of work because
they already generate and maintain a large number of events in the FES. Hence,
handling barrier-events in the FES further stresses the scalability of the event-queue
data-structure. However, complex simulations are the primary target for paralleliza-
tion, thus requiring an efficient handling of barrier synchronization.

3.5. Minimizing the Parallelization Overhead 77

3.5.2 Goals and Achievements

In addition to introducing the theoretical concept of expanded events, this thesis puts
a special focus on implementation efficiency. We thus address the parallelization
overhead from an implementation perspective. Our goal is specifically to minimize
the event offloading delay and eliminate barrier messages. With these goals in mind,
we make the following contributions:

• We present a push-based event offloading scheme that reduces the offloading
delay, i. e., the time between offloading and actually processing an event, by
enabling the event scheduler to explicitly and directly assign events to worker
threads.
• We introduce a simplified event synchronization algorithm that eliminates the

need for barrier events to indicate the end of expanded events. As a result, the
algorithm removes 50% of the total number of events and the corresponding
overhead.

3.5.3 Efficient Event Scheduling

This section details on the design of our improved event handling framework. We
first present our approach to reduce the event offloading overhead of the thread
pool. Then, we introduce an improved event scheduling algorithm that eliminates
the need for barrier events.

3.5.3.1 Cutting the Event Offloading Overhead

As stated in the previous section, suspending idle threads is considered resource effi-
cient by freeing up CPUs for useful work. However, we argue that high-performance
parallel simulations run on dedicated hardware, i. e., servers, and thus do not need
to free up CPUs for other tasks when a worker is blocked. Even if utilizing desktop
or workstation machines, all CPUs can be committed to parallel simulation at night
while restricting the number of CPUs used exclusively by a simulation during office
hours. Thus, instead of freeing up CPUs, it is more important to swiftly process
events as soon as they become available without the need for waking up worker
threads. Hence, we explicitly trade CPU resources for shorter offloading delays.

Our approach thus replaces the pull-based event offloading algorithm (Figure 3.16),
in which the worker threads pull jobs from the work queue, with a pushed-based
scheme (Figure 3.17): When offloading an event, the central scheduler checks the
current processing state of all workers and explicitly assigns the event to an idling
one. To this end, all worker threads maintain a local buffer (job in Figure 3.17)
that can hold exactly one event. If a buffer is empty, the corresponding worker is
currently not processing any event, allowing the event scheduler to consequently put
an event into the buffer. Simultaneously, the worker threads poll their local buffer.
As soon as a buffer is filled, the corresponding worker starts processing the event
and finally empties the buffer again. By means of this busy waiting scheme, workers
immediately recognize newly offloaded events and the time between assigning a new
event and processing it is reduced to a minimum.

78 3. Parallel Expanded Event Simulation

event flow synchronization ops. spinlock

 get next event

 determine parallelizability

 find next available worker,
 assign event or spin and wait

 check local buffer for event,
 process event or spin on buffer

 en-queue new events

 worker action  scheduler action

future event set

event scheduler

worker worker worker

CPU CPU CPU







… …



job job job 

Figure 3.17 Event offloading and synchronization operations in an optimized, push-based
scheme. The event scheduler directly assigns events to idling workers which
actively spin on a local buffer.

It is important to point out that this approach demands a static mapping of ex-
actly one worker thread to each CPU in order to achieve maximum performance.
Nonetheless, a particular side effect of the push-based assignment of events is that
the scheduler is able to identify the case that all workers are busy. In this situation,
the scheduler thread may either wait for a worker to become available or it may
handle the event itself. The latter case effectively adds a further CPU, i. e., the one
the scheduler is running on, to the total number of worker CPUs. However, this
optimization needs to be used carefully due to the apparent risk that the scheduler
is blocked with handling a long running event while the workers are idling after
finishing their events.

3.5.3.2 Eliminating Barrier Events

We eliminate barrier events based on the observation that it is not necessary to store
the completion time of every expanded event in the global event queue. Instead, it is
sufficient to maintain the completion times local to each worker for only those events
which are currently being processed, i. e., the events in O. The scheduler selects the
smallest completion time among all events in O as this represents the first barrier
event that would be encountered. All events starting between the current simulated
time and the barrier are safe for parallel execution.

We introduced the method of computing the barrier tb based on O instead of barrier
events as part of the parallel event execution scheme already in Section 3.4.1.3.
Nevertheless, revisiting this approach here serves three purposes:

i) We underline the reasons for computing tb based on O.
ii) We show the tight integration of the barrier computation with the push-based

event offloading scheme.
iii) We illustrate the development of Horizon throughout the course of this thesis

from using barrier events as a simple yet slow means of synchronization towards
a highly optimized architecture.

Algorithm 3 shows the optimized event handling architecture which combines push-
based event offloading with barrier-based synchronization. Let W denote the set of

3.5. Minimizing the Parallelization Overhead 79

Procedure: simulate()
1: tb := ∞
2: O := ∅
3: while F ∪O 6= ∅ do
4: if F 6= ∅ then
5: e :=checkBarrier()
6: O := O ∪ {e}
7: F := F \ {e}
8: offloadEvent(e)
9: end if

10: end while

Procedure: checkBarrier()
1: while true do
2: e := arg min{ts(e)|e ∈ F}
3: if ts(e) ≤ tb then
4: return e
5: else
6: waitFor(w|tb .job=⊥)
7: tb := min{tc(e′)|e′ ∈ O}
8: end if
9: end while

(a) Simulation loop (b) Checking the barrier

Procedure: offloadEvent(e)
1: tb := min{tc(e), tb}
2: w := one{w ∈ W |w.job = ⊥}
3: w.job := e

Procedure: worker()
1: waitFor(job 6=⊥)
2: process(job)
3: O := O \ {job}
4: job := ⊥

(c) Event assignment (d) Event processing

Algorithm 3 The main building blocks of the optimized event handling architecture. The
scheduler (a) continuously checks the current barrier (b) and assigns an event
to one of the workers (c) for processing (d).

workers, ⊥ an empty buffer, and one : P(W) → W a function returning either an
idling worker or blocking until one such worker is available.

simulate: At runtime, the scheduler (Algorithm 3(a)) continuously i) checks the
current barrier tb, and ii) offloads independent events to the worker threads as
long as there is still an event in either F or O. The algorithm checks explicitly
for F = ∅ to wait for the events in O to finish execution (ending the simulation)
or to insert new events in F .

checkBarrier: Checking the barrier (Algorithm 3(b)) involves accessing the first
event e from the event queue and comparing its starting time ts(e) to the
minimum barrier tb. If the barrier precedes e, the scheduler blocks at the
barrier and waits for the event whose completion time defines the barrier to
finish. To this end, the scheduler spins on the buffer of the particular worker
thread that handles the aforementioned event (w|tb) until the buffer is set to ⊥
by the worker. Subsequently, the scheduler determines a new minimum barrier
and again compares the first event from the event queue to the new barrier.

offloadEvent: Event offloading (Algorithm 3(c)) bases on our push-based event of-
floading approach. The scheduler first updates the current barrier if the newly
offloaded event e finishes before the established barrier. In this case, the barrier
must be moved to tc(e) to ensure the correctness of the algorithm. The sched-
uler then either determines an idle worker to which it assigns e for processing
or blocks until a worker becomes available. As mentioned in Section 3.5.3.1,

80 3. Parallel Expanded Event Simulation

the scheduler might also process the event itself. Yet this might block offload-
ing of further events if this event is of high computational complexity, thereby
leaving worker threads idle after they finished processing their own events.

worker: Finally, the last component of the overall algorithm constitutes the workers
(Algorithm 3(d)) which continuously process events according to the push-
based event offloading scheme introduced previously.

3.5.4 Related Work

In the following, we review efforts aiming for a reduction in the event and thread
synchronization overhead in multi-threaded simulation.

3.5.4.1 GVT Approximation

Synchronization algorithms require a consistent view of the global state of a par-
allel or distributed simulation. Mattern [Mat93] presents a selection of algorithms
that efficiently determine or approximate the Global Virtual Time (GVT), i. e., the
smallest timestamp among the events in all LPs, without the need for globally block-
ing the simulation and exchanging state information. The GVT is fundamental for
both optimistic and conservative synchronization algorithms: In optimistic synchro-
nization, the simulation framework can discard all checkpoints with a timestamp
preceding the current GVT since no rollbacks to a time before the GVT can occur.
In conservative synchronization, knowledge of the GVT and the lookahead allows
for computing the Lower Bound on incoming Time Stamps (LBTS) and to eliminate
the time creeping problem.

Moreover, Mattern’s GVT approximation algorithms act as substrate for implement-
ing butterfly barriers in conservative synchronization [RFA99]. Butterfly barriers
synchronize a set of worker threads by blocking any arriving thread until all threads
have arrived, and scale with logarithmic complexity with regard to the number of
worker threads [Bro86]. Moreover, aiming at conservative synchronization, butterfly
barriers exchange messages during a synchronization round, to compute the Lower
Bound on incoming Time Stamps (LBTS) instead of the GVT. However, in order
to exactly compute LBTSs, butterfly barriers need to consider transient events, i. e.,
events currently being sent while synchronization takes place. To handle transient
events, barrier algorithms need to maintain and exchange additional meta-data, such
as event counts for instance, thereby increasing the complexity of the algorithms.

In contrast, the barrier synchronization algorithm implemented in Horizon trades
off scalability for simplicity. Due to the centralized parallelization architecture of
Horizon, the event scheduler keeps track of the current barrier by checking if the
current barrier is still valid or if it needs to be re-computed because the blocking
event has been processed. In the latter case, re-computing the barrier corresponds
to finding the minimum completion time over all events in O. Since O is limited to
4 to 32 events on typical target hardware, finding the minimum is reasonably fast.

3.5. Minimizing the Parallelization Overhead 81

3.5.4.2 Lock-less Synchronization

In order to avoid locking mechanisms altogether, Liu et al. [LNT01] present a lock-
free event scheduling algorithm for parallel simulations on shared memory machines.
Assuming a significant larger number of LPs than processing units, the algorithm
asynchronously computes safe time bounds and determines which LPs should ex-
ecute next on an available processing unit. To this end it uses a token passing
mechanism: LPs exchange tokens to determine critical LPs, i. e., LPs which block
the progress of other LPs in the simulation. Hence, critical LPs should execute their
events first to unblock the remaining LPs.

Since the algorithm targets shared-memory multi-core systems, it makes use of
atomic fetch&add operations to implement token passing between LPs. Fetch&add
operations allow for atomically updating registers directly in the hardware, thereby
eliminating the need for coarse grained locking mechanisms implemented in software
to protect multi-threaded modification of shared data. Consequently, by means of
these atomic operations, the algorithm is non-blocking since all participating LPs
execute the scheduling algorithm without utilizing (spin-)locks.

The proposed algorithm achieves a considerable speedup over an equivalent lock-
based algorithm. A major disadvantage of the lock-free algorithm, however, is its
complexity, making it hard to understand, implement, and maintain. In addition,
the overhead of the algorithm increases noticeably with the number of threads in
the system. Because the number of LPs exceeds the number of processing units,
the algorithm frequently switches between LPs. This in turn increases the number
of context switches and the corresponding runtime overhead. Moreover, the token
passing scheme strictly requires a static topology regarding the LPs since every LP
needs to know its neighbors. As a result, it is well suited for wired networks with a
fixed topology, but it is not applicable to wireless networks involving node mobility
and changing communication partners, such as in ad-hoc networks.

3.5.4.3 Hardware-aided Synchronization

Motivated by the observation that the synchronization overhead increases with the
number of processing units, Lynch et al. [LR09] address event synchronization from a
hardware perspective. The authors propose a dedicated hardware unit that enables
low overhead access to global state information relevant for conservative synchro-
nization. For each processing unit, i. e., LP, the hardware unit provides a set of
registers holding information such as minimum event timestamps. Based on these
registers, the hardware unit atomically computes global minimum timestamps for
use as safe time bounds by the LPs.

Targeting optimistic synchronization, Fujimoto proposes a rollback chip [FTG92].
The chip performs state saving and rollbacks while controlling resource utilization,
i. e., reclaiming of memory occupied by outdated checkpoints. In a related effort,
Quaglia et al. [QS03] develop an asynchronous checkpointing scheme that does not
block the CPU. The scheme exploits asynchronous memory transfer capabilities, i. e.,
DMA, of special purpose hardware, for instance Myrinet network cards of high per-
formance computing clusters. Both approaches aim for mitigating the overhead of

82 3. Parallel Expanded Event Simulation

memory management which constitutes the key drawback of optimistic synchroniza-
tion. Horizon, instead, applies conservative synchronization which is less suscepti-
ble to this kind of overhead. Nevertheless, we present a probabilistic synchronization
scheme in Section 4 as a combination of optimistic and conservative synchronization.
In the context of this work, carefully adapted versions of the above schemes may
improve simulation performance.

In comparison to software-based synchronization, such as Horizon, hardware-aided
approaches provide unchallenged speed. However, besides being more expensive, the
most prominent downside of dedicated hardware is a lack of flexibility and exten-
sibility. Since hardware extracts much of its performance from being specifically
tailored to a particular algorithm, adapting a given hardware component to new al-
gorithms or requirements is difficult and costly. A promising yet expensive solution
to this problem is the use of Field Programmable Gate Arrays (FPGAs) which offer
software-based flexibility on the hardware level.

3.5.5 Evaluation

We now evaluate the performance of our event handling optimizations. Before dis-
cussing the actual results, we first introduce the evaluation setup and methodology.
Then we measure the speedup gained by employing push-based event offloading and
eliminating barrier events. Finally, we underline the importance of our optimizations
by conducting a case study based on a real-world simulation model.

3.5.5.1 Setup and Methodology

Our goal is to measure the event handling overhead of the simulation framework.
This overhead comprises all management operations performed by the simulation
framework without the processing time spent in the simulation model. However,
measuring the event handling overhead of a multi-threaded simulation framework is
challenging because of two reasons: i) It is difficult to accurately measure the over-
head imposed by thread synchronization primitives such as locks. There is no simple
way of determining the time consumed by the function call without also potentially
measuring the time a thread was suspended. ii) Event handling operations are split
across the scheduler and the workers. Hence, determining the overhead per event as
the sum of both does not accurately reflect the performance behavior as observed
by the user. Instead, due to the parallelization of the scheduler and the workers,
both overheads actually overlap.

As a result, we utilize a “null” simulation model whose events do not perform any
computations except for re-inserting themselves in the event queue. Thus, the null-
model exclusively generates overhead which allows us to derive the overall event
handling overhead, including overhead parallelization effects, by measuring the total
runtime of this model (without setup and teardown times). In order to provide
parallelism for the workers, the model consists of 110 independent modules. Further,
the expanded events span a duration of 1 s and are timed at fixed 20 s intervals 50000
times per module, resulting in a total of 5.5 million events. However, since the events
of the null-model are of extremely low complexity, the event processing times are

3.5. Minimizing the Parallelization Overhead 83

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

0
20
40
60
80

100
120
140

Ru
nt

im
e

[s
]

Pull-based event offloading
Push-based event offloading

(a) Total simulation runtime.

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

1
2
3
4
5
6
7
8
9

10

Ov
er

he
ad

 R
ed

uc
tio

n

(b) Overhead reduction.

Figure 3.18 Performance comparison of the pull-based and push-based event offloading
implementation.

exceptionally short, thereby limiting the amount of achievable parallel performance.
Consequently, we do not expect a performance increase when adding more workers,
but instead a performance degradation due to increased contention.

This evaluation of Horizon is based on OMNeT++ 3.3. All performance results
show average values collected over ten independent runs and the corresponding 99%
confidence intervals. We utilized an AMD Opteron compute server providing 32GB
of RAM and a total of 12 processing cores, organized in two six-core CPUs running
a 64-bit Ubuntu 9.10 server OS.

3.5.5.2 Event Offloading

In this section, we compare the pull-based event offloading scheme to the push-
based one. Figure 3.18(a) shows the total simulation time for both approaches
over a varying number of worker threads. For the pull-based implementation, we
observe a linear to super-linear growth in simulation time when using up to six
worker threads. As predicted, due to the workload characteristics of the null-model,
we do not gain a speedup by adding more workers. Instead, additional worker
threads increase the contention on the shared work queue and its synchronization
primitives, hence resulting in significantly longer simulation times. When utilizing
six up to eleven workers, the total simulation time remains relatively constant. We

84 3. Parallel Expanded Event Simulation

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

100
101
102
103
104
105
106
107
108

Nu
m

be
r o

f C
on

te
xt

 S
w

itc
he

s

Pull-based event offloading
Push-based event offloading

Figure 3.19 Comparison of the pull-based and push-based event offloading implementation
in terms of the number of context switches.

attribute this to the fact that due to the small amount of workload the additional
workers remain mostly suspended, thus limiting the level of contention. In contrast,
we observe constant simulation runtimes for the push-based scheme regardless of the
number of worker threads. Moreover, the total simulation runtimes are considerably
shorter. From this we deduce a significant reduction in the event offloading overhead.
Figure 3.18(b) compares the simulation times of both approaches in terms of the
overhead reduction, i. e., the speedup factor achieved by our event offloading scheme.
For a single worker thread, the modified scheme achieves a speedup of 2 and gains
a maximum speedup of approximately 9.5 for eight and more workers.

In addition to the computation time, we also measured the amount of context
switches during a simulation run. In Figure 3.19, we observe a reduction in the
number of context switches by three orders of magnitude. This confirms that the
push-based event offloading scheme prevents excessive numbers of context switches
caused by frequent thread synchronization.

In general, the amount of context switches grows in both schemes with the num-
ber of worker threads. However, in the pull-based scheme, the number of context
switches stagnates for six or more workers while it still increases notably in the
push-based event offloading scheme. In order to understand this behavior, we recall
the conditions that initiate a context switch: i) The time slice allocated to a thread
has expired: If a thread utilizes a CPU for too long, it is suspended by the operat-
ing system. ii) Synchronization and I/O operations: A thread voluntarily suspends
itself while waiting for a signal from another thread or the completion of an I/O
operation.

Figure 3.20(a) clearly illustrates that the number of context switches in the pull-
based scheme is dominated by synchronization related context switches as a result
of using classic locks. However, the amount of both types of context switches stabi-
lizes for six and more workers due to the fact that additional threads remain mostly
suspended because of the low level of parallelism achievable by the null-model. In
contrast, we observe in Figure 3.20(b) that in the push-based approach the number
of context switches caused by expired time-slices linearly increases while the num-
ber of synchronization based context switches levels off for more than six workers.
The former suggests that due to busy waiting, the worker threads run until their
time slices expire and the operating system enforces a context switch. The remain-

3.5. Minimizing the Parallelization Overhead 85

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

100
101
102
103
104
105
106
107
108
109

1010
1011

Nu
m

be
r o

f C
on

te
xt

 S
w

itc
he

s

Time slice expired Sync and I/O operation

(a) Number of context switches in the pull-based scheme.

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

100

101

102

103

104

105

106

Nu
m

be
r o

f C
on

te
xt

 S
w

itc
he

s

Time slice expired Sync and I/O operation

(b) Number of context switches in the push-based scheme.

Figure 3.20 Detailed examination of the type and the number of context switches.

ing synchronization related context switches are caused by barrier events and I/O
operations of the simulator.

We finally derive from both figures that the relationship between the two types
of context switches changes: While the synchronization related context switches
dominate the total number of context switches in the pull-based implementation,
their number drops to a small fraction in the push-based event offloading scheme.
Concluding, these results indicate that in a highly specialized parallel simulation
framework, busy waiting allows for a much more efficient utilization of the available
CPU cycles than suspending and resuming of threads.

3.5.5.3 Event-free Barriers

This section analyzes the performance gain achieved by eliminating barrier events
from the push-based event offloading scheme. Figure 3.21(a) illustrates the total sim-
ulation runtimes of both implementations. The event-free barrier algorithm clearly
outperforms the scheduling approach that depends on barrier events. In particular,
we observe a drop in the runtime when adding a second worker. We derive from this
that the modified event scheduling algorithm allows for a better parallelization of
its overhead between the scheduler and the worker threads. Overall, the simulation
runtime for the null-model decreases by a factor of 1.4 for one worker thread and
up to a factor of 1.6 for two and more workers as shown in Figure 3.21(b). Consid-

86 3. Parallel Expanded Event Simulation

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

0

5

10

15

20

Ru
nt

im
e

[s
]

sequential simulation Barrier events
No barrier events

(a) Total simulation runtime.

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ov
er

he
ad

 R
ed

uc
tio

n

(b) Overhead reduction.

Figure 3.21 Performance comparison of the event handling schemes with and without barrier
events.

ering that the modified algorithm removes 50% of the total number of events, this
constitutes a satisfying result.

Additionally, the performance improvement is also reflected in the number of context
switches as depicted in Figure 3.22. The event-free barrier algorithm generates
slightly fewer context switches than the non-optimized version. Still, both algorithms
show the same growth in the number of context switches which is dominated by
time-slice-related context switches as discussed previously.

From the results in Figure 3.21(a), we can finally compute the average event handling
time of Horizon. Given that Horizon handles 5.5 million events in approx. 8
seconds, we derive an average event handling time of 1.5 µs. Comparing this to the
processing time distribution shown in Figures 3.13 and 3.24(a) indicates that after
our optimizations the event handling overhead is low in comparison to typical event
processing times. Moreover, the straight black line in Figure 3.21(a) illustrates the
runtime of a purely sequential simulation. Hence, the difference between this line and
the one of the improved scheduling algorithm reveals the remaining parallelization
overhead. However, by efficiently parallelizing a real-world simulation model, we
highlight in Section 3.5.5.5 that this additional overhead is indeed worth paying for.

3.5. Minimizing the Parallelization Overhead 87

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

100

101

102

103

104

105

Nu
m

be
r o

f C
on

te
xt

 S
w

itc
he

s

Barrier events
No barrier events

Figure 3.22 Performance comparison of the event handling schemes with and without barrier
events.

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

2
4
6
8

10
12
14
16

Ov
er

he
ad

 R
ed

uc
tio

n

Figure 3.23 Overhead reduction with combined optimizations.

3.5.5.4 Combined Speedup

Finally, we briefly evaluate the combined performance improvement of both event
handling optimizations. To this end, we compare the performance measurements
obtained for the initial prototype implementation to those for the optimized version
with explicit event assignment and event-free barriers. Figure 3.23 shows the cor-
responding results in terms of the reduction in the event scheduling overhead. In
accordance with the previously presented results, the total performance gain ranges
between a 3-fold speedup, obtained for just one worker, up to a peak value of ap-
proximately 16-fold for eight or more workers.

3.5.5.5 Case Study: LTE Network Model

All benchmarks up to now focused solely on determining the event handling overhead
without evaluating the actual parallel performance of the simulation framework. To
fill this gap, we now conduct a brief case study based on a modified version of
the LTE network simulation model used in Section 3.4.4.4. We demonstrate that
i) our parallelization framework indeed achieves a considerable parallel speedup, and
ii) the performance improvements presented in this thesis are necessary to enable an
efficient parallelization of simulation models comprising events of low computational
complexity.

88 3. Parallel Expanded Event Simulation

10-7 10-6 10-5 10-4 10-3 10-2

Event Processing Time [real-time seconds]

101

102

103

104

105

106

Nu
m

be
r o

f E
ve

nt
s

(a) Event processing time distribution in the LTE model.

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

20
40
60
80

100
120
140

Ru
nt

im
e

[s
]

sequential simulation

Non-optimized
Combined optimations

(b) Total simulation runtime of the LTE model.

Figure 3.24 Performance analysis of a parallel LTE Network Model.

In comparison to the evaluation in Section 3.4.4.4, the model utilizes a simpler re-
source allocation algorithm and channel model. Furthermore, the evaluation scenario
for this case study consists of a network of ten cells, each containing just five mobile
stations which handle VoIP calls. These changes results in significantly shorter event
processing times as illustrated in Figure 3.24(a). As a result, the selected scenario
is more demanding w.r.t. the efficiency of the simulation framework.

Figure 3.24(b) plots the runtimes for simulating 1 s of network traffic. The graphs
show that the non-optimized prototype implementation is not able to generate any
speedup, but instead the runtimes increase with the number of workers as seen in
the null-model. In contrast, the optimized event handling scheme converges to a
maximum speedup of approximately five when increasing the number of CPUs in
the selected scenario. This underlines the viability of our approach as well as the
efficiency of its event handling algorithms.

3.5.6 Summary

We presented two optimizations to reduce the event handling overhead of our paral-
lel simulator Horizon. The first optimization replaces the classic pull-based event
offloading scheme with a push-based one, in which the event scheduler explicitly
assigns events to worker threads. In combination with actively spinning worker
threads, this approach results in a significant overhead reduction of a factor of up

3.6. Discussion and Limitations 89

to 9.5. The second optimization eliminates the need for barrier events to represent
the end of event durations. Instead, a lightweight scheduling algorithm continuously
determines the relevant barrier, thereby reducing the scheduling overhead by a fac-
tor of up to 1.6. Finally, by combining both optimizations, we yield an overhead
reduction of a factor of up to 16 in comparison to our initial implementation.

3.6 Discussion and Limitations

The evaluation of parallel expanded event simulation and Horizon presented in the
previous sections demonstrate their general viability. Still, both approaches exhibit
limitations we discuss in the following.

3.6.1 Parallel Expanded Event Simulation

Parallel expanded event simulation is backwards compatible to traditional discrete
event simulation. Yet, porting a discrete event simulation to expanded events re-
quires additional modeling effort. This effort can be quite low, e. g., in the case one
expanded event replaces two discrete events which already model a time span. How-
ever, expanded event simulation fosters the inclusion of additional time information
in simulation models which did not consider such information before. As a result,
expanding formerly discrete events changes the timing of the model, thus requiring
careful adjustments and (re-)validation of the model.

In addition to aiding parallel simulation, modeling physical processes by means
of expanded events directly supports the development of accurate energy models.
Particularly in the context of wireless systems, the energy consumption of battery
driven mobile devices is a primary performance metric. Hence, it is imperative
to accurately represent the energy consumption of communication systems in the
corresponding simulation models [AKLW10]. Since the energy consumption is often
directly linked to the duration of a process, e. g., the transmission time of a packet,
expanded event simulation provides a solid foundation for detailed energy models.

Furthermore, we argue that overlapping expanded events are independent because
their results only become visible to the system after the completion of the events.
This is in general true in well structured simulation models in which expanded
events take place in different modules. Nevertheless, this rule does not hold if events
take place on the same module. Because of the ordering constraint of the FES,
overlapping events on one module execute in increasing starting time order, thus
the results of the preceding event apply to the state of the module before the results
of the subsequent event. Model developers have to keep this ordering in mind when
utilizing global modules. For instance, the wireless channel is traditionally modeled
as a single global module to ease the computation of interference. However, we argue
that single global modules must be avoided anyway in simulation models targeting
efficient parallel execution.

Finally, the parallelization scheme of parallel expanded event simulation takes only
the event durations into account. As a result, the event scheduler does not of-
fload expanded events which do not overlap yet are in fact independent. Previous

90 3. Parallel Expanded Event Simulation

efforts [LN02, MB98, MB99] showed that larger lookaheads can be derived when
analyzing the interaction of simulated entities and combining their respective looka-
heads. These combined lookaheads extend beyond simple event durations, thereby
exposing additional parallelism in a simulation model. However, the smallest looka-
head in a simulation model is typically the performance limiting factor (cf. time
creeping problem). In this context, the event durations of parallel expanded event
simulation aim at increasing the minimum available lookahead. Moreover, we ad-
dress this limitation explicitly in the next chapter by developing a probabilistic
synchronization scheme that aims at determining event dependencies beyond event
durations.

3.6.2 Horizon

Horizon’s centralized master-worker architecture avoids the need for explicit load
balancing mechanisms by exploiting the shared-memory space of multi-core systems.
We believe that the increasing availability of multi-core computers renders such sys-
tems a cheap and valuable alternative to full-sized computing clusters for small to
medium sized simulations. This approach, however, limits scalability in terms of
i) the size of the simulation model and ii) the number of processing units: First,
large scale simulation models, e. g., peer-to-peer networks, exhibit a considerable
memory footprint, easily exceeding the total memory available in one multi-core
system [FPP+03, WGLW12]. Second, high performance multi-core computers will
feature tens to hundreds of processing units. However, increasing the number of
workers correspondingly results in extreme contention on the central FES and a
bottleneck at the scheduler that cannot distribute events fast enough to keep all
workers busy. Based on the measured event handling overhead of 1.5µs (see Sec-
tion 3.5.5) and the observed event complexities in our simulation models ranging up
to multiple (micro)seconds (see Figure 3.13 and Figure 3.24(a)), we believe that the
limit in scalability is at 50 to 100 processing cores.

However, parallel expanded event simulation is orthogonal to existing distributed
simulation schemes, hence enabling a hybrid of both: In a hybrid approach, each
partition of the distributed simulation model runs Horizon locally on a multi-core
cluster node, while the distributed simulation framework handles synchronization
and communication across nodes. Previous efforts in the research community suc-
cessfully investigated hybrid synchronization schemes [LN01], hence backing the fea-
sibility of a hybrid framework involving Horizon and expanded event simulation.
Thus, by utilizing existing parallel simulation mechanisms, Horizon transparently
integrates with distributed computing clusters.

Lastly, the event scheduler of Horizon does not consider caching effects or the
physical memory layout when assigning events to CPUs. Currently, the scheduler
offloads a given event to the next available worker, i. e., CPU core, it can find. How-
ever, this can cause events of the same event type taking place at the same module
to constantly move between different CPU cores. Besides inefficient utilization of
the CPU cache, processing events at changing CPU cores can result in prolonged
memory access times on the prevalent Non-Uniform Memory Access (NUMA) archi-
tectures due to the need to copy data from a possibly remote memory location.

3.7. Conclusions 91

3.7 Conclusions

This chapter introduced parallel expanded event simulation as a novel modeling
paradigm for efficient parallel simulation of communication systems. By modeling
the duration of physical processes by means of one expanded event instead of two
discrete events, expanded event simulation improves the timing information available
in a simulation model. This timing information enables a parallel event scheduler
to derive dependency information about expanded events, eventually allowing for
conservative parallel execution of independent events. Expanded event simulation
hence aims particularly at wireless network systems, which constitute a worst case
scenario for conservative parallel simulation due to a tight coupling of the simulated
entities, resulting in small lookaheads.

We furthermore presented Horizon, a parallel simulation framework that puts ex-
panded event simulation into practice. Building on top of the existing OMNeT++
simulation framework, we showed that parallel expanded event simulation integrates
well with existing discrete event simulation. Horizon aims for making the pro-
cessing power of ubiquitous multi-core systems available to model developers and
networking researchers. It thus employs a simple multi-threaded master-worker ar-
chitecture, thereby avoiding explicit partitioning and load balancing mechanisms.
The evaluation of Horizon by means of synthetic and real-world models underlines
the viability of parallel expanded event simulation. Finally, we analyzed and opti-
mized the event handling overhead of Horizon to achieve maximum performance.

Still, the conservative synchronization scheme of parallel expanded event simulation
is often too strict. In particular, since it does not consider the actual dependen-
cies among events, but instead derives dependencies conservatively just on the basis
of event durations, it does not offload non-overlapping yet independent events. We
address this limitation in the next chapter by presenting a probabilistic synchroniza-
tion scheme that determines the actual event dependencies at runtime and exploits
this information to guide speculative parallel execution of events.

92 3. Parallel Expanded Event Simulation

4
Probabilistic Synchronization

The parallel event execution model proposed in the previous section relies on purely
conservative event synchronization. However, conservative synchronization is often
too strict, thus blocking the simulation and wasting processing power. In contrast,
optimistic synchronization just reacts to causal violations, hence often being overly
aggressive. We address these issues in this chapter by designing a general probabilis-
tic synchronization scheme [KSGW12b, Sto11]. The scheme learns the repetitive
patterns in the behavior of simulations at runtime and utilizes heuristics to derive
event dependencies which allow for more efficient synchronization decisions.

The remainder of this chapter is structured as follows. At first, Section 4.1 mo-
tivates the need for probabilistic synchronization and sketches the general idea of
our approach. We then analyze the drawbacks of traditional synchronization tech-
niques in detail in Section 4.2 and review related efforts in Section 4.3. Based on
the previous problem analysis, Section 4.4 derives the general design of probabilistic
synchronization and in particular the three heuristics. We then discuss limitations of
the synchronization scheme in Section 4.5, followed by an evaluation in terms of pre-
diction quality, overhead, and performance gain in Section 4.6. Finally, Section 4.7
concludes this chapter.

4.1 Motivation

The primary goal of PDES is enabling parallel execution of events while at the same
time guaranteeing deterministic results. To achieve this goal, dependent events es-
sentially need to be executed in a deterministic sequential order to avoid causal
violations [Fuj90a]. In practice, parallel simulation frameworks employ synchroniza-
tion algorithms to ensure this requirement. These algorithms implement one (or
even both) of two opposing synchronization paradigms: Conservative synchroniza-
tion strictly avoids out-of-order execution of dependent events at any time during
the simulation. In contrast, optimistic synchronization speculatively executes events,

94 4. Probabilistic Synchronization

but provides means of detecting and rectifying out-of-order execution. However, the
key limiting factor of both synchronization paradigms is their lack of knowledge of
event interactions within the simulation. For instance, conservative synchroniza-
tion regularly prevents parallel event execution due to limited knowledge of future
events, i. e., short lookaheads [Per06b]. Similarly, overly optimistic parallel execu-
tion of events causes frequent rollbacks to previous states, thereby impeding the
overall progress of the simulation.

The research community invested considerable efforts in resolving these issues. For
instance, lookahead maximization techniques [CK06, CS90, LN02, MB98, MB99]
aim at expanding the lookahead of conservative synchronization schemes by analyz-
ing the simulation model at or before runtime. However, due to the conservative
nature of this synchronization paradigm, the resulting speedup still constitutes a
lower bound for the actual degree of parallelism in the model [JR91].

Further efforts aim at restricting the degree of speculative execution in optimistic
synchronization. For instance, Moving Time Window [SWM91] and Bounded Time
Warp [TX92] use a window in simulated time and only allow optimistic execution
of events which reside in this window. Similarly, Breathing Time Warp [Ste93] de-
fines soft and hard limits on the number of events which are eligible for processing
after a global synchronization phase. These limits are typically user-defined values
or based on empirical measurements. Hence, they impose artificial restrictions on
parallel event execution since they do not base on the observed simulation behavior
and the dependencies among events. Finally, pioneering efforts towards probabilis-
tic synchronization [Fer95, FC94, SS98] analyze the timing between events, yet such
patterns do not convey enough information to accurately reconstruct event depen-
dencies. Section 4.3 discusses all related efforts in more detail.

General Idea

In the previous chapter, we developed a parallel discrete event simulation frame-
work, named Horizon, that builds upon a centralized event scheduling architec-
ture [KLG+10]. Based on this work, we present in this chapter a probabilistic syn-
chronization scheme that gathers extensive knowledge of the simulation behavior at
runtime in order to make educated event scheduling decisions. The scheme exploits
the repetitive behavior of simulation models by continuously collecting event schedul-
ing information at runtime to gain an insight into event dependencies. Moreover, for
each event not eligible for parallel execution according to conservative synchroniza-
tion, a heuristic decides based on the derived dependency information whether or
not the event should be processed in parallel anyway. Specifically, the heuristic de-
termines the probability that speculative event execution results in an out-of-order
execution. If this probability is below a user-defined threshold, the event is executed
speculatively. This allows overcoming the restrictive scheduling of conservative syn-
chronization while at the same time avoiding overly optimistic event execution.

Learning the behavior of a simulation model at runtime and querying a heuristic
as part of the event handling process creates a crucial design trade-off. On the one
hand, a heuristic should be as simple as possible to minimize its runtime overhead.
On the other hand, a complex heuristic is able to derive more accurate synchro-
nization decisions. Finding the right trade-off moreover depends on the particular

4.2. Problem Analysis 95

simulation model under investigation as a model involving complex events can tol-
erate a complex heuristic and actually benefit from better decisions. As a result, we
present three different heuristics that differ in complexity and accuracy:

Arrival Pattern Heuristic: The Arrival Pattern Heuristic is of low complexity and
accuracy. It observes patterns in the events arriving at the modules of the
simulation model and predicts the type of the next incoming event. If the
predicted event type matches the type of the next event available for execution,
it optimistically offloads it. Otherwise it blocks and waits for an event of
matching type to arrive.

Global Order Heuristic: The Global Order Heuristic is of medium complexity and
accuracy. It derives its offloading decisions from the expected behavior of
the currently executed events. Specifically, it determines the probability that
one of the currently executing events creates a new event with a timestamp
preceding the next available event in the FES. If this probability is below a
threshold, it offloads the next available event.

Local Order Heuristic: The Local Order Heuristic is of high complexity and ac-
curacy. Similarly to the Global Order Heuristic, this heuristic computes the
probability for new events preceding the next event in the FES. However, it
does not only take the currently executing events into account, but also recur-
sively all subsequently created events as well as the modules they occur on. It
hence creates a dependency tree to compute the probability that a new event
precedes the next available event on the same module.

Our evaluation shows that all three heuristics are able to learn the behavior of a
simulation model and considerably improve simulation performance over traditional
schemes.

4.2 Problem Analysis

In this section, we illustrate the need for probabilistic synchronization by means of
a simple example. Furthermore, we clarify the reasons for designing three different
heuristics.

4.2.1 Limitations of Classic Synchronization

Assume a simple simulation model consisting of three network nodes – two senders
and a receiver. The senders continuously send packets with random interarrival
times to the receiver which immediately replies with an Acknowledgment (ACK).
The lookahead is given by the propagation delay on the link and is thus significantly
smaller than the packet interarrival times. Figure 4.1(a) shows the sequence of
events modeling two separate send-packet/receive-ACK patterns. In the following,
we demonstrate the weaknesses of conservative and optimistic synchronization in
this scenario.

96 4. Probabilistic Synchronization

send packet

receive packet / send ACK

receive ACK send packet

event scheduling order
simulated time

1

lookahead

e1 e4 e3

1

e2

1

sender 1

receiver

sender 2

e5 e7

e6

2

3 4

(a) Global sequence of events modeling send-packet/receive-ACK transmissions between two
senders and one receiver. A send-packet event transmits a single packet to the receiver and
creates the next send-packet event. The receiver simply replies with an ACK-packet.

0 2 4 6 8 10
simulated time [s]

e1 e3

e4

send packet receive ACK

(b) Sequence of send and receive-events occurring locally at sender 1. Both event types
alternate, i. e., a send-event is always followed by a receive-event and vice versa.

Figure 4.1 Global and local sequence of events in a simple network model consisting of two
senders and a receiver. In both cases, we observe repetitive patterns among the
events. Probabilistic synchronization aims at analyzing these patterns at runtime
to guide event synchronization.

Conservative Synchronization: Initially, the execution of event e1 (“send packet”)
creates two successor events, e2 (“send ACK”) and e3 (next “send packet”).
In this situation, conservative synchronization solely executes e2 because e3 is
beyond the lookahead of e2 and another event might arrive in-between. This
is indeed the case when e2 creates e4 (“receive ACK”). For the same reason, e3
is not executed in parallel to the events of the subsequent send-packet/receive-
ACK transmissions (e5, e6, and e7). However, e3 in fact does not interfere with
those events, thus actually permitting parallel execution of e3 with any of those
events. Hence, conservative synchronization is too pessimistic in this case due
to a limited lookahead, giving rise to the “blocked waiting problem” [Per06b].

Optimistic Synchronization: In contrast, optimistic synchronization speculatively
executes both successors of e1 in parallel (e2 and e3). However, e2 creates e4,
thereby inflicting a causal violation and a corresponding rollback. Hence, opti-
mistic synchronization is too aggressive in this scenario, thus limiting progress
because of rollbacks.

We argue that the limitations of both schemes are partly founded in the fact that
they do not take the runtime behavior of the simulation into account. However,
simulation models typically exhibit highly repetitive event patterns which allow for
deriving accurate knowledge of event dependencies. By means of this dependency
information, synchronization algorithms can significantly improve simulation perfor-
mance. For instance, Figure 4.1(b) shows the sequence of events occurring locally at
sender 1. We immediately observe a pattern in the event sequence: After executing
one “send packet” event, the synchronization scheme needs to wait for the pending

4.3. Related Work 97

acknowledgment. Upon arrival and execution of the ACK event, the subsequent
“send packet” event is eligible for parallel execution because no other event arrives
in-between anymore. Thus, our goal is to design a synchronization scheme which
analyzes such event patterns in order to improve parallel simulation performance.

4.2.2 Complexity vs. Accuracy

The centralized architecture of Horizon is highly sensitive to event handling over-
head as the event scheduler can easily become a bottleneck. Since a heuristic con-
siderably increases the event handling overhead, it is imperative to minimize its
complexity. Yet, a complex heuristic using detailed information about the simu-
lation model may be able to derive more accurate predictions. Better predictions
in turn may allow for offloading more events while at the same time reducing the
number of rollbacks. Hence, we face a design trade-off between prediction accuracy
and overhead.

One important parameter in this trade-off is the computational complexity of the
simulation model. Conservative synchronization does not offload an event e if the
currently offloaded events e′ ∈ O might create a causal violation. Thus, probabilistic
synchronization achieves a performance gain over conservative synchronization if the
heuristic correctly decides to offload an event in addition to the events in O, i. e.,
before all e′ ∈ O that block conservative synchronization have been processed. This
blocking period grows with increasing complexity, i. e., processing time, of the indi-
vidual events in the simulation model. As a result, complex models tolerate more
complex heuristics. In fact, such models actually benefit from more accurate predic-
tions since an incorrectly offloaded and computationally complex event wastes more
computing resources than a computationally simple event. We accommodate simu-
lation models of different complexity by developing three heuristics that implement
different complexity vs. accuracy trade-offs:

i) an Arrival Pattern Heuristic of low complexity and accuracy,
ii) a Global Order Heuristic of medium complexity and accuracy, and
iii) a Local Order Heuristic of the highest complexity and accuracy.

4.3 Related Work

The community has spent considerable efforts on optimizing the two fundamen-
tal synchronization paradigms and mitigating their respective shortcomings. This
chapter reviews closely related work and the current state-of-the-art in probabilistic
synchronization.

4.3.1 Limiting Optimism By Means of Time Windows

An early approach by Sokol et al. [SBW88] aims for mitigating the destructive
effects of overly optimistic event execution based on moving time windows. The
synchronization scheme defines a time window ∆, reaching from the current GVT

98 4. Probabilistic Synchronization

into the future. Consequently, only events e with t(e) ≤ GVT + ∆ are eligible for
execution. Since the window ∆ remains static throughout a simulation run, the
scheme requires evenly distributed event timestamps as the static window cannot
handle large jumps in simulated time.

Breathing Time Warp [Ste93] relaxes strict window-based synchronization by dy-
namically deciding to either send out an event immediately or buffer it. This scheme
builds on the observation that events sent to neighboring LPs shortly after deter-
mining the Global Virtual Time (GVT) (in real time) cause far less rollbacks than
events sent later. In contrast to probabilistic synchronization, however, this scheme
does neither consider the actual behavior of the simulation nor event dependencies.

4.3.2 Probabilistic Synchronization

In their pioneering work on probabilistic synchronization, Ferscha et al. [Fer95, FC94]
analyze the arrival patterns of events. Using statistical methods such as the arith-
metic mean, exponential smoothing, or median approximation over a history of ar-
rival times, the proposed schemes estimate the timestamp of the next event. Hence,
these schemes are similar to the Arrival Pattern Heuristic and thus also inherit
its drawbacks. Additionally, they do not distinguish between different event types,
thereby limiting insight into causal dependencies even further.

Similarly, Som et al. [SS98] construct Probability Density Functions (PDFs) from
the time differences of committed events at each LP. Like in our approach, the
synchronization scheme calculates the probability for a causal violation based on
these PDFs and selects the next event accordingly. However, by sampling only
time differences without taking event types into account, this scheme cannot derive
detailed knowledge of event dependencies.

4.3.3 Lookahead Extraction

A large body of research focuses on maximizing the lookahead through manual or
automatic techniques to boost the performance of conservative synchronization. For
instance, Cota et al. [CS90] represent the internal behavior of simulation model
components by means of a control flow graph. Nodes in this graph constitute differ-
ent states of the component while the edges hold lookahead values which eventually
allow calculating an extended lookahead on a path through the graph. However, the
authors do not discuss the construction of the graph nor provide a proof-of-concept
implementation.

Meyer et al. [MB98] extend this work by modeling the data flow between components
of a simulation model in a dependency graph. Again, the edges hold the minimum
lookahead in-between components and hence a path through the graph gives the
total minimum lookahead between two components. In contrast to our work, the
construction of the data flow graph requires manual specification of paths instead
of automatic learning. Additionally, the complexity of constructing, maintaining,
and traversing the graph limits performance. To reduce this overhead, the authors
restrict the number of computed paths between components to a single one in follow-
up work [MB99]. Still, the effort of manually defining paths remains.

4.4. Probabilistic Synchronization 99

Similar efforts focus on deriving larger lookaheads from domain specific model prop-
erties. For instance, Liu et al. [LN02] extract extended lookaheads from wireless
networks based on packet transmission times and multi-hop propagation delays.
Furthermore, Chung et al. [CK06] simulate the parallel execution of programs on
multi-processor systems. Their approach performs branch predictions on top of the
simulated program code to increase the knowledge of future instructions and hence
the lookahead. Although both approaches can achieve considerable speedups, they
are specifically tailored to a certain domain and hence lack general applicability.
Finally, relaxed synchronization [Fuj99a] allows out-of-order execution of events if
their timestamps are close to each other. While this approach mitigates the restric-
tions of small lookaheads, it cannot guarantee repeatability across simulation runs
and limits the validity of simulation results.

4.3.4 Hybrid Synchronization Schemes

Nicol et al. propose the concept of composite synchronization [NL02] as an opti-
mization for conservative synchronization. Based on the observation that the per-
formance of a particular conservative synchronization algorithm depends on the
properties of the model, composite synchronization applies either a synchronous
(global) or an asynchronous (local) algorithm to the channels between LPs in order
to adapt to the particular model. In contrast to our approach, this scheme however
does not incorporate optimistic synchronization.
In addition to those approaches, combined synchronization [JB94] integrates the
two classic techniques into a unified synchronization scheme. The basic idea is to
selectively apply either conservative or optimistic synchronization to the LPs in a
simulation model to accommodate different workloads and timings per LP. Hence,
by selecting the best fitting scheme for each LP, combined synchronization is able to
clearly outperform both classic schemes. As a result, combined synchronization is
widely used in general-purpose parallel simulation frameworks and languages such
as Maisie [BL94], the High Level Architecture [Fuj98], and µsik [Per05]. Although
those frameworks support dynamic switching between conservative and optimistic
schemes, each scheme is applied to a whole LP or a group of LPs [RAT93]. In con-
trast, our approach dynamically decides for each event individually whether conser-
vative or optimistic execution is the most favorable option to maximize performance.
It hence allows exploiting differences in the workload and the timing on a much finer
scale.

4.4 Probabilistic Synchronization

We now define the goals and the concept of probabilistic synchronization and present
the design of each heuristic in detail.

4.4.1 Design Goals and General Concept

The primary goal of probabilistic synchronization is speeding up parallel discrete
event simulations by learning the behavior of a simulation model and exploiting this

100 4. Probabilistic Synchronization

knowledge to guide speculative parallel event execution. To achieve this, we state
three distinct design goals: The probabilistic synchronization scheme should

i) guarantee the causal correctness of the simulation despite utilizing speculative
event execution,

ii) maximize the number of correct predictions to enable a speedup over conser-
vative synchronization while minimizing the number of rollbacks,

iii) minimize the prediction complexity to limit its negative impact on simulation
performance.

In its traditional mode, the central scheduler of Horizon employs a conservative
synchronization scheme to determine if the first event e in the central FES can safely
run in parallel to currently executing events. If this is not the case, it blocks until all
conflicting events finished processing. Instead of blocking, we extend this scheme by
querying a heuristic for the probability of inducing a causal violation if e is executed
anyway. In case the resulting probability is below a given threshold, the scheduler
in fact offloads e speculatively. Since the execution of e is stalled while the heuristic
computes a decision, we denote e as pending event ep in the remainder of this thesis.

Because speculative execution inflicts causal violations, the simulation framework
periodically stores checkpoints of the simulation state and checks for causal correct-
ness. According to the proof of correctness presented in Section 3.4.1.4, we achieve
causal correctness by ensuring that the local simulation time at each module of the
simulation model increases monotonically. In case of an event arriving at a module
with a timestamp smaller than the local time, the simulation framework initiates a
rollback to a previous causally correct state.

In the remainder, we distinguish the set of events E from the set of event types T̂
of a simulation model. Each event e ∈ E is an instance of exactly one event type
τ ∈ T̂ . Moreover, τe denotes the type of event e which can be uniquely identified at
runtime.

4.4.2 Arrival Pattern Heuristic

The general idea underlying the Arrival Pattern Heuristic is to analyze the patterns
in which event types arrive at the individual modules of the simulation model. This
approach is similar to current state-of-the-art in probabilistic synchronization [Fer95,
FC94, SS98]. Specifically, the heuristic tracks at each module

i) the type τ ∈ T̂ of the event which arrived last,
ii) for every event type υ ∈ T̂ , its number of occurrences nυ ∈ Z≥0,
iii) for every pair (τ, υ) ∈ T̂ × T̂ , the number nτυ ∈ Z≥0, indicating how often an

event of type υ followed an event of type τ .

Depending on the type τ of the last event, the heuristic determines the probability
pτυ that the type υ := υep of the pending event ep occurs next as

pτυ :=
{

nτυ
nτ

, if nτυ 6= 0
0 , else.

The event scheduler then offloads the pending event if the complementary probability
1− pτυ (υ does not follow τ) is below a given threshold.

4.4. Probabilistic Synchronization 101

0 2 4 6 8 10
simulated time [s]

probabilities for
next event typesfwd packet, flow 1

fwd packet, flow 2
fwd packet, flow 3
fwd packet, flow 4

Figure 4.2 The local sequence of events on a network node that forwards four uncorrelated
data streams. The pie chart on the right illustrates the computed probabilities
that the next event is of the correspondingly colored type.

Applying this heuristic to the previously discussed example shown in Figure 4.1(b)
yields the following synchronization decisions: The type of the last event is “send
packet” (right-most point in the sequence) and both event types occur equally often,
but “receive ACK”-events occur almost only after “send packet”-events and vice
versa. Thus, the probability for the next event being of type “receive ACK” is
nearly 1 while it is close to 0 for being another “send packet”-event. Hence, in
contrast to conservative synchronization, the heuristic allows offloading the next
event if it is of type “receive ACK”, but it prevents erroneous offloading of further
“send packet”-events as opposed to purely optimistic synchronization.

The decision making and learning process of the Arrival Pattern Heuristic is no-
tably simple. Updating and querying the learned data only requires accessing and
modifying the corresponding counter variables nτ and nτυ for the respective event
types. Hence, these operations exhibit constant complexity. Similarly, the memory
overhead is limited to those counter variables. Every simulation module maintains
one counter for each occurring event type and one for each combination of such
event types. Finally, since all data is collected and queried locally at each module,
this heuristic is suitable for distributed simulation and thus does not depend on the
centralized architecture of Horizon.

Nevertheless, the simplicity of the heuristic comes at the price of reduced accuracy.
Its most severe drawback is that the mere occurrence of an event does not convey
any information about causal dependencies, i. e., which event caused another event
to occur at a particular module. Consider, for instance, four uncorrelated packet
streams passing through a module as shown in Figure 4.2. The Arrival Pattern
Heuristic tries to identify patterns among the uncorrelated event arrivals which
however do not exist. Thus, the predictions remain inconclusive, i. e., the heuristic
computes similar probabilities for most event types (see the segments of similar size
in the pie chart in Figure 4.2). In addition, the heuristic does not distinguish between
event instances, but just event types. Hence, even if the type of the pending event
matches the predicted event type, another event of the same type but with a smaller
timestamp might still precede the pending event, thereby inducing a rollback.

We conclude that analyzing the local arrival patterns of events, as also done in
related efforts, does not allow for accurately predicting future events and hence
limits synchronization efficiency.

102 4. Probabilistic Synchronization

delay(e,es)

fr
eq

ue
nc

y

ts(ep)

receiversender

e es

p(τe,de) = p(ts(es) < ts(ep))

Figure 4.3 The delays between an event e and its earliest successor event es constitute
the samples of a delay distribution. Each sample belongs to one bucket of
the underlying histogram. The highlighted area under the curve represents the
probability that an event es precedes ep.

4.4.3 Global Order Heuristic

To obtain a better insight into causal dependencies among events, the Global Order
Heuristic analyzes the “successor” relationship among events. Revisiting the initial
example shown in Figure 4.1, we observe that a causal violation occurs at a module
m only if

i) two events e1, e2 execute speculatively in parallel, and
ii) e1 with ts(e1) < ts(e2) creates event e3 at module m with ts(e3) < ts(e2).

Therefore, when deciding whether or not to offload a pending event ep, the Global
Order Heuristic has to determine the probability that any of the currently executing
events creates a successor event es with ts(es) < ts(ep). To this end, the heuristic
tracks the minimum time difference (i. e., delay) between an event e and all events
scheduled by e. Since the delay between two events might follow a random distri-
bution, the heuristic has to reconstruct this distribution from a set of samples. We
assume that all instances of a particular event type behave similarly during a simula-
tion run, thus allowing the heuristic to collect samples from recurring event instances
of the same type. From these samples, the heuristic constructs the (empirical) Prob-
ability Density Function (PDF) as visualized in Figure 4.3. The probability p(τe, de)
that an event e of type τe schedules another event within a delay of de := ts(ep)−ts(e)
is given by the highlighted area under the PDF. The heuristic then aggregates these
probabilities over the set O ⊆ E of all currently offloaded events to compute the
conflict probability pc for a causal violation as

pc = 1−
∏
e∈O

(
1− p(τe, de)

)
.

If this probability is below a user-defined threshold, the probabilistic synchronization
scheme speculatively executes the pending event ep.

In comparison to the Arrival Pattern Heuristic, the Global Order Heuristic is of
higher complexity. The heuristic maintains all PDFs in the form of histograms, each
consisting of a set of buckets B (see Figure 4.3). Hence, determining pc depends
on |B| (for computing p(τe, de)) and the number of offloaded events |O|, yielding
a complexity of O

(
|O| · |B|

)
per query. Furthermore, recording a sample requires

finding the matching bucket in a histogram, resulting in a complexity of O
(
log(|B|)

)
using binary search. A large number of buckets allows a finer grained resolution at
the price of increased memory usage and computational overhead. In Horizon,
|O| is limited by the number of available CPUs, thus ranging between 4 and 32

4.4. Probabilistic Synchronization 103

e1

A B C

ep

simulated time

e2 ev

(a) Causal violation: ev interferes
with ep since it arrives at the same
module with a lower timestamp.

e1

A B

simulated time

e2

C

ep

D

e3

(b) No causal violation: e3 does not
interfere with ep since it occurs at
a different module.

Figure 4.4 Causal correctness is a local property of each module.

for typical target platforms. The number of buckets, however, allows to trade off
accuracy for memory usage and computational overhead. For each histogram, the
memory usage is one integer variable per bucket. Furthermore the heuristic stores
one histogram per event type and module. In Section 4.6.2.3, we illustrate that
|B| = 10 buckets provide sufficient accuracy.
Despite allowing a considerably better insight into event dependencies than the
Arrival Pattern Heuristic, the Global Order Heuristic still wastes potential for par-
allelization. In fact, the Global Order Heuristic is highly conservative in the sense
that it prevents offloading of ep if it predicts that at least one event es precedes ep
anywhere in the model. Figure 4.4(a) illustrates the underlying reasoning by show-
ing a sequence of events eventually resulting in a causal violation. As a result, this
heuristic effectively achieves global in-order execution of events. However, causal cor-
rectness is a local property of each simulation module: A simulation run is causally
correct if the order of events at each module increases monotonically [Fuj90a]. Hence,
global in-order execution is too strict. Specifically, if a sequence of earlier events
never crosses the module of ep no causal violation occurs, thus allowing offloading
(see Figure 4.4(b)). We conclude that in order to predict the probability that an
event e in O induces a causal violation at a given module, we have to analyze the
path of subsequently created events through the simulation model.

4.4.4 Local Order Heuristic

In order to follow the aforementioned path through the simulation model, the Local
Order Heuristic needs to sample the delay distribution of the successor events and
the modules they take place on. Specifically, at a given module m, the heuristic
tracks for each event e and all successors es created by e

i) the target module ms on which es takes place and
ii) the difference in simulated time between e and es.

The latter constitutes the sample data for constructing delay distributions analogous
to the Global Order Heuristic. However, instead of sampling just the minimum delay
to all newly created events, this heuristic maintains for each event type separate delay
distributions for all successor events of different type and different target modules.

104 4. Probabilistic Synchronization

e1 e2

C

ep

A

offloaded events

D

C AB C

A

Figure 4.5 Successor tree constructed by the Local Order Heuristic during the decision
making process. The edges show the delay distributions between consecutive
event types on different modules. Each node contains the sum of the delay
distributions along the path from the root to itself. Aggregating the probabilities
of all paths to all conflicting nodes (module C) gives the final conflict probability.

4.4.4.1 Successor Tree Construction

Upon a query for computing the conflict probability regarding a pending event ep,
the heuristic constructs a successor tree G (see Figure 4.5). We first give an intuitive
description of the tree construction algorithm before defining it formally:

i) For all currently offloaded events e ∈ O, it adds a node to the tree containing
the event type and target module of e.

ii) For each combination of event type and target module succeeding the events
in O, it appends a new node to the tree.

iii) The heuristic traverses the tree in a breadth-first manner and adds for all
existing nodes new nodes containing the respective successor event type and
target module to the tree.

iv) The tree construction stops when the tree contains all combinations of event
types and target modules reachable from O.

Within this tree, we denote the set of nodes which represent event types occurring on
the same module as ep, conflicting nodes Nc. Furthermore, the edges between nodes
contain the delay distributions between event types, i. e., the sampled PDFs, while
each node contains the sum of the delay distributions on the path from the root
event in O to itself. Using the aggregated delay distributions in every conflicting
node, the heuristic determines the probability that an event creates a conflicting
event ec with ts(ec) < ts(ep) as

pc = 1−
∏

ne∈Nc

(
1− p(τe, de)

)
.

Formally, we define a successor tree G as follows:

Definition 14 (Successor Tree)
A successor tree G = (N,H) comprises a set of nodes N connected by edges H.

4.4. Probabilistic Synchronization 105

• Each node ne = (τe,me, PDFne) ∈ N contains the event type τe of an event
e ∈ E, the target module me where e takes place, and a PDF PDFne defined
below.
• An edge h ∈ H connects two nodes ne, ne′ ∈ N if and only if ey e′.
• An edge h ∈ H connecting two nodes ne, ne′ ∈ N is labeled with a PDF PDFf

representing the delay distribution between τe and τe′ .
• The PDF PDFne of a node ne is the sum of the PDFs along a unique path of

edges from a root node ne′′ with e′′ ∈ O to ne:

PDFne =
∑

f∈ path(ne′′ ,ne),
e′′∈O,e∈E

PDFf

Computing an exact value for pc requires constructing the complete successor tree
in order to find all conflicting nodes Nc, thereby imposing considerable overhead.
Instead, we iteratively compute lower and upper bounds (pl, pu) for the conflict
probability while traversing the tree. We obtain the offloading decision as soon as
both bounds are either below or above the threshold.

The upper bound pu is given by the probabilities over all current leaf nodes L ⊆ N
in the tree

pu = 1−
∏
ne∈L

(
1− p(τe, de)

)
.

Since the aggregated delay distributions continuously shift to the right down the tree,
p(τ, de) steadily decreases as well. Hence, when adding new child nodes to the tree,
pu can only decrease. For the same reason, the heuristic stops exploring the tree
below a conflicting node as any subsequent conflicting node yields a smaller p(τ, de)
than its parent. The heuristic computes the lower bound pl analogously to pu, yet
solely based on the conflicting nodes N̂c ⊆ L among the leafs:

pl = 1−
∏

ne∈N̂c

(
1− p(τe, de)

)
.

This probability only increases when encountering new conflicting nodes which con-
tribute a delay distribution with a larger p(τe, de).

4.4.4.2 Complexity Analysis

By analyzing the dependencies among events throughout the whole model, this
heuristic can predict the probability of a causal violation with significant accuracy.
However, the major limitation of this heuristic is its computational overhead. Suc-
cessor trees can be huge and for every node in the tree we have to convolve two delay
distributions in order to compute their sum. The complexity of such a convolution
is O

(
|B|2 · log(|B|)

)
due to pairwise combining all buckets of both input histograms

and sorting the resulting |B|2 buckets. For a tree with |N | nodes, we hence determine
an overall complexity of O

(
|N | · |B|2 · log(|B|)

)
per query. In general, the size of the

successor tree heavily depends on the simulation model. As all events in O as well
as all their successors are part of the tree, we expect |N | � |O|. Nevertheless, the

106 4. Probabilistic Synchronization

complexity for recording a sample remains at O
(
log(|B|)

)
, similarly to the Global

Order Heuristic.

In terms of memory consumption, the Local Order Heuristic maintains considerably
more histograms than the Global Order Heuristic: For each event type occurring
at a module, it stores one histogram for each successor event type. Furthermore,
the heuristic requires additional memory for constructing one successor tree per
request. In order to mitigate the performance overhead of this heuristic, we develop
two optimizations. Both optimizations improve the performance in the average case
and do not influence the prediction quality.

Determinism Recognition: We eliminate costly convolution operations along the
path down the successor tree if one or both of the input delay distributions
represent a deterministic process with static delays. In this case, we can obtain
the target distribution by simply shifting the input distributions according to
the static delays. This optimization reduces the complexity of calculating the
sum of two delay distributions to O(|B|) if one delay is static or even down to
O(1) if both delays are static.

Distribution Function Cut-off: Figure 4.3 illustrates that only those buckets of a
PDF are of interest which are below the delay in question. All buckets beyond
the delay do not contribute to the sought probability. Thus, it is not necessary
to include those buckets in a convolution. Instead, we can ignore those buckets
in the input distributions and the resulting target distribution.

4.5 Discussion

After introducing probabilistic synchronization and each heuristic in detail, we now
discuss how this scheme integrates into the overall context of this thesis.

4.5.1 Relation to Parallel Expanded Event Simulation

Probabilistic synchronization and the corresponding heuristics integrate seamlessly
with parallel expanded event simulation as well as traditional discrete event simula-
tion:

Arrival Pattern Heuristic: This heuristic only considers the type and the number of
occurrences of arriving events. Both types of information are independent from
the concept of expanded event simulation, thus making the heuristic applicable
to both modeling paradigms. In particular, this observation also holds true if
one expanded event replaces two discrete events in a ported simulation model.

Global Order Heuristic: The Global Order Heuristic samples the delays between
parent and child events. In expanded event simulation, this delay is defined
as the difference between tc(e) and ts(e′) for e y e′. Similarly, this delay is
given in discrete event simulation by the difference between the two discrete
timestamps of e and e′. Hence, in both modeling paradigms this difference

4.5. Discussion 107

specifies the time when a new event enters the system which can create a
causal violation, i. e., precede an already processed event at a given module.

Local Order Heuristic: Similarly to the Global Order Heuristic, the Local Order
Heuristic samples the time differences between parent and child events, but
additionally also tracks the modules these events take place on. For the first
kind of sampling information, we apply the same reasoning as for the Global
Order Heuristic. Regarding the second sampling, we again note that the lo-
cation of an event is independent of whether it is an expanded or a discrete
event.

As a result, we conclude that probabilistic synchronization is orthogonal to expanded
as well as discrete event simulation. This makes it applicable to both modeling
paradigms, thereby underlining the relevance of our approach.

4.5.2 Relation to Horizon

The centralized parallelization architecture of Horizon sparked the development of
probabilistic synchronization and particularly of the Global Order Heuristic and the
Local Order Heuristic. The primary reason is that a single central event scheduler
only offloads one event at a time. Hence, while the scheduler queries the heuristic
whether or not to offload a particular event, the set O of offloaded events can only
shrink because workers finished processing their events. As a result, the heuristics
have a conservatively consistent view on the state of event execution, i. e., they
can only overestimate the probability for a causal violation by considering events
in O that are in fact already completely processed. Furthermore, since only the
event scheduler thread accesses the sample data local to each module, no locking
of this data is required. In this sense, the simple architecture of Horizon indeed
fostered the development of a novel approach to parallelization, as stated as a goal
in Section 3.4.1.1.

Nevertheless, on shared-memory multi-processor systems all three heuristics can be
applied to a partitioned, i. e., LP-based, architecture as well. In a straightforward
extension of the centralized architecture, the event scheduler of each LP queries an
own instance of the selected heuristic.

Arrival Pattern Heuristic: As this heuristic analyzes the arrival patterns of events
at each module, it can collect and maintain this information locally at every
module. Similarly, given a pending event ep, it only accesses and analyzes the
local information at the module where ep occurs in order to derive an offloading
decision. It is hence independent of O and thus natively supports a partitioned
architecture and distributed event execution. For this reason, related work
on probabilistic synchronization, which focuses on distributed simulation, is
limited to analyzing event arrival patterns similar to this heuristic.

Global Order Heuristic and Local Order Heuristic: Both, Global Order Heuris-
tic and the Local Order Heuristic require access to the set O of offloaded
events and the sample data, which poses no problem on shared-memory sys-
tems. It is worth mentioning that the sample data needs no protection by

108 4. Probabilistic Synchronization

locks despite being accessed by multiple heuristics simultaneously. Each mod-
ule stores sample data locally and only the LP responsible for a given module
actually modifies this data, while the heuristics of the remaining LPs merely
read from it. Thus data corruption or lost updates do not occur.
However, determining a consistent view of the simulation state is considerably
more complex in a partitioned multi-threaded architecture. In contrast to a
centralized architecture, an LP lp1 can add a new event e to O while an LP
lp2 runs its heuristic. As a result, we distinguish three cases:

i) e arrives in O in time and is hence considered by the heuristic of lp2.
Furthermore, e is still being processed when the heuristic of lp2 derives a
final decision. In this case, the result of the heuristic is as accurate as in
a centralized architecture.

ii) e arrives in O in time and is hence considered by the heuristic of lp2.
However, e was completely processed before the heuristic of lp2 derives
a final decision. In this case, the result of the heuristic is outdated and
lp2 might have offloaded another event e′ in the meantime. If e′ creates a
causal violation whereas e does not, the heuristic mistakenly offloads its
pending event, causing a rollback. Hence, the heuristic underestimates
the conflict probability in this scenario.

iii) e arrives in O too late and is hence not considered by the heuristic of
lp2 which already derived a final decision. If the heuristic of lp2 decided
to offload its event e′, it depends on the behavior of e whether or not a
causal violation occurs. In this case, the heuristic might underestimate
the conflict probability. If it however determines to not offload e′, lp1 will
block and consequently avoid a causal violation.

Concluding, all three heuristics integrate with a partitioned architecture. While the
Arrival Pattern Heuristic natively supports distributed event execution, the Global
Order Heuristic and the Local Order Heuristic suffer from reduced accuracy caused
by concurrent updates ofO. Still, the obvious advantage of a partitioned architecture
is its ability to distribute the overhead of the heuristics across multiple LPs and
hence processing units. Finally, a simple measure to counteract the tendency of
underestimating the conflict probability is to adjust the offloading threshold to a
higher value.

4.6 Evaluation

In this section, we evaluate the probabilistic synchronization scheme and the three
heuristics in terms of prediction quality, overhead, and performance gain. To this
end, we first briefly discuss relevant properties of the implementation to create a
context for the subsequent evaluation. Conceptually, the evaluation consists of two
parts. First, we evaluate the accuracy and overhead of the three heuristics by means
of a simple evaluation model. This model enables us to precisely adjust parameters
such as workloads and delay distributions. Second, we investigate the user-perceived
performance gain. To this end, we conduct a case study using a wireless mesh
network model.

4.6. Evaluation 109

All measurements were performed on a dedicated simulation server equipped with
two six-core AMD Opteron 2431 CPUs and 32GB of RAM, running a 64-bit Ubuntu
10.04 LTS server OS. Each data point shows the mean and the 99% confidence
interval over 30 independent runs.

4.6.1 Implementation

Our implementation bases on Horizon for OMNeT++ 3.3 [Var01]. The follow-
ing sections detail on the implementation of the data sampling and checkpointing
algorithms.

4.6.1.1 Maintaining Sample Data

The histogram-based learning process assumes that communication patterns be-
tween modules are either static or follow fixed distributions with static parame-
terization. Based on this assumption, we simply add new samples to the existing
histograms during the course of a simulation run. Consequently, this simple learn-
ing process cannot accurately reflect rapid and/or large shifts in the patterns of
samples. While a complete change of the type of distribution is unlikely, shifts in
patterns can indeed occur due to mobility (e.g., varying propagation delays). The
learning process can accommodate such changes by detecting the occurrence of a
large number of outliers among the samples and subsequently purge and re-sample
the histograms.

4.6.1.2 Checkpointing

Since the focus of our work is on avoiding rollbacks, we use a simple fork-based
checkpointing and rollback scheme to reduce the implementation complexity. A
checkpoint corresponds to periodically forking and immediately suspending a new
process, while a rollback kills the causally incorrect currently running process and
resumes a previously suspended one. Although fork utilizes copy-on-write, it is still
far less efficient than dedicated memory management frameworks [PVQ09, TQ08,
VPQ10]. In addition, our probabilistic event scheduling scheme could be nicely
complemented with a probabilistic checkpointing mechanism [Qua01] to drastically
improve the performance over our simple periodic checkpointing mechanism. In
general, our contribution is the probabilistic synchronization scheme and the three
heuristics. The underlying simulation framework and its implementation merely
provide a basis for evaluating the viability of our approach. By utilizing the rich
set of optimizations available in the literature, the performance of the underlying
implementation could be further improved, hence providing a more efficient runtime
environment.

4.6.2 Synthetic Benchmarks

At first, we perform synthetic benchmarks to measure the prediction accuracy and
the overhead of the three heuristics.

110 4. Probabilistic Synchronization

sink node

sink node
sink node

(a) The network structure of the evaluation model. All
nodes send packets to the three highlighted receiver
nodes.

Network Node

Routing
Layer

Application
Layer

(b) Each network node con-
sists of two modules.

Figure 4.6 Components of the synthetic evaluation model.

4.6.2.1 Evaluation Model and Methodology

The synthetic evaluation model is based on a modified example provided by OM-
NeT++ and represents a simple network of 57 nodes (see Figure 4.6(a)). Each node
consists of an application module sending data packets and receiving acknowledg-
ments, and a routing module, forwarding incoming packets towards the destination
(see Figure 4.6(b)). The application modules generate packets according to a Pois-
son process with a mean interarrival time of 1 s and randomly select one of three
possible receiver nodes as destinations. Routers forward packets along the shortest
path through the network according to pre-computed static routing tables. In addi-
tion, each router introduces a normally distributed delay with a mean of 2ms and
a standard deviation of 0.5ms.

In order to measure the prediction quality, we compare the decisions of each heuristic
against the correct decision previously computed based on a sequential simulation
run. Furthermore, to avoid divergent behavior among the heuristics, we discard
the actual decision of the heuristic and offload events only according to the correct
decision. Moreover, we synchronize the computation time of each event to the
computation time of the heuristics to factor out timing effects caused by differences
in the complexity of the heuristics. Finally, all results are derived from the steady-
state phase of the simulation after collecting at least 40,000 samples per distribution
during the initial learning phase. Note that these modifications are only applied for
evaluation purposes, and are not intended for use in real simulations.

We express the degree of optimism of a heuristic in terms of the Positive Rate (PR):

PR = #positive decisions
#requests

A PR of 0 means purely conservative synchronization while a PR of 1 corresponds
to completely optimistic synchronization. Furthermore, we measure the prediction

4.6. Evaluation 111

quality by means of the False Positive Rate (FPR) which is the ratio of actually
false positive decisions to all possible false positive decisions:

FPR = #false positives
#true negatives + #false positives

Again, conservative synchronization always yields an FPR of 0 while the FPR in
optimistic synchronization is 1. We vary the probability threshold from 0.1% to
99.9% with a special focus on both extreme ends. Additionally, we measure the
simulation runtime. Comparing this value to a simulation run without heuristic
provides the overhead added by the prediction and learning components.

4.6.2.2 Arrival Pattern Heuristic

Figure 4.7(a) shows that for thresholds on both ends of the scale, the heuristic
behaves almost like the corresponding conservative and optimistic schemes. For
intermediate thresholds, the PR raises from 17% to 40% while the FPR increases
from 1% to just 4% (see Figure 4.7(b)). Thus, despite its simplicity, the Arrival
Pattern Heuristic is able to predict the next incoming event type with reasonable
accuracy. Figure 4.7(c) illustrates the overhead added by the heuristic to each event
handling operation. This overhead is independent of the threshold and raises event
handling costs by 40%. Concluding, this simple heuristic achieves a surprisingly
good prediction quality for a wide range of threshold values while adding a reasonable
overhead.

4.6.2.3 Global Order Heuristic

In addition to the threshold, the histogram size influences the prediction quality
as more buckets allow for a finer grained resolution. We hence vary the histogram
size between 3 and 50 buckets. Figures 4.8(a) and 4.8(b) indicate that 3 buckets
do not provide enough accuracy to achieve reasonable predictions. However, both
PR and FPR show only negligible differences for histogram sizes of 10, 20, and 50
buckets. We thus conclude that 10 buckets suffice to model a distribution reasonably
well. Over the whole range of threshold values, the FPR increases to a maximum
of just 1% with a corresponding PR of 27%. As expected, this heuristic is quite
conservative due to considering conflicts from a global perspective, but it is still
able to identify a considerable amount of parallelism in the evaluation model, allow-
ing offloading of nearly one third of all pending events. Again, the overhead does
not depend on the threshold, but instead on the histogram size as shown in Fig-
ure 4.8(c). On average, this heuristic increases the event handling overhead by 60%.
Concluding, the Global Order Heuristic achieves a significantly better prediction
quality than the Arrival Pattern Heuristic at the price of slightly more overhead.

4.6.2.4 Local Order Heuristic

The PR of the Local Order Heuristic exhibits a relatively constant value of ap-
prox. 50% for threshold values ranging from 0.01% up to 90%, before finally in-
creasing to 70% for extremely large thresholds (Figure 4.9(a)). Thus, already for

112 4. Probabilistic Synchronization

0.1 1.0 10
.0

30
.0

50
.0

70
.0

90
.0

99
.0

99
.9

Threshold [%]

0

20

40

60

80

100

Po
si

tiv
e

Ra
te

 [%
]

(a) Degree of optimism: Positive rate.

0.1 1.0 10
.0

30
.0

50
.0

70
.0

90
.0

99
.0

99
.9

Threshold [%]

10-5
10-4
10-3
10-2
10-1
100
101
102

Fa
ls

e
Po

si
tiv

e
Ra

te
 [%

]

(b) Quality: False positive rate.

0.1 1.0 10
.0

30
.0

50
.0

70
.0

90
.0

99
.0

99
.9

Threshold [%]

0

20

40

60

80

100

Ev
en

t H
an

dl
in

g
Ov

er
he

ad
 [%

]

(c) Event handling overhead.

Figure 4.7 Degree of optimism, prediction quality, and overhead of the Arrival Pattern
Heuristic. For thresholds between 10% and 90%, the Arrival Pattern Heuris-
tic achieves an FPR of 1%. The overhead averages at 40%.

very small thresholds, the heuristic offloads every second event. Despite the large PR
at such small thresholds, the FPR is initially only 0.006% (0.0004% for 3 buckets),
but then sharply increases up to 40% (Figure 4.9(b)). Although the latter seems
disappointing at first, we conclude from these results that the heuristic is actually
able to very accurately predict the conflict probability: On the one hand, the heuris-
tic computes small conflict probabilities for events which are in fact independent,

4.6. Evaluation 113

0.1 1.0 10
.0

30
.0

50
.0

70
.0

90
.0

99
.0

99
.9

Threshold [%]

0

20

40

60

80

100

Po
si

tiv
e

Ra
te

 [%
]

Histogram Size
3 buckets
10 buckets

20 buckets
50 buckets

(a) Degree of optimism: Positive rate.

0.1 1.0 10
.0

30
.0

50
.0

70
.0

90
.0

99
.0

99
.9

Threshold [%]

10-5
10-4
10-3
10-2
10-1
100
101
102

Fa
ls

e
Po

si
tiv

e
Ra

te
 [%

] Histogram Size
3 buckets
10 buckets

20 buckets
50 buckets

(b) Quality: False positive rate.

0.1 1.0 10
.0

30
.0

50
.0

70
.0

90
.0

99
.0

99
.9

Threshold [%]

0

20

40

60

80

100

Ev
en

t H
an

dl
in

g
Ov

er
he

ad
 [%

]

Histogram Size
3 buckets
10 buckets

20 buckets
50 buckets

(c) Event handling overhead.

Figure 4.8 Degree of optimism, prediction quality, and overhead of the Global Order Heuris-
tic. This conservative heuristic limits the PR to a maximum of 27% resulting in
a low FPR of merely 1%. The overhead averages at 60%.

hence allowing for safely offloading those events with small thresholds. On the other
hand, large thresholds force the heuristic into taking too optimistic decisions since
offloading an event with high conflict probability indeed induces a causal violation.

The overhead of this heuristic grows with increasing histogram sizes and decreasing
thresholds. The latter is due to the fact that for smaller thresholds, the heuristic
needs to further traverse the successor tree in order to make sure that no conflicting

114 4. Probabilistic Synchronization

0.1 1.0 10
.0

30
.0

50
.0

70
.0

90
.0

99
.0

99
.9

Threshold [%]

0

20

40

60

80

100

Po
si

tiv
e

Ra
te

 [%
]

Histogram Size
3 buckets
10 buckets

20 buckets
50 buckets

(a) Degree of optimism: Positive rate.

0.1 1.0 10
.0

30
.0

50
.0

70
.0

90
.0

99
.0

99
.9

Threshold [%]

10-5
10-4
10-3
10-2
10-1
100
101
102

Fa
ls

e
Po

si
tiv

e
Ra

te
 [%

]

Histogram Size
3 buckets
10 buckets

20 buckets
50 buckets

(b) Quality: False positive rate.

0.1 1.0 10
.0

30
.0

50
.0

70
.0

90
.0

99
.0

99
.9

Threshold [%]

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Ev
en

t H
an

dl
in

g
Ov

er
he

ad
 [%

] 1e5
Histogram Size

3 buckets
10 buckets

20 buckets
50 buckets

(c) Event handling overhead.

Figure 4.9 Degree of optimism, prediction quality, and overhead of the Local Order Heuris-
tic. Due to accurate knowledge, the heuristic offloads every second event (PR
of 50%) for low thresholds with very low FPRs.

event exists in the tree. Overall, the overhead of this heuristic exceeds the overhead
of the other two heuristics by orders of magnitude. Hence, this heuristic should
only be used in conjunction with models of non-trivial computational complexity.
Nevertheless, we show in the next section that given such a model, this heuristic
outperforms the other two.

4.6. Evaluation 115

sink node

sink node
sink node

(a) The network structure of the evaluation model. All
nodes send packets to the three highlighted receiver
nodes.

Network Node

Routing
normal(2ms, 0.5ms)

Application
exp(1s)

PHY/MAC
normal(2µs, 0.5µs)

Channel
0s

2ns

2ns

2ns

normal(2ns, 0.5ns)

(b) Delay and processing time
distributions used in the
extended nodes of case
study.

Figure 4.10 Components of the network model used in the case study.

4.6.3 Case Study

To complement the synthetic benchmarks, we conduct a case study to show the user
perceived performance gains in the context of a wireless multi-hop mesh-network
model.

4.6.3.1 Evaluation Model and Methodology

We integrate a wireless transmission scheme with the synthetic benchmark model:
While the topology and the basic traffic flows remain the same, each transmission
is now received by all directly neighboring nodes due to the broadcast nature of
the wireless channel. To model the wireless transmission, we furthermore extend
each network node with an accurate OFDM channel model and a simple PHY/-
MAC component implementing a threshold based packet error model. On each
transmission, the OFDM channel component computes the fading components for
each OFDM carrier while the PHY/MAC component implements a simple threshold
based packet error model. For brevity, we do not discuss these models here, but refer
to work by Puñal et al. [PEG11]. Furthermore, the model abstracts from a concrete
MAC scheme, interference, and transport layer protocols.

Figure 4.10(b) shows the structure of the extended network nodes, the event dura-
tions, and the delays used in the model. We measure the runtime performance in
terms of the number of computed events per second during the steady state phase
of the simulation while utilizing all 12 CPUs of our simulation server. In order to
limit the number of results, we selected relevant thresholds based on the synthetic
evaluation. Moreover, we chose a wide range of checkpoint intervals, ranging from
0.01 s to 10 s of wall-clock time to investigate the trade-off between checkpointing
overhead and work preservation.

116 4. Probabilistic Synchronization

100
Threshold [%]

0

200

400

600

800

Ev
en

ts
 p

er
 S

ec
on

d

Conservative Synchronization
Sequential Execution

Checkpoint Interval
0.01 s
0.1 s

1 s
10 s

(a) Traditional optimistic and conservative synchronization.

1.0 10.0 25.0 50.0 75.0 90.0 95.0 99.0
Threshold [%]

0

200

400

600

800

Ev
en

ts
 p

er
 S

ec
on

d

Cons

Checkpoint Interval
0.01 s
0.1 s

1 s
10 s

(b) Arrival Pattern Heuristic

0.01 0.1 1.0 5.0 10.0 25.0 50.0 75.0 90.0 95.0
Threshold [%]

0

200

400

600

800

Ev
en

ts
 p

er
 S

ec
on

d

Cons

Checkpoint Interval
0.01 s
0.1 s

1 s
10 s

(c) Global Order Heuristic

0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0
Threshold [%]

0

200

400

600

800

Ev
en

ts
 p

er
 S

ec
on

d

Cons

Checkpoint Interval
0.01 s
0.1 s

1 s
10 s

(d) Local Order Heuristic

Figure 4.11 Performance of the traditional synchronization techniques and our heuristics in
the case study.

4.6. Evaluation 117

4.6.3.2 Traditional Techniques

Figure 4.11(a) illustrates the performance of sequential execution (black dashed
line), conservative synchronization (gray line) and purely optimistic synchroniza-
tion (bars) for varying checkpoint intervals. Note that these baseline results could
be potentially improved, considering the simple proof-of-concept implementation of
our checkpointing mechanism. Nevertheless, even in an optimized implementation,
the inherent shortcomings of both synchronization schemes remain. Hence, if our
heuristics are able to prevent a rollback or a blocked waiting period, the overall
performance increases also on an optimized simulation platform.

Most noticeably, conservative synchronization does not achieve any speedup at all
in this model. This disappointing result is due to extremely short lookaheads given
by the short propagation delays (see Figure 4.10(b)). We furthermore observe that
purely optimistic synchronization is even slower than conservative synchronization
over the whole range of checkpoint intervals. Hence, optimistic synchronization
suffers from frequent rollbacks. This is further underlined by a tremendous difference
in performance between different checkpoint intervals. For large intervals of 1 s to
10 s, the simulation makes almost no progress since a rollback is likely to occur before
the next checkpoint is reached.

4.6.3.3 Arrival Pattern Heuristic

The Arrival Pattern Heuristic performs generally worse than conservative synchro-
nization (see Figure 4.11(b)). Only for short checkpoint intervals of 0.01 s to 0.1 s
it is able to gain a small speedup over the conservative scheme. In comparison
to optimistic synchronization, this heuristic is nevertheless able to prevent a con-
siderable number of rollbacks. Hence, the simulation performance exceeds purely
optimistic synchronization. These results support our claim that arrival patterns
do not provide enough information about event dependencies to accurately predict
future events.

4.6.3.4 Global Order Heuristic

In contrast to conservative synchronization, the Global Order Heuristic achieves a
2.6-fold higher event processing rate for small thresholds and checkpoint intervals
(see Figure 4.11(c)). Interestingly, up to thresholds of 10%, the two large checkpoint
intervals of 1 s to 10 s outperform the smaller intervals before showing a steep drop
in performance for thresholds larger than 25%. We ascribe this to the fact that the
reduced overhead of larger checkpointing intervals allows for a higher processing rate
at small thresholds. However, as soon as the threshold grows too large, rollbacks
frequently occur before the next checkpoint is reached, thus preventing progress of
the simulation. In this case, a higher checkpointing rate achieves better performance
due to preserving more work.

118 4. Probabilistic Synchronization

St
ea

dy
 S

ta
te

 P
ha

se

100 101 102 103 104

Simulation Runtime [s]

0
100
200
300
400
500
600
700
800

Ev
en

ts
 p

er
 S

ec
on

d

Initial Training Phase Convergence Phase

Figure 4.12 In a probabilistic synchronization scheme simulation runs consist of three
phases.

4.6.3.5 Local Order Heuristic

Finally, Figure 4.11(d) shows that the Local Order Heuristic clearly outperforms all
other schemes for short checkpoint intervals and very small thresholds. In particular,
we observe a maximum speedup of about 3.2x over conservative synchronization.
However, as expected based on the synthetic evaluation results, the performance of
this heuristic rapidly declines with increasing threshold sizes.

In conclusion, the results of this case study confirm our previous assumptions and
support our design decisions: A complex heuristic is indeed able to more accu-
rately predict causal violations and hence outperform simpler heuristics, given that
the simulation model is of non-trivial complexity. Nevertheless, we also observe a
considerable impact of the chosen parameters, particularly threshold size and check-
pointing interval, on the overall performance. Hence, in the current state of this
work, a well-founded understanding of the heuristics is required to choose appro-
priate parameters. Future work aims at solving this issue by developing automatic
calibration techniques.

4.6.4 Synchronization Phases

The heuristics need to collect a minimum set of training data before being able
to predict causal violations with reasonable accuracy. Moreover, the prediction
accuracy increases with the size of the training data. As a result, a probabilistic
simulation run passes through three different phases as illustrated in Figure 4.12.

Initial Training Phase: While the heuristic collects the initial training data, the
event scheduler employs traditional synchronization techniques. Our imple-
mentation utilizes the legacy conservative synchronization scheme of Horizon
for this phase. Consequently, the runtime performance is low.

Convergence Phase: After sampling a predefined amount of training data, prob-
abilistic synchronization commences. In the example shown in Figure 4.12,
speculative event execution is enabled after at least one distribution contains
more than 400 samples. At this point, approx. 3 minutes into the simulation,

4.7. Conclusions 119

runtime performance grows rapidly but shows large fluctuations due to still
incomplete sample data. However, with increasing sample data size, the run-
time performance converges towards a steady state. Determining the optimal
size of the initial training set is left for future work.

Steady State Phase: Finally, about three hours into the simulation run, the run-
time performance completely stabilizes and enters the steady state phase. In
this phase probabilistic synchronization achieves its maximum performance.
Hence, probabilistic synchronization primarily targets long running simula-
tions with runtimes up to several hours or days. However, we can immediately
skip to the steady state phase by preserving the sample data between runs
if the simulation model does not change. In practice, this is indeed often the
case since multiple repetitions of the same run are needed to obtain statistically
significant results.

4.7 Conclusions

We presented a probabilistic synchronization scheme that learns the runtime behav-
ior of a simulation to guide speculative event execution. Its core components are
three heuristics that continuously collect event scheduling information at runtime.
Based on this information, the heuristics compute the probability for inflicting a
causal violation when speculatively executing events. We developed three different
heuristics to trade off prediction accuracy and runtime performance. Our evaluation
investigates the exact impact of this trade-off and quantifies the prediction accuracy.
Furthermore, by means of a case study using a wireless mesh network, we illustrate
that all three heuristics outperform conservative and optimistic synchronization.

Probabilistic synchronization successfully speeds up the runtime of a single simu-
lation run on multi-processor systems. In practice, however, evaluating the per-
formance of complex systems requires extensive parameter studies, i. e., repeated
simulation runs with difference combinations of parameters and random seeds. The
next chapter illustrates a novel parallelization approach that exploits the massively
parallel processing power of GPUs to significantly speed up such parameter studies
on multi-processor systems.

120 4. Probabilistic Synchronization

5
Multi-level Parallelism on GPUs

The key goal of this thesis is to foster and improve parallel simulation by exploiting
the parallel processing power of modern multi-processor systems. To reach this goal,
we designed and presented two contributions in the previous chapters: parallel ex-
panded event simulation and probabilistic synchronization. While both approaches
take advantage of shared-memory multi-processor systems, they do not yet consider
a powerful and ubiquitously available class of parallel hardware: Graphics Processing
Units (GPUs).

GPUs provide massively parallel processing capabilities and form an integral part
of the majority of target platforms of this thesis, i. e., desktop and workstation
computers. Hence, GPUs constitute a highly attractive substrate for our efforts
towards efficient parallel simulation on multi-processor systems. However, despite an
increasing support in terms of general purpose programming capabilities, GPUs are
still highly specialized hardware which implement a considerably different processing
model than CPUs. As a result, successfully exploiting the available processing power
of GPUs is difficult. We address this challenge by designing a novel multi-level
parallelization scheme that utilizes the massively parallel processing power of GPUs
to achieve a cost- and time-efficient execution of large scale parameter studies.

The remainder of this chapter is structured as follows: At first, we motivate and
sketch our approach to using GPUs for parallel simulation in Section 5.1. Then,
Section 5.2 analyzes in the architecture of GPUs and identifies the challenges that
arise from this architecture when attempting to execute parallel event simulations
on GPUs. With these challenges in mind, we review state-of-the-art efforts targeting
GPU-based parallel event simulation in Section 5.3 and discuss their shortcomings.
Based on these two sections, we then introduce the design of our multi-level paral-
lelization scheme in Section 5.4. Section 5.5 puts multi-level parallelization in the
context of parallel expanded event simulation and discusses fundamental limitations
of our approach. In Section 5.6, we then detail on the properties of our prototype
implementation which we use as a basis for evaluating our scheme in Section 5.7.
Finally, we conclude this chapter in Section 5.8.

122 5. Multi-level Parallelism on GPUs

5.1 Motivation

Complex technical systems, such as wireless communication networks, inherently
provide a multitude of tuning parameters. In order to find an optimal configuration
of a system (in terms of a specific goal), a thorough exploration of the given design
space is necessary. This design space exploration is typically performed by means
of detailed simulation models and elaborate parameter studies, often involving a
large number of simulation runs. However, even if a single simulation run finishes
quickly, the total combined runtime needed to complete a parameter study can
become considerably large, thereby severely hampering the design space exploration
process.

Despite existing techniques for reducing the number of relevant system parameters,
e. g., factorial design [Jai91], studying only a few parameters quickly results in large
amounts of simulations. For example, a study over five parameters, each with five
distinct values of interest, requires simulating 55 = 3125 different parameter sets.
Additionally, in order to obtain statistically credible results, all parameter sets need
to be repeatedly executed with varying random seeds. Considering the 3125 param-
eter sets and 30 repetitions, a total of nearly 100,000 distinct simulations runs are
necessary.

In this chapter, we present a parallel discrete event simulation scheme that enables
a cost- and time-efficient execution of large scale parameter studies on GPUs. Our
approach leverages the massively parallel processing power of GPUs to concurrently
execute all individual runs of a parameter study. The overall goal of our work is
to provide a cost-efficient alternative to the traditional approach of distributing the
simulations of a parameter study to multiple CPUs. We argue that conducting large
scale parameters studies on a single GPU might in fact be slower than running them
on a large number of CPUs, yet purchasing one consumer level GPU is significantly
cheaper than buying and maintaining a large number of CPUs. Hence, our approach
constitutes a trade-off between cost and processing power.

General Idea

In order to successfully exploit the massively parallel GPU-architecture, we need to
address two particular challenges: i) GPUs implement a Single Instruction Multiple
Threads (SIMT) processing paradigm in which groups of threads execute in lockstep,
and ii) due to limited onboard memory, data needs to be continuously transferred
between host- and GPU-memory, hence imposing large memory access latencies.
Our key contribution in this chapter is a multi-level parallelization scheme that
overcomes these challenges [KSGW12a, Sch11]. In particular, the scheme builds on
two orthogonal levels of parallelism:

External Parallelism: We refer to the fact that individual simulations of a param-
eter study are inherently independent as external parallelism. Assuming that
the simulations of a parameter study behave similarly, external parallelism
enables the generation of SIMT-compatible workload by aggregating similar
events from all simulations and streaming them to the GPU in a single batch.

5.2. Challenges of Integrating GPUs with PDES 123

Host

streaming multi-processors

GPU

instr.
dispatch

memory

…

memory

processors

CPU CPU CPU
stream

ing p
rocessors

instr.
dispatch

instr.
dispatch

PCIe

…

Figure 5.1 Simplified illustration of a typical GPU architecture. Each streaming multi-
processor contains multiple streaming processors which share a common instruc-
tion dispatch unit. For example, a Nvidia GTX 470 GPU comprises 14 streaming
multi-processors with 32 streaming processors each.

Internal Parallelism: Within the simulations comprising a parameter study, indi-
vidual events are independent, denoted as internal parallelism. By interleav-
ing the transfer to and from GPU-memory with the execution of independent
events on the GPU, internal parallelism allows for establishing a pipelined
event execution that hides memory access latencies.

Based on a proof-of-concept prototype, we analyze the performance characteristics
of the proposed scheme by means of synthetic benchmarks. Moreover, we conduct a
case study using a wireless network model. We show that our parallelization scheme
reduces the runtime demand in this case study by a factor of 25 over an equivalent
CPU-based implementation.

5.2 Challenges of Integrating GPUs with PDES

Motivated by intriguing parallel performance and fueled by general purpose pro-
gramming frameworks such as NVIDIA’s CUDA or OpenCL, GPUs have become an
invaluable tool for high-performance computing. For instance, the NVIDIA GTX
470 graphics card used for this work provides a total of 448 processing cores, or-
ganized in 14 streaming multi-processors, which again consist of 32 streaming pro-
cessors each. Supported by hardware assisted thread scheduling, GPUs allow for
massively parallel processing by concurrently executing an even greater number of
threads. However, in order to fully exploit the available processing power, two pe-
culiarities of the GPU architecture need to be taken into account:

i) Threads are organized in groups which execute in lockstep, and
ii) limited onboard memory necessitates copying data to and from host memory.

We discuss both aspects in the following and show why they pose a particular chal-
lenge in the context of PDES.

124 5. Multi-level Parallelism on GPUs

Procedure: gpuKernel()
1: if threadId % 2 == 1 then
2: doSomething()
3: else
4: doSomethingElse()
5: end if
6: doSomethingTogether()

Algorithm 4 Example for lockstep execution on GPUs. Due to a shared instruction dispatch
unit, all threads in a warp execute the two diverging code paths of the if-
statement sequentially.

5.2.1 Lockstep Execution of Threads

In NVIDIA’s Fermi architecture, a group of 32 threads forms a so called warp [NVI].
Since the threads in a warp execute on a common multi-processor, they share a single
instruction dispatch unit (see Figure 5.1). As a result, all threads in a warp exe-
cute the same instructions in lockstep, implementing the Single Instruction Multiple
Threads (SIMT) processing paradigm.

Nevertheless, threads can selectively mask instructions of a common instruction
stream, thereby exposing different code paths embedded within this stream. How-
ever, since the instructions are part of a common instruction stream, the threads
currently masking an instruction are effectively idle and need to wait for the masked
instruction to finish. Algorithm 4 illustrates the resulting problem by means of a
simple example. Assume threadId is a variable holding the unique ID of the threads
in a warp. The conditional if-statement then causes all threads with an odd ID to
process the function doSomething while all threads with an even ID process the func-
tion doSomethingElse. Since both functions comprise different sets of instructions
from the common instruction stream, at first all threads with an odd ID process the
instructions within doSomething while the threads with an even ID are idle. After
finishing doSomething, the threads with an odd ID are idle while the threads with
an even ID execute the instructions of doSomethingElse. As a result, the GPU ex-
ecutes both functions sequentially. Fortunately, the CUDA runtime automatically
synchronizes both groups of threads after executing diverging code paths, so that
all threads jointly execute the function doSomethingTogether.

In stark contrast to the processing paradigm of GPUs, parallel discrete event simu-
lation executes independent events in parallel. In general, those events do not com-
prise the same code but instead model unrelated aspects of the simulated system.
Consequently, when mapped to the same streaming multi-processor, independent
yet unrelated events are still executed sequentially by the GPU since they involve
different instructions. Concluding, in order to efficiently integrate the lockstep exe-
cution paradigm of GPUs with parallel discrete event simulations, we need to design
an event processing strategy that provides SIMT workload to the streaming multi-
processors of the GPU.

5.3. Related Work 125

5.2.2 Memory Size, Latency, and Control Overhead

In comparison to the amount of main memory provided by a typical desktop com-
puter (∼8GB) or server (∼32GB), the size of GPU memory is relatively small
(∼1.5GB). Hence, data is commonly held in host memory and transferred to GPU
memory on demand, modified there, and finally copied back to host memory (see
Figure 5.1). Unfortunately, such memory transfers across the Peripheral Compo-
nent Interconnect Express (PCIe) bus suffer from significant latencies and can easily
become a performance bottleneck.
A common approach towards mitigating the adverse performance effects of these
memory transfers is latency hiding [HJPM10]. The key idea is to perform three
operations concurrently: i) Memory transfers to the GPU, ii) memory transfers
from the GPU, and iii) actual GPU processing. This three-stage pipelining keeps
the PCIe bus as well as the streaming processors of the GPU busy. In order to
achieve a fully pipelined execution of events in parallel discrete event simulations,
all events in the three stages of the pipeline need to be independent. Thus, the
event scheduler has to identify independent events and synchronize their execution
accordingly.
Moreover, each memory transfer over the PCIe bus involves a control overhead that
favors large transfer units (1-1000K) over small ones (1-1000 bytes) [HJPM10]. How-
ever, the memory footprint of a single event in a discrete event simulation is typically
small. Hence, transferring individual events to and from GPU-memory suffers from
the control overhead inherent to small transfer sizes. As a result, efficiently utilizing
GPUs requires hiding the memory latency and access overhead.

5.3 Related Work

Despite the challenges outlined in the previous section, GPUs lay the foundation for
improving the performance of a wide range of different types of simulations, includ-
ing simulations of physical processes [YWC07], computer architectures [MCM11],
vehicular networks [PAYS09], Monte Carlo simulations [PVPS09], etc. A compre-
hensive survey by Owens et al. [OLG+07] gives a broad overview of the subject.
In this thesis, we focus exclusively on parallel discrete event simulations. Since this
field comprises a large body of research efforts [Fuj90a, Per06b], this section discusses
only closely related work.

5.3.1 Integrating GPUs with PDES

Parallel discrete event simulations can utilize GPUs either solely as potent co-
processors or execute the entire simulation on the GPU. We discuss both variants
in the following.

5.3.1.1 GPUs as Co-processors

The majority of related efforts integrate GPUs as co-processors to which complex
computations are offloaded. The core logic of the simulation framework, e. g., event

126 5. Multi-level Parallelism on GPUs

schedulers and event queues, remain in host memory and run on the CPU. In this
context, Bauer et al. [BMP08] investigate the applicability of GPUs to combined
simulations [ZPK00] in which the discrete component of the simulation (the event
scheduler) executes on CPUs while the continuous component (the event handlers)
runs on GPUs. Using a synthetic workload model, the authors report consider-
able speedups for simulations containing computationally complex events. However,
memory I/O turns out to be the primary performance bottleneck of this work which
does not consider memory latency hiding techniques.

Following a similar approach, Xu et al. [XB07] identify sources of data- and task-
parallelism within detailed network simulation models. In contrast to our work,
this approach mainly relies on data-parallelism within complex events and does not
explicitly attempt to achieve a high degree of task-parallelism between events.

SCGPSim [NPJS10] is a simulation framework focusing on SystemC simulations.
Using source-to-source compilation of SystemC to CUDA-enabled code, it automat-
ically maps sequentially executing SystemC threads to parallel threads on a GPU.
This approach achieves a considerable speedup, but it inherently relies on the spe-
cific processing model of SystemC and hence cannot be applied in general to discrete
event simulation.

5.3.1.2 Purely GPU-based Simulation

In contrast to limiting GPUs to mere co-processors, Perumalla [Per06a] explores
the challenges of a purely GPU-based simulation framework. To account for the
streaming-oriented processing model of GPUs, the traditional event scheduling loop
underlying discrete event simulation is replaced by an event-streaming algorithm.
Despite being a low-level GPU implementation, the approach indeed achieves a
parallel speedup in a specific heat diffusion simulation. Although this work shows
the feasibility of an entirely GPU-based simulation framework, the central question
of general applicability remains unanswered. Moreover, this pioneering work suffers
from the absence of general-purpose programming environments such as CUDA.

Park et al. [PF10, PF11] extend the previous work by developing a GPU-based event
aggregation and execution scheme based on the concept of approximate time [Fuj99a].
While the proposed event aggregation scheme can indeed generate considerable per-
formance improvements, it results in numerical errors. Although error analysis and
approximation techniques allow for mitigating the amplitude of these numerical er-
rors, this approach is as well not generally applicable.

Finally, Chatterjee et al. [CDB09] propose a fully GPU-based simulator for evaluat-
ing hardware designs on the gate level. In order to make efficient use of the GPU, the
authors introduce a dedicated compilation phase in which the typically monolithic
hardware model is segmented in smaller parallelizable tasks. Nevertheless, this ap-
proach heavily depends on the specifics of hardware logic simulations. In contrast,
our proposed multi-level parallelization scheme is applicable to any discrete event
simulation.

5.4. Multi-level Parallelization on GPUs 127

5.3.2 Efficient Execution of Parameter Studies

Simulation cloning [HF97, HF01, PGM08, PML08] reduces the amount of common
computations across all simulations of a parameter study. Instead of executing a
separate simulation for each parameter set, simulation cloning conducts only a single
simulation which represents all possible execution paths within a parameter study.
To branch into diverging execution paths, the simulation clones its current state at
so-called decision points, i. e., events causing diverging behavior, and subsequently
follows each path separately, but in parallel. As a result, the path segment up to
the decision point is shared among both resulting simulation paths and thus only
computed once. While simulation cloning can significantly reduce the total runtime
of a parameter study, the primary drawback of this technique is its complexity and
overhead due to state saving and maintenance.

5.4 Multi-level Parallelization on GPUs

Based on the previous analysis of the peculiarities of GPUs, we state two key design
requirements for an efficient utilization of GPUs in parallel simulations: Specifically,
the parallel simulation framework has to

i) generate SIMT-compatible workload to accommodate the lockstep execution
paradigm of GPUs, and

ii) hide the latency of memory transfers between host- and GPU-memory.

In order to meet those two design requirements, our proposed solutions employ two
orthogonal levels of parallelism. The first level, external parallelism, exploits the fact
that individual simulations in a parameter study are trivially independent and can
hence execute in parallel. External parallelism thus lays the foundation for an event
aggregation scheme specifically designed for generating SIMT-compatible workload.
The second level of parallelism, internal parallelism, makes use of the observation
that within an individual simulation, groups of events are independent and thus
allow for parallel processing. We exploit internal parallelism to hide the latencies
involved in memory transfers.

Both levels of parallelism are not new in themselves but have been used in paral-
lel simulation frameworks before. Instead, we claim that the combination of both
schemes results in a novel parallelization scheme which unlocks the massively paral-
lel processing power of GPUs for parallel discrete event simulations. The following
sections introduce our approach in greater detail.

5.4.1 SIMT-compatible workload using External Parallelism

In order to meet the first design requirement, our GPU-based parallelization frame-
work needs to generate SIMT-compatible workload to match the lockstep execution
paradigm of GPUs. To this end, we design an event aggregation scheme that ex-
ploits external parallelism, i. e., the fact that parameter studies comprise multiple
independent and self-contained simulations.

128 5. Multi-level Parallelism on GPUs

5.4.1.1 Event Aggregation Scheme

Before introducing the event aggregation scheme, we state the underlying assump-
tions and illustrate the idea by means of an example.

Observations and Intuition

Our event aggregation scheme rests on the following observations: In a parameter
study, each individual simulation takes as input a specific combination of parameter
values. Moreover, each combination of values is typically executed several times
with different random seeds to obtain statistical confidence in the computed results.
We argue that despite different parameterization, the individual simulations of a
parameter study behave similarly since they encompass the same logic, i. e., model
implementation. In particular, we expect the order of events in a simulation run
to be similar across the individual simulations of a parameter study. In contrast,
since each simulation uses a different set of parameters, the state of each simulation
model in terms of the values of local variables differs.

To gain a better insight into this reasoning, consider an example of a parameter
study investigating the throughput in a wireless network under varying channel con-
ditions. In the underlying system model, a simple traffic generator triggers wireless
transmissions of network packets according to a fixed rate. Since these transmissions
are an inherent property of the simulation model, all simulations of the parameter
study comprise send events and corresponding receive events which compute the re-
ceived power. While computing the received power utilizes the same algorithms, i. e.,
code, at each receiver (e. g., pathloss, shadowing, and fading), the concrete value of
the received power depends on the local state of the simulation, i. e., the distance
between sender and receiver as well as the seed of the random number generators.

Hence, the fundamental idea of the event aggregation scheme is to execute the same
event (handler) over a batch of different local states of each simulation.

Algorithm

Following the design of widely used simulators [HRFR06, Var01], we assume that
simulation models exhibit a modular structure. Hence, we define the event state
to be the values of the local data structures and variables of the module where the
event takes place. Moreover, recall from Section 2.1.1 that the event type is uniquely
defined by the specific event handler called when executing an event. Based on these
assumptions and definitions, our approach towards generating SIMT-compatible
workload for GPUs is as follows:

Given a parameter study consisting of multiple individual simulations, our scheme
executes all these simulations concurrently in a round-based fashion. In each round,
it first dequeues from all simulations the event with the lowest timestamp. Since the
simulations supposedly exhibit the same behavior, these events are of the same event
type. In contrast to the event type, the local state of each event is different. Hence,
we aggregate the relevant states in a single batch (e. g., array) of event states and
transfer this batch from host- to GPU-memory. Subsequently, the GPU executes the

5.4. Multi-level Parallelization on GPUs 129

simulation 2

simulation n

simulation 1

…

event queue

event queue

event queue

t

t

t

Host GPU

b
atch p

ro
cessin

g

E
xt

er
n

al
 P

ar
al

le
lis

m
:

in
d

ep
en

d
en

t
si

m
ul

at
io

ns

m
em

ory

…

instr.
d

isp
atch

instr.
d

isp
atch

instr.
d

isp
atch

…

…

Figure 5.2 By exploiting the external parallelism between independent simulations of a pa-
rameter study, our event aggregation scheme creates SIMT-compatible workload
for the streaming multi-processors of the GPU.

corresponding event handler on the array of event states. As a result, we generate
SIMT-compatible workload by executing one event handler (i. e., a single set of
instructions) on a batch of aggregated event states (i. e., multiple data) by means of
multiple threads.

Figure 5.2 gives a schematic overview of the event aggregation scheme. In this
simplified example, all n simulations behave identically, resulting in the same order
and type of events in the corresponding event queues. Hence, by removing the first
event from every event queue and aggregating the associated states in a batch, the
streaming processors of the GPU can modify multiple event states while executing
the same instructions.

5.4.1.2 Handling Divergent Simulations

Of course, we cannot expect all simulations of a parameter study to behave identi-
cally in all scenarios. Instead, it is more realistic to assume a divergent event ordering
among simulations. Revisiting the example of a wireless transmission, a successful
packet transmission triggers an ACK while an unsuccessful transmission causes a
NACK. In this case, the first events of the simulations subsequently differ and the
resulting event batches contain different event types in an arbitrary sequence.

The order of event states within a batch implicitly defines a mapping of events to
the threads of a multi-processor, i. e., a warp. For instance, the first 32 events in
the batch map to the threads of the first warp, the next 32 events to the threads
of the second warp and so on. Hence, divergent simulations result in heteroge-
neous mappings in which the threads of a warp execute different event types (see
Figure 5.3(a)). Consequently, the performance decreases due to the divergent code
paths of the different event handlers.

130 5. Multi-level Parallelism on GPUs

GPU

memory

…

instr.
dispatch

instr.
dispatch

instr.
dispatch

(a) Unsorted batch of events.

GPU

memory

…

instr.
dispatch

instr.
dispatch

instr.
dispatch

(b) Sorted batch of events.

GPU

memory

…

instr.
dispatch

instr.
dispatch

instr.
dispatch

(c) Sorted and padded batch of events.

Figure 5.3 Diverging simulations cause a heterogeneous mapping of events to streaming
multi-processors. By sorting and padding the batch of events, we create a ho-
mogeneous mapping that allows for truly parallel event processing.

To cope with divergent simulations, we exploit the fact that threads in different
warps, i. e., running on separate multi-processors, can independently execute differ-
ing instructions. Thus, our approach is to identify and group events that exhibit
identical runtime behavior, i. e., whose code paths do not diverge. Given such groups
of equivalent events, mapping each group to independent multi-processors avoids
blocking of threads and enables fully parallel execution. In the following, we group
events on the basis of their type, i. e., event handler, to ensure a common code base
and propose two simple mapping techniques: i) sorting and ii) padding.

Sorting

Our first mapping technique just sorts the events within a batch according to
their type. The reasoning behind this simple approach is that a sorted batch of
events increases the chances for assigning fewer different event types to one multi-
processor. However, it cannot guarantee a clean 1-to-n mapping of event types to
multi-processors and it generally performs poorly for highly heterogeneous event
batches. Even in case of only few different event types, the simple sorting scheme
cannot align the events in a batch to the boundaries of the multi-processors. Thus a
group of events of the same type might span over two multi-processors despite actu-
ally fitting onto a single one. The light gray events shown in Figure 5.3(b) illustrate
this case by mapping both to the middle and the right streaming multi-processor.

5.4. Multi-level Parallelization on GPUs 131

simulation

event queue

e2

e3

e1

t

Host GPU

Internal Parallelism:
independent events within each simulation

stag
e 2: p

ro
cessin

g

independent
events

m
em

ory

instr.
d

isp
atch

…

…

Figure 5.4 Internal parallelism utilizes independent events within a simulation to establish a
three-staged pipeline for event execution: i) copy event states to GPU memory,
ii) execute events, iii) copy event states back to host memory.

Padding

A straightforward extension of the sorting scheme is event padding. This scheme ex-
plicitly introduces gaps in a sorted event batch to achieve a clean 1-to-n mapping of
event types to multi-processors and to align event types to the boundaries of multi-
processors (see Figure 5.3(c)). However, despite achieving a homogeneous mapping,
the gaps effectively decrease the utilization of GPU resources since the processors
mapping to a gap cannot perform useful work. Hence, padding involves a trade-off
between a decrease in resource utilization and a performance gain through homo-
geneous event-to-processor mappings. We analyze the performance of both simple
mapping schemes in Section 5.7.1.1 and show that they indeed are able to miti-
gate the performance impact of divergent simulations. Future efforts nevertheless
will focus on the development and implementation of more sophisticated mapping
algorithms.

Both padding and sorting algorithms aim for generating SIMT-compatible workload
on the level of event types. Yet, even if executing a single event type, i. e., event
handler, the different states may still cause divergent code paths inside the corre-
sponding event handlers (recall the conditional branch in Algorithm 4). However,
since this kind of divergence depends on the parameterization, we believe that its
performance impact is on average less severe than that of entirely different event
types. Nevertheless, future mapping algorithms may take a more fine grained view
on the event batch, for instance by incorporating the actual state of the events.

5.4.2 Hiding Memory Latencies using Internal Parallelism

In addition to external parallelism, we exploit internal parallelism to hide the adverse
performance effects of memory transfers to and from the GPU. Internal parallelism
relies on the fact that groups of events within a simulation model are independent.
For instance, events computing the received power of a single wireless transmission
at different receivers are independent of each other. Note that such independent

132 5. Multi-level Parallelism on GPUs

stage 1
copy host  GPU

stage 2
execute events

stage 3
copy GPU  host

round n

round n+1

round n+2

Figure 5.5 Example of three batches of independent events traversing the three pipeline
stages.

events are the foundation of traditional PDES techniques [Fuj90a, Per06b], includ-
ing parallel expanded event simulation and probabilistic synchronization presented
before. However, in contrast to those approaches, we do not intend to just execute
such events concurrently. Instead, we aim for a pipelined handling of independent
events in order to hide memory transfer latencies.

Specifically, we decompose the event handling process into three steps and assign
each step to a pipeline stage:

Stage 1: Copy event states from main- to GPU-memory.
Stage 2: Execute events on the GPU and update event states.
Stage 3: Copy modified event states from GPU- to main-memory.

Figure 5.4 illustrates the integration of the three pipeline stages in the event handling
architecture.

To hide the memory transfer latency involved in stage 1 and 3, the pipeline executes
all three stages concurrently and in a round based manner. In each round, every stage
handles exactly one batch of independent events before the pipeline forwards the
batches to the next stage. Figure 5.5 shows an example of this pipelined execution
scheme by means of three independent batches.

In order to fully utilize the pipeline, i. e., to fill all three stages, the simulation
framework needs to identify at least three batches of independent events. If fewer
than three batches are available at any point in time during a simulation run, the
pipeline stalls, resulting in empty stages and wasted processing resources. Hence, it is
imperative to extract a maximum degree of internal parallelism from the simulation
model. We thus utilize the parallel expanded event simulation paradigm for the
reasons outlined in Chapter 3. Specifically, a simulation contributes an event to the
batch of states collected in the current round if this particular event overlaps with
all events of the two previous rounds.

5.5 Discussion

As the focus of this thesis is on workstation and server multi-processor systems,
it is imperative to consider GPUs in order to fully explore the design space of
multi-threaded simulation. Despite the challenges of integrating GPUs in parallel
event simulation, we argue that these efforts are worth the investment: Currently,

5.5. Discussion 133

GPUs merely act as potent co-processors, yet their architecture foreshadows the
massively parallel hardware of future multi-processor systems. Hence, our analysis
of the applicability of GPUs and our proposed multi-level parallelization scheme
constitute a fundamental building block of this thesis and towards future massively
parallel simulation.

5.5.1 Integration of Parallel Expanded Event Simulation

Internal parallelism utilizes conservative synchronization to identify independent
events within each simulation. As briefly sketched in Section 5.4.2, we propose
using the parallel expanded event simulation paradigm which conservatively analyzes
the overlapping of expanded events. Hence, multi-level parallelization integrates
seamlessly into this thesis.

Conceptually, nevertheless, multi-level parallelization can utilize any conservative
event synchronization scheme. In fact, we can hide the actual synchronization
scheme behind a simplistic getNextEvent-interface: Via this interface, the multi-level
event scheduler queries the synchronization scheme for the next available indepen-
dent event at the beginning of each new round. If no such event exists, the interface
returns an empty event. Moreover, by keeping track of the number of queries and the
events returned upon the three previous requests, the interface notifies the synchro-
nization algorithm about the completion of offloaded events. The latter is important
since the synchronization scheme needs to know when offloaded events that block
dependent events from parallel execution are complete. Only after completely exe-
cuting such blocking events, formerly dependent events become eligible for parallel
processing.

Summarizing, multi-level parallelization is orthogonal to parallel expanded event
simulation. Yet, both schemes complement each other, thereby integrating seam-
lessly within the context of this thesis.

5.5.2 Restrictions of the Programming Environment

In contrast to parallel expanded event simulation, we do not integrate GPU-based
multi-level parallelization with Horizon. This design decision is rooted in restric-
tions of the programming environment supported by GPUs. In order to foster general
purpose programming on GPUs, vendor-specific programming environments (e. g.,
Nvidia Compute Unified Device Architecture (CUDA) and AMD Accelerated Paral-
lel Processing (APP)) and vendor-independent programming environments (e. g.,
OpenCL) abstract from low-level shader programming. Instead, they strive to
achieve a (transparent) mapping of GPU functionality to general-purpose program-
ming languages such as C (OpenCL) and C++ (Nvidia CUDA and AMD APP).
However, due to differences in the processing model and performance considerations,
only a limited set of the features provided by the host programming languages are
available on the GPU.

OMNeT++ and Horizon make heavy use of C++ polymorphism, i. e., virtual func-
tions, to incorporate user defined simulation models in a general simulation engine.

134 5. Multi-level Parallelism on GPUs

However, none of the currently available programming environments fully support
C++ polymorphism. As a result, combining the proposed multi-level parallelization
scheme with Horizon would require extensive re-engineering of Horizon and ex-
isting simulation models. Instead, we designed and implemented a proof-of-concept
prototype that is heavily inspired by the modeling concepts of Horizon, but is
otherwise kept simple and compatible with GPU capabilities. Section 5.6 discusses
the implementation of this prototype in further detail.

5.5.3 Limited GPU-Memory

A further limitation of our approach is the relatively small size of onboard memory
which restricts the number and the size of event states that can reside in GPU-
memory. For instance, assuming a parameter study with 500 simulations and a 3-
staged pipeline, a maximum of 1500 events states need to be stored in GPU-memory.
Assuming furthermore a typical consumer GPU with 1.5GB of memory, each event
state may not be larger than 1MB, if the GPU does not reserve memory for the
graphical user interface. However, we argue that this limitation does not impose
severe restrictions on model developers in practice: First, the growing popularity of
general purpose computing on GPUs will likely foster a strong increase in the size of
GPU memory. Second, in our prototype, the event state contains only data which is
transferred between the modules of a simulation model and which is typically limited
in size. Third, vendor specific memory management features, such as NVIDIA’s
Unified Virtual Addressing (UVA), expose the entire host memory to the GPU at
the price of increased access latency. We detail on the last two aspects in the next
section.

5.6 Implementation

We developed a proof-of-concept prototype to investigate the viability of our multi-
level parallelization scheme. Due to the reasons outlined in Section 5.5.2, the pro-
totype does not directly build on Horizon, yet its architecture and the modular
structure of its simulation models are inspired by OMNeT++ [Var01] and Hori-
zon. We select Nvidia’s CUDA as GPU programming and execution environment
because it belongs to the most sophisticated frameworks available at present. The
next sections briefly cover the fundamental properties of our prototype implemen-
tation.

5.6.1 Programming Interface

The prototype consists of a CPU-bound simulation core and GPU-located simu-
lation models, i. e., event handlers implemented as GPU kernels. Despite being a
prototype, ease of use from a modeler’s perspective is an explicit design goal of our
implementation. This includes particularly the programming interface and model-
ing API. Hence, our framework exports a typical discrete event simulation interface
that abstracts from GPU-programming and even CUDA. It primarily provides access

5.6. Implementation 135

to random number generators and allows for creating and scheduling new events.
Hence, the model implementation effort is comparable to typical CPU-based simu-
lators such as OMNeT++ or ns-3 [HRFR06] as the interface hides the complexities
of GPU programming. For instance, to avoid the considerable overhead of dynamic
memory allocation on the GPU, the framework creates new events in a specific buffer
provided by each event state. After copying the event state and the buffer back to
host memory, newly created events are removed from the buffer and enqueued in
the event queues of the corresponding simulations.

5.6.2 Memory Management

The prototype implementation utilizes NVIDIA’s Unified Virtual Addressing (UVA).
UVA provides a single virtual address space spanning host- and GPU-memory,
thereby significantly increasing the amount of memory available to the GPU. The
drawback of UVA however is a severe performance penalty when accessing data in
unified memory from the GPU as it needs to be fetched from host memory. Hence,
to achieve a compromise between fast yet limited GPU memory and slow yet large
virtual memory, we restrict the event state to comprise solely the “payload” of events:

Analogously to OMNeT++ and Horizon, simulation models for our prototype at-
tach payload data to events to exchange information between modules. For instance,
an event modeling the reception of a wireless transmission might carry as payload
the size of the received data, the modulation, and the ID of the sender. In con-
trast, data structures local to the module handling this event, e. g., a list of received
transmissions, remain in UVA and can hence become (arbitrarily) large.

Since modules typically transfer only a fraction of their local state, the event payload
is much smaller than the local state of a module. As a result, this approach decreases
memory utilization on the GPU and minimizes the size of memory transfers between
host- and GPU-memory. Moreover, it gives model designers explicit control over the
event state size and the corresponding memory transfer overhead.

5.6.3 Pipelined Execution

We utilize multiple CUDA streams to implement pipelined event execution. Each
stream is part of a simulation driver which performs four tasks in a round based
fashion. In each round, a simulation driver

i) collects one event from each simulation,
ii) writes the corresponding event states to its CUDA stream,
iii) launches the event handling kernel, and
iv) reads modified event states from the CUDA stream.

By interleaving the rounds of multiple simulation drivers, our implementation estab-
lishes a pipelined event execution. In the current prototype, these CPU-based tasks
execute sequentially in a single thread. We leave the extension of the prototype to
a multi-threaded architecture for future work and focus instead on the GPU-related
challenges.

136 5. Multi-level Parallelism on GPUs

Parameter Value(s)
Simulations (external parallelism) 2i, i ∈ {0, 1, 3, 5, 7, 9, 10, 11, 12, 13, 14}
Modules (internal parallelism) 1, 2, 5, 10
Events per simulation 300
Event state size 72 bytes
LCG iterations per event 20000

Table 5.1 Synthetic benchmark parameters.

5.7 Evaluation

This section evaluates our multi-level parallelization scheme based on our proof-of-
concept implementation. We analyze the performance properties of the paralleliza-
tion scheme in terms of the performance impact of divergent simulations and the
event handling overhead. In order to precisely control these parameters, the evalua-
tion employs a set of synthetic benchmarks we introduce separately in the following
sections. Moreover, to get an impression of the potential performance gain in a real-
world scenario, we complement the synthetic benchmarks with a case study based
on an abstract wireless mesh-network model.

The benchmarking platform is a workstation PC providing an AMD Phenom II X4
945 4-core CPU with 8 GB of main memory and one NVIDIA GeForce GTX 470
GPU accommodating 1.28GB of memory. The simulation framework runs on a
64 bit version of Ubuntu 10.10 with NVIDIA’s proprietary drivers in version 290.10.
Finally, we enable full optimizations using the NVIDIA CUDA compiler, nvcc, in ver-
sion 4.0 and g++ in version 4.4. Furthermore, each data point shows the mean and
the 99% confidence intervals computed over 30 independent repetitions. Neverthe-
less, the confidence intervals are barely visible due to highly consistent performance
results.

5.7.1 Synthetic Benchmarks

We utilize two different synthetic benchmarks to investigate i) the impact of diver-
gent simulations on parallelization performance, and ii) the event handling overhead
of our framework. The following sections introduce both benchmarks in detail and
analyze their respective results.

5.7.1.1 Divergent Simulations

The first synthetic benchmark analyzes the performance impact of divergent simula-
tions. It particularly investigates the effectiveness of the simple sorting and padding
algorithms outlined in Section 5.4.1.

5.7. Evaluation 137

100 101 102 103 104

Number of Simulations in the Parameter Study

100

101

102

103

104

105

106

Pe
rfo

rm
an

ce
 [e

ve
nt

s/
se

c]

 1x Internal Parallelism, 1 event type
 2x Internal Parallelism, 1 event type
 5x Internal Parallelism, 1 event type
 10x Internal Parallelism, 1 event type

Figure 5.6 Optimal (baseline) simulation performance using non-divergent and computa-
tionally complex simulations. The performance increases linearly along both
levels of parallelism until the GPU is saturated for large numbers of simulations.

Methodology

The performance impact of divergent simulations is most pronounced for compu-
tationally complex events which hide all other performance effects and overheads.
Hence, the benchmark uses Linear Congruential Generators (LCGs) for generating
one pseudo random number per event. All modules of the benchmark model encap-
sulate one LCG and continuously re-schedule a single local event in fixed intervals.
To create divergent behavior, the benchmark employs different LCGs per module,
each one resulting in a different code path and hence event type. Internal paral-
lelism is controlled via the number of modules in the model as we consider events
with equal timestamps on different modules to be independent. The size of the
event state is 72 bytes which includes the minimum set of meta-data required by
the framework for handling events. Moreover, each simulation comprises a static
workload by processing a fixed number of events. We measure the performance in
terms of the average number of events processed per second. Table 5.1 shows an
overview of the set of parameters and their values.

Convergent Simulations

In order to quantify the performance impact of divergent simulations, we first need to
determine the maximal achievable performance in a non-divergent scenario. Hence,
Figure 5.6 shows the performance over varying degrees of internal and external
parallelism if only one event type is present in the simulations. Focusing on an
internal parallelism of 1, we observe a perfect linear performance increase up to
2048 simulations (note both logarithmic scales). Hence, this computationally dense
benchmark indeed constitutes an ideal case for the massively parallel processing
power of the GPU. Beyond 2048 simulations however, the GPU is fully saturated,
achieving no additional speedup.

In addition, the performance increases linearly with the level of internal parallelism
from a 2-fold speedup up to a 10-fold speedup. Considering the three stages of the
event state transfer pipeline, one would expect a maximum performance increase by
a factor of 3. However, the reason for the additional speedup is that our benchmarks

138 5. Multi-level Parallelism on GPUs

100 101 102 103 104

Number of Simulations in Parameter Study

100

101

102

103

104

105

Pe
rfo

rm
an

ce
 [e

ve
nt

s/
se

c]

 1x Internal Parallelism, 1 event type
 1x Internal Parallelism, 4 event types
 10x Internal Parallelism, 1 event type
 10x Internal Parallelism, 4 event types

Figure 5.7 Comparison of non-divergent (dashed lines) with 4-way divergent (solid lines)
simulations w/o sorting and padding of events. The simulation performance
drops by a factor of 4 due to divergent code paths.

utilize ten concurrent simulation drivers, each copying a batch of event states, exe-
cuting the events on the GPU, and copying the event states back. Hence, according
to the level of internal parallelism, the benchmark keeps 1, 2, 5, or 10 of the sim-
ulation drivers busy. A larger number of simulation drivers in turn handle more
concurrent events, thereby achieving a better utilization of the hardware resources,
i. e., the PCIe bus and the GPU. In particular the GPU employs hardware based
thread scheduling that schedules multiple threads (sequentially) onto one streaming
processor in order to hide I/O and instruction fetch latencies. As a result, the GPU
performs best if the number of threads, i. e., the total number of events, exceeds the
number of physical streaming processors.

Divergent Simulations

After establishing the optimal performance as baseline, we now consider 4-times
divergent simulations. To this end, the modules of each individual simulation select
one out of four different LCGs such that each batch of event states comprises exactly
four different event types. Figure 5.7 compares the baseline performance (dashed
lines) with the performance of a 4-times divergent configuration (solid lines) without
applying sorting or padding.

We clearly observe a consistent 4-fold performance decrease over all values of internal
and external parallelism larger than 2. For two simulations, the batch of events
comprises only two events for parallel processing. Hence, the drop in performance
is limited to a factor of 2. This confirms the expected adverse effects of divergent
simulations. Moreover, the fact that the performance drops exactly by a factor of
4 for more than 2048 simulations shows that in this benchmark the GPU is the
performance limiting component and not the PCIe bus.

Divergent Simulations using Sorting

Sorting the events before execution yields the performance results shown in Fig-
ure 5.8. Similarly to the non-sorted and non-padded case discussed before, a 4-fold
decrease in simulation performance remains for up to 64 simulations. However, start-
ing with 128 simulations, the performance of the divergent benchmark matches the

5.7. Evaluation 139

100 101 102 103 104

Number of Simulations in Parameter Study

100

101

102

103

104

105

Pe
rfo

rm
an

ce
 [e

ve
nt

s/
se

c]

 1x Internal Parallelism, 1 event type
 1x Internal Parallelism, 4 event types
 10x Internal Parallelism, 1 event type
 10x Internal Parallelism, 4 event types

Figure 5.8 Comparison of non-divergent (dashed lines) with 4-times divergent (solid lines)
simulations with sorting but w/o padding of events. For more than 128 simula-
tions, sorting achieves a perfect mapping of events to multi-processors, resulting
in a perfect performance recovery.

ideal performance of the convergent one. We ascribe this to the fact that the par-
ticular GPU used in the benchmarks utilizes a warp size of 32 threads. Therefore,
in case of 4 different event types and 128 simulations, the simple sorting scheme
coincidentally achieves an ideal mapping of exactly 32 identical event types to each
warp. The same also holds true for the remaining data points as the number of
simulations is always divisible by 32 without remainder. However, we deliberately
chose these particular measurement points to demonstrate this characteristic of the
sorting algorithm. In real scenarios, such a perfect mapping constitutes an ideal case
which occurs only rarely. Hence, sorting is not sufficient to mitigate the performance
loss inflicted by divergent simulations.

Divergent Simulations using Padding

A more promising approach to realizing an ideal mapping of event types to warps
is to pad the sorted batch of event states as sketched in Section 5.4.1. Applying
this technique to the 4-times divergent benchmark yields the results presented in
Figure 5.9. The figure clearly illustrates that for an internal parallelism of 1, diver-
gent and convergent simulations achieve the same performance. Furthermore, for
an internal parallelism of 10, the results show a significant improvement over sort-
ing, however, the performance still remains slightly below the non-divergent case.
This is due to the additional computational overhead caused by the padding algo-
rithm as well as a less efficient utilization of the multi-processors due to gaps in the
event batch. We particularly blame the latter for the performance drop at 8 and 32
simulations.

Summary

This benchmark confirms the negative influence of divergent simulations on par-
allel simulation performance. It shows moreover that padding the batch of event
states successfully mitigates the performance impact while the effectiveness of sort-
ing highly depends on the particular scenario.

140 5. Multi-level Parallelism on GPUs

100 101 102 103 104

Number of Simulations in Parameter Study

100

101

102

103

104

105

Pe
rfo

rm
an

ce
 [e

ve
nt

s/
se

c]

 1x Internal Parallelism, 1 event type
 1x Internal Parallelism, 4 event types
 10x Internal Parallelism, 1 event type
 10x Internal Parallelism, 4 event types

Figure 5.9 Comparison of non-divergent (dashed lines) with 4-times divergent (solid lines)
simulations with sorting and padding of events. Padding achieves a significant
performance recovery but causes a noticeable runtime overhead.

5.7.1.2 Overhead

The overhead of our prototype implementation comprises three distinct components:

i) The event handling overhead of all event management operations in the frame-
work, such as creating, deleting, enqueueing, and dequeueing of events,

ii) the event mapping overhead imposed by the sorting or padding algorithms,
and

iii) the memory transfer overhead caused by copying event states between host-
and GPU-memory over the PCIe bus.

All three kinds of overhead are tightly coupled and influence each other. In this
section, we analyze their interaction and their performance impact in detail.

Methodology

To measure the runtime overhead, we use a synthetic benchmark model which does
not perform any computations in the event handlers apart from continuously re-
scheduling new events. As a result, the runtime of this simulation model constitutes
a direct measure for the total overhead. In contrast to the benchmark model used in
the previous section, this model employs a fixed workload for the whole parameter
study. Since we use the runtime as a measure for the overhead, the workload has to
remain constant when changing the benchmark parameters of interest. Thus, each
parameter study executes a fixed number of events, which are equally distributed
across all simulations and modules within the simulations.

Based on this model, we analyze the overhead under consideration of the degree of
internal and external parallelism, the event mapping algorithm, and the event state
size.

Event Handling Overhead

This benchmark measures the event handling overhead for different degrees of in-
ternal and external parallelism. As in the previous benchmark, we vary the level of

5.7. Evaluation 141

100 101 102 103 104

Number of Simulations

0

20

40

60

80

100

To
ta

l R
un

tim
e

[s
]

 1x Internal Parallelism, 1 event type
 2x Internal Parallelism, 1 event type
 5x Internal Parallelism, 1 event type
 10x Internal Parallelism, 1 event type

Figure 5.10 Runtime of the synthetic overhead benchmark indicating that the event han-
dling overhead is effectively parallelized with an increasing number of simu-
lations. Up to 4096 simulations, a higher degree of internal parallelism fur-
thermore reduces the overhead due to memory latency hiding. Beyond 4096
simulations the GPU is overloaded.

external parallelism between 1 and 16384 and set the level of internal parallelism
to 1, 2, 5 and 10. We furthermore fix the event state size to 72 bytes and use the
padding-based event mapping algorithm since it delivers the best mapping results.
Nevertheless, since the events in this benchmark only re-schedule themselves using
the same API function call, all events are of the same type. Consequently, the
benchmark exhibits perfectly convergent simulations.

Figure 5.10 shows the resulting total runtimes of the benchmarks. Focusing on
the results obtained for an internal parallelism of 1, we observe a nearly linear
decrease in the total runtime when increasing the number of simulations from 1
to 128 (note the logarithmic scale of the x-axis). From these results we conclude
that the GPU is actually under-utilized in this scenario: By increasing the size of
the event batch (due to increasing external parallelism) the overhead is distributed
across more events, thereby improving the GPU utilization and hence the efficiency.
For 128 to 1024 simulations, the runtime converges towards a stable value which
constitutes the best compromise between the number of events and the overhead.
Finally, the runtime increases again for more than 2048 simulations, indicating that
the GPU is overloaded.

Analyzing the results for the other values of internal parallelism indicates a similar
behavior, yet even lower runtimes up to 1024 simulations. This demonstrates that
the pipelining approach using multiple simulation drivers successfully hides mem-
ory transfer latencies and improves the utilization of the GPU. Nevertheless, the
figure also reveals that the runtime increases again for more than 2048 simulations.
Specifically, the larger the internal parallelism, the longer it takes to complete the
benchmark, thus resulting in an inversion of the performance results. In these bench-
mark scenarios the GPU is in fact over-saturated due to contention on the CUDA
streams.

Event Mapping Overhead

A type of overhead specific to our framework is caused by the event mapping algo-
rithms. Figure 5.11 compares the runtimes of the benchmark model using i) neither

142 5. Multi-level Parallelism on GPUs

100 101 102 103 104

Number of Simulations

0

20

40

60

80

100

To
ta

l R
un

tim
e

[s
]

No sorting nor padding, 10x Internal Parallelism
Sorting, no padding, 10x Internal Parallelism
Sorting and Padding, 10x Internal Parallelism

Figure 5.11 Comparison of the overhead introduced by sorting and padding of events.
Padding adds a considerable overhead over sorting which in turn adds only
a negligible overhead.

sorting nor padding, ii) only sorting, iii) sorting and padding. We again vary the de-
gree of external parallelism between 1 and 16384, yet we use a static level of internal
parallelism of 10 and an event state size of 72 bytes.

As expected, applying neither sorting nor padding results in the lowest runtimes, i. e.,
overhead. In comparison, sorting adds only slightly more overhead. This overhead,
however, grows with an increasing number of simulations as the sorting operation
becomes more complex. In contrast, the simple padding algorithm adds a consider-
able overhead, in particular for more than 1024 simulations. Nevertheless, as shown
in Section 5.7.1.1, the performance gain of the padding scheme clearly outweighs the
additional overhead.

Memory Transfer Overhead

Lastly, we investigate the influence of the event state size on the event handling
overhead. To this end, we fix the number of simulations to 512 and stepwise increase
the event state size from the minimum of 72 bytes to 26000 bytes. Figure 5.12 plots
the resulting total runtimes for different values of internal parallelism. In general,
we notice that the runtimes increase roughly linearly with the size of the event state.
Hence, the event state size constitutes a crucial performance factor, urging model
developers to keep the event state small.

Analyzing the lower two curves of the figure in detail, we observe that 2-fold internal
parallelism performs slightly better than 1x internal parallelism. In contrast to this
expected result, the figure illustrates that an internal parallelism of 10 causes a longer
runtime than 5-fold internal parallelism which in turns takes more runtime than 1x
and 2x internal parallelism. We ascribe this to the fact that with an increasing
degree of internal parallelism, more CUDA streams concurrently read from and
write to GPU memory, therefore causing more load and more contention on the
PCIe bus. Hence, 2-fold internal parallelism achieves the best resource utilization
in this benchmark, whereas 1x internal parallel under-utilizes the PCIe bus and 5x
as well as 10x internal parallelization over-utilize the bus.

5.7. Evaluation 143

5000 10000 15000 20000 25000
Event State Size [byte]

0
5

10
15
20
25
30
35
40
45

To
ta

l R
un

tim
e

[s
]

 1x Internal Parallelism, 1 event type
 2x Internal Parallelism, 1 event type
 5x Internal Parallelism, 1 event type
 10x Internal Parallelism, 1 event type

Figure 5.12 Comparison of the overhead of different event sizes and levels of internal par-
allelism. The overhead grows with the size of the events as well as the internal
parallelism due to an increased load on the PCIe bus. The number of simula-
tions is fixed to 512 in this benchmark.

Note however that the events of this benchmark model are by design computational
insignificant. Hence, they do not consume enough runtime to outweigh the memory
transfer overhead inherent to large event states.

Summary

Our evaluation shows that with increasing internal and external parallelism the event
handling overhead per event decreases due to better resource utilization. Regarding
the event mapping overhead, our benchmark furthermore confirms that padding
induces a larger overhead than sorting, which in turn adds only a small overhead.
Considering the results of the previous section, however, the performance gain due
to padding outweighs the additional overhead. Finally, we observe that the size of
the event states significantly influences performance, in particular due to contention
on the PCIe bus for large event sizes.

5.7.2 Case Study

In addition to the synthetic benchmarks, we conduct a case study by means of an
abstract wireless mesh-network model to get an impression of the user-perceived
performance gain.

Methodology

The model simulates wireless transmissions based on an accurate and hence com-
putationally complex channel and error model. For the sake of brevity, we do not
introduce these models here but refer to Puñal et al. [PEG11] for detailed infor-
mation. Moreover, the simulated network comprises 5 nodes connected in a fully
meshed topology, i. e., every transmission is received by all nodes in the network as
shown in Figure 5.13.

Each node consists of three separate modules: i) An application module which
broadcasts packets at a fixed sending rate. ii) A MAC module which implements

144 5. Multi-level Parallelism on GPUs

node2

APP
• new_packet
• recv_packet

MAC
• send_packet
• recv_ACK
• recv_NACK

PHY
• send_packet
• recv_packet

node5

node4

node3

node1

Figure 5.13 Illustration of the fully meshed topology of the abstract wireless network model.
Furthermore, the right part shows the three components of a network node and
the seven distinct event types occurring at those components.

the error model and a rudimentary MAC protocol: Each receiver sends an ACK
or a NACK, depending on whether or not a transmission was successfully received.
Note that sending different replies is a source of divergent behavior. iii) A PHY
module which models the effects of the wireless channel. The model furthermore
abstracts from the network and transport layer and disregards interference. Since
events traverse the modules up and down the protocol stack, a total of 7 different
event types occur in the model (see Figure 5.13). Furthermore, due to the fully
meshed topology, every transmission is received by 4 nodes, resulting an internal
parallelism of at least 4. Finally, the event size is 268 bytes to accommodate all
meta-data needed for each transmission.

In order to create a simple parameter study, the model provides two independent pa-
rameters. First, the application module allows for configuring the packet generation
rate. Second, the fading model of the wireless channel considers different movement
speeds in order to model a dynamic environment. We vary the former between 1,
5, and 10 packets/s and the latter between 1, 5, and 10m/s. In addition, every
combination of parameter values is repeated 30 times with different seeds to obtain
statistical confidence. Altogether, the parameter study comprises 270 simulation
runs.

To allow for an accurate comparison between classic CPU-bound simulation and
the multi-level parallelization scheme, the case study utilizes two versions of the
wireless network model: A CPU-based version which builds on OMNeT++ and a
GPU-based variant using our prototype simulation framework. We explicitly kept
the implementation of both models as similar as possible despite the architectural
differences of the underlying simulation frameworks. Hence, this case study aims
to provide a rough impression of the potential performance gain while keeping the
limitations of this particular comparison in mind. Moreover, the CPU benchmark
does not utilize internal parallelization but solely employs external parallelism. We
argue that any internal parallelization scheme using n CPUs is inherently slower
than n independent sequential simulations because of additional synchronization
overhead. Given the 4-core CPU of our benchmarking machine, we execute the
CPU-bound parameter study in groups of 4 parallel simulations.

5.8. Conclusions 145

CPU
(complete study, 4 cores)

CPU
(single run)

GPU
(complete study)

0
100
200
300
400
500
600
700

Ru
nt

im
e

[s
]

657.45

9.69 26.45

Figure 5.14 Runtime of the complete parameter study on a 4-core CPU (left) and on a GPU
(right), as well as the runtime of a single CPU-bound parameter run (mid-
dle). GPU-assisted multi-level parallelization achieves a 25-fold performance
improvement over CPU-based execution.

Results

Figure 5.14 compares the resulting total runtime of the CPU-based parameter study
(left bar) with the total runtime of the GPU-based parameter study (right bar).
The figure shows that our GPU-assisted approach significantly outperforms the tra-
ditional CPU-bound implementation by a factor of more than 25. This confirms
the ability of our approach to enable a time-efficient execution of parameter stud-
ies. Moreover, the bar in the middle of Figure 5.14 illustrates the runtime of a
single simulation on one CPU-core. It hence represents a distributed execution of
the parameter study on 270 individual CPUs. This large-scale setup achieves an
additional 2.7-fold performance increase over our single GPU-based implementa-
tion. However, the cost of purchasing and maintaining computers with a total of
270 CPUs by far exceed the cost of a single computer providing one consumer level
graphics card. Thus, our approach constitutes a truly cost-efficient alternative to
purely CPU-oriented large scale parallelization.

5.8 Conclusions

This chapter addresses our overarching goal to enable efficient parallel simulation
on multi-processor systems by utilizing GPUs as massively parallel co-processors.
Based on an analysis of the architecture of GPUs and the resulting challenges with
regard to parallel event simulation, we presented a novel parallel discrete event
simulation scheme that enables a cost- and time-efficient execution of large scale pa-
rameter studies. In order to efficiently bridge the substantially different processing
paradigms of GPUs and parallel event simulations, our scheme exploits two levels of
parallelism: i) External parallelism between the inherently independent simulations
of a parameter study, and ii) internal parallelism among the events within each simu-
lation. Building on these types of parallelism, we define an event aggregation scheme
that generates SIMT-compatible workload, and a pipelined event copy scheme that
hides memory transfer latencies.
Multi-level parallelization seamlessly integrates with expanded parallel event sim-
ulation. By utilizing the modeling paradigm underlying parallel expanded event

146 5. Multi-level Parallelism on GPUs

simulation, the multi-level parallelization scheme can efficiently identify indepen-
dent events within a simulation, i. e., extract internal parallelism. As a result, both
schemes successfully complement each other. Based on a proof-of-concept imple-
mentation, we obtained early performance results that underline the viability of the
proposed multi-level parallelization scheme.

Until now, this thesis focused on novel parallelization techniques: Parallel expanded
event simulation constitutes a new modeling paradigm while probabilistic synchro-
nization and multi-level parallelization are event execution and synchronization
schemes. Given a simulation model, all three techniques aim for extracting maxi-
mum performance from the model. However, we have not yet covered the question
whether or not the structure of a particular simulation model is beneficial for par-
allel execution. To answer this question, model developers need to gain a deep
understanding of the execution behavior of a simulation model. Hence, the next
chapter changes the focus from parallelization techniques to a performance analysis
and prediction methodology that provides an insight into the behavior of a parallel
expanded event simulation model.

6
Performance Analysis of Parallel
Expanded Event Simulations

Our work presented in the previous sections as well as the large body of related
efforts [BFBC06, CS05, PVM09] illustrate that parallel simulation can significantly
improve simulation runtimes. Hence, the research community is investigating the
fundamentals of parallel simulation for over two decades [Fuj90a, Nic96, Per06b] by
now. However, parallel simulation is not generally used as evaluation tool in the
networking research community on a day-to-day basis. We ascribe this to the fact
that developing and handling parallel simulations is noticeably more complex than
sequential ones.

Based on this observation, this thesis aims at developing means that foster the wide-
spread use of parallel simulation in the networking research community. In order to
reach this goal, we proposed three contributions in the previous sections:

i) Parallel Expanded Event Simulation as an intuitive modeling paradigm,
ii) Probabilistic Synchronization as self-adapting synchronization scheme, and
iii) Horizon, a simulation framework employing a centralized partitioning- and

loadbalancing-free parallelization architecture.

These approaches intent to reduce the efforts imposed on model developers and
simulation users who want to apply parallel simulation. However, they do not ac-
tively support developers in the process of analyzing and optimizing the parallel
performance of a simulation model or a parallel simulation framework. Hence, this
chapter presents a performance analysis and performance prediction methodology.
Our methodology provides developers of parallel simulation models and frameworks
with an insight into the properties of a parallel simulation in terms of event depen-
dencies and CPU utilization. Analyzing this information allows model developers
to identify and eventually eliminate performance bottlenecks.

The remainder of this chapter first outlines the benefits of analyzing the performance
of parallel simulations in Section 6.1. We then investigate the challenges of finding an

148 6. Performance Analysis of Parallel Expanded Event Simulations

optimal event-to-CPU mapping in Section 6.2. Based on these challenges, Section 6.3
reviews related efforts targeting performance analysis of parallel simulations. After
reviewing the state-of-the art, Section 6.4 presents a formal problem definition of
our optimization problem and the resulting MILP. To mitigate the computational
complexity of this MILP, Section 6.5 describes a trace splitting scheme, proves
its correctness, and outlines relaxations of the MILP which trade off accuracy for
scalability. We then evaluate the accuracy and performance of our scheme and
its optimizations in Section 6.6. Finally, we discuss limitations of our approach in
Section 6.7 and conclude in Section 6.8.

6.1 Motivation

Achieving satisfying parallel performance is a demanding task for both, users and
developers of parallel simulation models and frameworks. We claim that disappoint-
ing parallel performance results from a lack of insight into the behavior and runtime
properties of parallel simulations. Hence, developers and users of parallel simulation
need an accurate and simple-to-use means of identifying, understanding, and elimi-
nating performance issues. By developing a performance analysis methodology, we
intend to provide such as means and thereby foster the wide-spread use of parallel
simulation. In the following, we illustrate three use cases in which the performance
analysis of a parallel simulation model proves beneficial.

Model Development Support

The performance of a simulation model under parallel execution needs to be con-
sidered from the very beginning of the model development process. In general,
developing a parallel simulation model is considerably more complex than creating
an equivalent sequential one. The key contributing factor in this regard is the struc-
ture of a simulation model. In order to provide a parallel workload, i. e., independent
events, a simulation model must be structured in independent components where
such events can take place simultaneously.

This puts a significant burden on developers of parallel simulation models: In addi-
tion to accurately and correctly modeling a complex system – a task which is already
demanding in itself – developers also have to design a model structure that allows
for efficient parallel event execution. The challenge in this process lies in creating a
structure that reflects the simulated system, complies with best practices in software
engineering, and generates adequate CPU utilization.

Moreover, changing the structure of an existing model that delivers poor performance
is tedious and time consuming due to re-validation. As a result, model developers
need to analyze the performance of a model as early as possible in the development
process in order to avoid or identify and eliminate performance bottlenecks.

Efficient Resource Utilization

Analyzing the performance of a parallel simulation model allows for making efficient
use of the available computing resources. Parallel simulation models exhibit a certain

6.1. Motivation 149

0 1 2 3 4 5 6
Simulation Time [s]

CPU 1

CPU 2

e1 e3 e5

e2 e4

(a) FIFO event schedule of Horizon.

0 1 2 3 4 5 6
Simulation Time [s]

CPU 1

CPU 2

e5

e1 e2 e3 e4

(b) Optimal event schedule.

Figure 6.1 Example illustrating the potential differences in the simulation runtime between
Horizon and an optimal event schedule when executing five independent events.
The event scheduler of Horizon does not consider the complexity of events and
assigns events to CPUs in FIFO order, resulting in suboptimal CPU utilization.

degree of parallelism given by the maximum number of events that can be processed
in parallel. Hence, the degree of parallelism is a natural limit for the number of
CPUs that can effectively speed up a parallel simulation run. Increasing the number
of CPUs beyond this threshold only results in the surplus CPUs being idle at any
point in time during a simulation run.

Thus, accurate knowledge of the degree of parallelism allows for maximizing the
utilization of the available CPUs by assigning only as many CPUs to a simulation
run as actually needed. Surplus CPUs can instead be utilized by executing multiple
parallel simulations concurrently. This is particularly useful when conducting a large
number of independent simulation runs as part of a parameter study.

Synchronization and Event Scheduling Performance

Developers of parallel simulation frameworks such as Horizon need to analyze the
performance of the event synchronization and event scheduling algorithms employed
by the framework. Recall that in the context of our work, event synchronization
algorithms identify independent events for parallel processing while event scheduling
algorithms assign independent events to CPUs. However, the knowledge of these
algorithms is limited to the information available to them at runtime, e. g., the
events in the FES, the size of the lookahead, and the current utilization of the CPUs.
They hence do not posses a global view on all events over the entire simulation run,
resulting in suboptimal performance.

To obtain a better understanding of this issue, we illustrate a simple example in
Figure 6.1. Assume the synchronization algorithm has identified five independent
events e1, . . . , e5. Assume furthermore that the event scheduling algorithm assigns
these events to the two available CPUs simply in the order of their IDs, i. e., first e1,
then e2 and so on. Figure 6.1(a) shows the resulting CPU utilization which leaves
CPU 1 idle for 4 time units. The optimal schedule shown in Figure 6.1(b) instead
achieves a better CPU utilization. Considering this result, framework developer
need to know if a different assignment strategy, e. g., earliest-end-time-first (see
Section 7.3.1), achieves a performance closer to the optimum.

Thus, in order to assess the efficiency of synchronization or event scheduling al-
gorithms, framework developers need to know the optimal event schedule under
consideration of event inter-dependencies and the number of available CPUs. The

150 6. Performance Analysis of Parallel Expanded Event Simulations

performance difference between actual synchronization and scheduling algorithms
and the theoretical optimum indicates the remaining potential for optimization.

General Idea

In this chapter, we present a performance analysis methodology [KTGW11, Ten10]
that calculates a lower bound on the simulation runtime for our parallel simulation
framework Horizon [KLG+10]. Given a simulation model implementing paral-
lel expanded event simulation and an arbitrary number of CPUs, the performance
analysis methodology finds an optimal event-to-CPU mapping that minimizes the
simulation runtime.

This mapping problem is NP-complete [Che90, LK78] and is thus not generally
considered by existing performance analysis tools [BT02, JTKG03, Lin92, WSR+92].
We address this complexity issue by modeling the parallelization scheme underlying
parallel expanded event simulation as a Mixed Integer Linear Program (MILP).
As a result, we leave the actual problem of finding an optimal schedule to the
efficient heuristics and algorithms of modern MILP solvers. To further mitigate the
complexity problem, we develop a trace splitting scheme. By applying a divide-and-
conquer strategy, trace splitting significantly reduces the complexity of the MILP
while maintaining the accuracy of the results. Additionally, we introduce relaxations
of the MILP that trade accuracy for scalability.

Our methodology is split in three steps: First, a sequential run of the simulation
model traces the event execution and records the timestamps and processing times
of all events. Second, we feed this trace to the MILP which calculates an optimal
event schedule that minimizes the overall simulation runtime. Third, we are able to
analyze the runtime behavior of the simulation by visualizing the event schedule.

In summary, we make the following contributions in this chapter:

i) We introduce a methodology for analyzing and predicting the runtime perfor-
mance of a parallel simulation model based on integer linear programming.

ii) We present a trace splitting scheme that significantly improves the scalability
of our methodology while maintaining its accuracy. We furthermore prove the
correctness of this optimization.

iii) We discuss relaxations of the MILP which trade accuracy for scalability.

6.2 Problem Analysis

Our goal is to design a performance analysis and prediction tool that provides model
developers with an optimal event schedule that minimizes the simulation runtime on
a given set of CPUs. To this end, the tool needs to precisely reflect the event execu-
tion and synchronization scheme of parallel expanded event simulation in order to
compute a valid schedule. Specifically, it must take into account event dependencies,
the structure of the model, and the available processing resources.

This mapping problem is a special case of the NP-complete parallel machine schedul-
ing problem [Che90, LK78]: Given l (identical) machines and n different jobs, each

6.3. Related Work 151

with processing times pj, j ∈ {1, . . . , n}, the task is to assign each job to a machine,
such that the maximum completion times cj of the events is minimal:

minimize max
j∈{1...n}

cj

Such an assignment is valid if it complies with restrictions on the order of jobs, e. g.,
job i must precede job j, and ensures that each machine processes only one job at
a time.

In our variant of the scheduling problem, the goal is to assign a number of expanded
events with corresponding event durations to a set of CPUs such that the simulation
runtime is minimal. Furthermore, we have to ensure a valid event sequence, i. e., only
overlapping events may be executed in parallel while non-overlapping events have
to be handled in the order of their starting times. Hence, in contrast to the classic
parallel machine scheduling problem our optimization problem has to consider two
time domains per event:

i) the simulated time which defines dependencies among events and
ii) the simulation time which specifies the utilization of the CPUs.

The solution of this scheduling problem yields an upper bound on the speedup one
can expect when executing the given model on l CPUs in comparison to sequential
execution. This bound is tighter and more specific to the model than the trivial
linear speedup bound which predicts an l-fold speedup when utilizing l CPUs. It is
important to note that the resulting minimal runtime is a bound for conservative
synchronization strategies only. An optimistic strategy may successfully parallelize
events that do not overlap and therefore achieve an even better performance [JR91,
SR95].

A widely used technique to solve such optimization problems is integer linear pro-
gramming. The major advantage of applying linear programming is that we can
express a complex optimization problem in a concise mathematical formulation. By
feeding this formulation to an MILP solver, we furthermore leave the problem of
efficiently finding a valid solution to a dedicated tool. This is particularly beneficial
considering the multitude of algorithms and heuristics for solving MILPs proposed
in the literature [Tod02].

6.3 Related Work

This section discusses closely related research efforts regarding performance analysis
of parallel simulations.

6.3.1 Critical Path Analysis

Pioneered by Berry et al. [BJ85], critical path analysis [SR93, YM89] is among the
most widely used performance analysis techniques for parallel simulations. Based
on an event trace of a simulation run, it first constructs the dependency graph
across all events. In this directed acyclic graph, every event is annotated with its

152 6. Performance Analysis of Parallel Expanded Event Simulations

(a) The extended sequence chart shows the suc-
cessor relationship and the duration of ex-
panded events.

(b) The bottleneck analysis of the extended
sequence chart visualizes the critical path
through a simulation run.

Figure 6.2 The extended sequence chart illustrates the runtime behavior of an ex-
panded event simulation and supports model developers in identifying per-
formance bottlenecks.

processing time and connected to another event if a dependency relationship exists
among them. Then, in a second step, critical path analysis calculates the path(s)
with the largest sum of processing times through the graph. These paths determine
the minimum processing time of a parallel simulation run, assuming an unbounded
number of processing units. In contrast, our methodology explicitly considers the
available processing resources and thus allows predicting the simulation performance
for a given set of CPUs.
Wieland et al. [WSR+92] introduce an alternative construction algorithm for the
critical path that does not require the construction of a dependency graph. Instead,
the critical path is determined recursively based on the notion of the earliest possible
completion time (called Earliest Processing Time (EPT)) of an event e which is again
given by the EPT of all predecessors of e plus the processing time of e. However,
this revised algorithm also does not consider a specific set of processing units, but
again relies on an unbounded number of CPUs.
In order to apply critical path analysis to a limited set of CPUs, Lin et al. [Lin92]
combine critical path analysis with three selected event scheduling policies. For a
given set of virtual CPUs, each policy defines a specific event-to-CPU assignment
strategy and allows predicting the performance of a parallel simulation when ex-
ecuted under the selected scheduling policy. Although this approach allows for a
much more realistic performance prediction, it relies on online event scheduling al-
gorithms. In general, those algorithms cannot determine the optimal event schedule
due to their limited scope at runtime and thus are not able to find the true lower
bound on the simulation runtime as achieved by our methodology. As a result, our
approach provides a reference against which online event scheduling algorithms can
be compared.
Finally, in the context of our research efforts, we developed an extension of the
OMNeT++ sequence chart tool based on critical path analysis [KTGW12]. The
sequence chart tool [VH08] is a part of OMNeT++’s Integrated Development En-
vironment (IDE) and visualizes the scheduling relations among events using an
event trace. We extend the sequence chart to i) consider expanded events (see
Figure 6.2(a)), and ii) visualize performance bottlenecks (see Figure 6.2(b)). For

6.3. Related Work 153

the latter, the tool first computes the critical path through the traced simulation
run. Based on the critical path, it determines for each event on the path a “bottle-
neck factor” that incorporates the number of overlapping events and their processing
complexities. The extended sequence chart finally visualizes the bottleneck factor
for each event on the critical path by means of a color scheme. However, while our
tool provides valuable information about performance bottlenecks in a simulation
model, it does not take the CPU utilization into account.

6.3.2 Synchronization Overhead Estimation

In contrast to critical path analysis, OSim [SF87] by Swope et al. utilizes an event
trace to optimally synchronize an actual parallel simulation. The goal of OSim
is to reconstruct event dependencies from an event trace at runtime and thereby
eliminate the need for actual synchronization protocols such as the Null Message
Algorithm (NMA) [CM79]. As a result, the parallel simulation blocks solely on
data dependencies instead of synchronization related overhead, such as handling of
null-messages. Hence, OSim allows to identify the overhead of a particular synchro-
nization protocol.

Bagrodia et al. refine the approach of OSim by defining an efficiency metric for
synchronization protocols on top of the Ideal Simulation Protocol (ISP) [BT02].
Based on this metric, the authors analyze the overhead of four selected conservative
synchronization protocols. However, since OSim and ISP require to actually execute
the simulation in parallel, their performance prediction is restricted to available
hardware and hence cannot predict the performance for an arbitrary number of
CPUs.

6.3.3 Resource-based Performance Analyzers

Juhasz et al. [JTKG03] present a trace-based performance analyzer for distributed
simulations that explicitly takes the characteristics of the simulation hardware into
account. In addition to the relative performance of the CPUs, it considers the
latency and the topology of the underlying computing network as well as the over-
head of selected synchronization protocols. Moreover, the performance analyzer
calculates event-to-CPU mappings according to specific assignment policies such as
“random”, “modulo”, and “optimal load-balancing”. However, since the analyzer
targets partition-based parallel simulations instead of centralized approaches, an
event can only be assigned to the one CPU onto which its “parent” logical process
was mapped. Consequently, the analyzer can only exploit parallelism across logical
processes and not across all events as in a centralized parallelization framework such
as Horizon.

Finally, Liu et al. [LNPP99] illustrate an alternative approach for predicting the
performance of a parallel simulator. Based on detailed overhead measurements of
the core components of the parallel simulator and a selected model, the authors
conduct an educated “back-of-the-envelope” estimation of the parallel simulation
runtime. Despite the simplicity of the methodology, the authors report surprisingly
accurate results. However, their prediction relies on an equally distributed workload

154 6. Performance Analysis of Parallel Expanded Event Simulations

module m

event e

1. Trace Simulation

Output

execution time

CPU ID

Trace

event ID

completion time

module ID

starting time

processing time

2. Solve MILP 3. Analyze Output

wall clock time

Figure 6.3 Overview of the three steps involved in the performance analysis methodology:
1. tracing of a simulation run, 2. solving the MILP to obtain an optimal event
schedule, and 3. analyzing the output which consists of a CPU assignment and
wall-clock starting time.

across the CPUs and hence cannot handle load asymmetries which naturally exist
in complex simulation models.

6.4 Performance Analysis Methodology

In this section, we introduce the general concept of our performance analysis method-
ology and present the formal definition of the MILP. Deriving an optimal event
schedule is a three-step process as illustrated in Figure 6.3: The first step involves
executing a given simulation model sequentially while tracing runtime performance
information. In a second step, the MILP takes this information as input and sub-
sequently computes an optimal event schedule. The final third step comprises ana-
lyzing the output of the MILP, for instance by visualizing the CPU utilization.

6.4.1 Tracing Simulation Runtime Data

In order to compute an optimal event schedule, the MILP requires detailed knowl-
edge of the runtime behavior of a parallel simulation. To this end, the simulation
framework collects the following information for each event during a sequential sim-
ulation run:

• the unique event ID,
• the starting time in simulated time,
• the completion time in simulated time,
• the processing time in simulation time, and
• the ID of the module where the event is executed.

While the purpose of the event ID and the processing time is straightforward, the
MILP uses the starting and completion times to determine independent events ac-
cording to parallel expanded event simulation. Furthermore, to ensure data con-
sistency within the simulation model, Horizon permits only one active worker per

6.4. Performance Analysis Methodology 155

module at a time. Hence, the module ID is required to distinguish truly independent
events from those which need to be executed sequentially on the same module.
Due to the centralized architecture of Horizon, the event scheduler can easily
extract this information at runtime and periodically write it to a trace file on disk.
Still, special care needs to be taken to prevent undesired side effects of the tracing
process on the accuracy of the measurements such as overestimated event processing
times due to an increased event handling overhead.

6.4.2 Problem Definition

In this section we give a formal definition of the event scheduling problem. First, we
define the input parameters of the MILP and introduce the nomenclature used in the
following sections. For completeness and convenience, we also replicate notations
already defined in Section 3. We furthermore characterize a valid solution of the
scheduling problem and analyze its properties.

Definition 15 (Input to Scheduling Problem)
The input of an event scheduling problem is a 6-tuple (E,C, ts, tc, tp,m) with:
• E = {e1 . . . en} ⊂ N represents the set of events.
• C = {c1 . . . cl} ⊂ N represents the set of CPUs.
• ts : E → R+, e 7→ starting time of e.
• tc : E → R+, e 7→ completion time of e.
• tp : E → R+, e 7→ event processing time of e.
• m : E → N, e 7→module ID of e.

We assume without loss of generality that events are ordered with respect to increas-
ing starting times: For e1, ee ∈ E with e1 < e2 it holds ts(e1) ≤ ts(e2). Further, two
events e1, e2 ∈ E overlap, denoted by e1 ‖ e2, if and only if the duration intervals
intersect:

e1 ‖ e2 ⇔ [ts(e1); tc(e1)] ∩ [ts(e2); tc(e2)] 6= ∅.
Finally, it is important to differentiate between the duration td(e) = tc(e)− ts(e) ≥ 0
of e in simulated time and the processing time tp(e) of e in simulation time. The
event duration specifies the interval an event spans in the simulation whereas the
processing time is the wall-clock time it takes to handle the event on a CPU.
After defining the input of the scheduling problem, we can now specify its output.
The solution to a given input of the scheduling problem is a schedule which i)
assigns events to CPUs, and ii) specifies a valid order of events on all CPUs under
consideration of the dependencies between events. We formally define a schedule as
follows:

Definition 16 (Event Schedule)
For an input (E,C, ts, tc, tp,m), a schedule S is a tuple of mappings (x, y) with:
• x : E → C, e 7→ c.
x(e) assigns event e to CPU c for execution.
• y : E → R≥0, e 7→ t.
y(e) denotes the point t in simulation time (wall clock time) at which the execution
of e starts on the CPU assigned by x(e).

156 6. Performance Analysis of Parallel Expanded Event Simulations

The output of the scheduling problem includes the execution starting time y(e) for
all events e to model delays in the event execution on a CPU. Such delays occur
due to dependencies between events and result in “gaps” in the CPU utilization,
i. e., periods in which a CPU is idle and does not process an event (see Figure 6.8
in Section 6.6.2).

Furthermore, we define a feasible schedule as follows:

Definition 17 (Feasible Event Schedule)
For an input (E,C, ts, tc, tp,m), a schedule S = (x, y) is feasible if and only if:

a) For all d, e ∈ E with x(d) = x(e) or m(d) = m(e):

y(d) ≥ y(e) + tp(e) or y(e) ≥ y(d) + tp(d)

“Events mapped to the same CPU and events of the same module are
processed sequentially.”

b) For all d, e ∈ E with tc(d) < ts(e):

y(d) + tp(d) ≤ y(e)

“Non-overlapping events are processed sequentially.”

A trivial feasible schedule assigns all events to a single CPU for sequential processing
according to increasing starting times. Our goal, however, is to find an optimal fea-
sible schedule that minimizes the simulation runtime under consideration of multiple
CPUs. Hence, we define an optimal schedule as follows:

Definition 18 (Optimal Event Schedule)
For an input (E,C, ts, tc, tp,m) a schedule S = (x, y) is optimal if and only if:

a) S is feasible
b) For all feasible schedules S ′ = (x′, y′):

R := max
e∈E

(y(e) + tp(e)) ≤ max
e′∈E

(y′(e′) + tp(e′))

Definition 18 states that an optimal schedule is feasible and its overall runtime R is
less than or equal to the runtime of any other feasible schedule for the given input.

6.4.3 Mixed Integer Linear Program Formulation

We now formulate a MILP that takes an input (E,C, ts, tc, tp,m) and computes an
optimal schedule S for that input. In order to model the schedule S = (x, y), we
define three sets of variables:

• xe,c ∈ {0, 1}, e ∈ E, c ∈ C, with xe,c = 1 if event e is assigned to CPU c and
xe,c = 0 otherwise.
• ye ∈ R+, e ∈ E, representing the starting time of the execution of event e in

simulation time.

6.4. Performance Analysis Methodology 157

• zd,e ∈ {0, 1}, d, e ∈ E, d < e, d ‖ e, with zd,e = 1 if the execution of event d
starts before event e in wall clock time and zd,e = 0 if the execution of e starts
before or equal to d. The purpose of these variables is to model the fact that
two independent events may begin execution in any order. To find a solution
however, the MILP has to decide on an arbitrary order represented by the
value of these variables.

Additionally, we define the variable r which holds the total runtime of the schedule.
Furthermore, M is a large positive constant used to conditionally enable or disable
constraints depending on the randomly selected assignment of the zd,e variables.
Based on these variables, the MILP is defined as follows:

Objective function:
minimize r

subject to the following constraints:

∀e ∈ E: ∑
c∈C

xe,c = 1 (6.1)

ye + tp(e) ≤ r (6.2)

∀c ∈ C, ∀d, e ∈ E with d < e and d ‖ e and m(d) 6= m(e):
ye − yd + (1− zd,e) ·M ≥ (xd,c + xe,c − 1) · tp(d) (6.3)

yd − ye + zd,e ·M ≥ (xd,c + xe,c − 1) · tp(e) (6.4)

∀c ∈ C, ∀d, e ∈ E with d < e and d ‖ e and m(d) = m(e):
ye − yd + (1− zd,e) ·M ≥ tp(d) (6.5)

yd − ye + zd,e ·M ≥ tp(e) (6.6)

∀d, e ∈ E with tc(d) < ts(e):
yd + tp(d) ≤ ye (6.7)

Constraint 6.1 ensures that each event is assigned to exactly one CPU. Additionally,
Constraint 6.2 guarantees that r is an upper bound on the runtime of the schedule.
Constraints 6.3 to 6.6 enforce the first condition of a feasible schedule: When two
events are mapped to the same CPU, they are executed sequentially with the order
depending on the value of the variables zd,e (Constraints 6.3 and 6.4). Furthermore,
events on the same module are executed sequentially, again with the order depending
on the value of zd,e (Constraints 6.5 and 6.6). Specifically, if zd,e is randomly set to 0
by the MILP solver, the terms including the large constant M in Constraint 6.3 and
Constraint 6.5 lift the left part of the constraint to a very large value. As a result,
these constraints are trivially true and hence have no impact on the solution of the
MILP, i. e., they are disabled. The converse is consequently true for Constraints 6.4

158 6. Performance Analysis of Parallel Expanded Event Simulations

200 250 300 350 400 450 500
Number of events per trace

101

102

103

104

Ru
nt

im
e

of
 M

IL
P

So
lv

er
 [s

]

MILP solver

Figure 6.4 The event scheduling problem exhibits an exponential runtime complexity.

and 6.6. Finally, Constraint 6.7 models the second condition for feasibility: Events
that do not overlap are executed sequentially.

In combination with the minimization goal of the objective function, the aforemen-
tioned constraints enforce the optimality of the schedule. The values of xe,c and ye
in the optimal solution define the optimal schedule S = (x, y) in the canonic way:
y(e) := ye, x(e) := c if xe,c = 1, and R := r

6.5 Scalability Improvements

We rely on the heuristics and algorithms [Tod02] of modern MILP solvers to compute
a (nearly) optimal solution for the MILP. However, since the scheduling problem
is NP-complete, solving the MILP typically exhibits exponential complexity in the
size of the input, i. e., the length of the event trace. Consequently, the scheduling
problem becomes computationally intractable already for short event trances which
comprise just a few hundred events.

Figure 6.4 illustrates this fact visually. Without going into details, the figure shows
the runtime of the MILP solver for event traces of a simple queueing network model
used in our evaluation (see Section 6.6.1). The (super-)linearly increasing curve
over a logarithmic scale confirms the exponential runtime complexity of the MILP
for the given input, hence rendering the methodology infeasible in practice. In
this section, we present approaches to counteract the complexity problem with and
without sacrificing the accuracy, i. e., optimality, of the results.

6.5.1 Splitting Schedules

The first approach towards increasing the scalability of the performance analysis
methodology aims at reducing the input size of the MILP while at the same time
retaining the correctness of the resulting schedule. It is based on the observation that
the sequence of expanded events generally contains regions of non-overlapping events
as indicated by the dashed vertical lines in Figure 6.5. Since parallel expanded event
simulation executes only overlapping events in parallel, the event scheduler blocks
until all events preceding a non-overlapping region have been processed. Hence,
these regions act as natural synchronization points in a parallel simulation run.

6.5. Scalability Improvements 159

t [simulated time]

e2

e1 e3 e5

e4

e8

e9 e6 e7

E1 E2 E3

Figure 6.5 The sequence of expanded events in a simulation might contain regions of non-
overlapping events which allow for splitting the event trace.

It thus suffices to compute an optimal schedule for the event sequence preceding
the synchronization point and the event sequence succeeding it. We exploit this
property by dividing the full event trace into a set of significantly smaller sub-traces
before feeding those to the MILP. We then iteratively reconstruct a valid schedule
for the full trace from the set of sub-schedules. Specifically, the total predicted
runtime of the simulation is given by the sum of the runtimes calculated for each
sub-trace without loss of accuracy. Due to the smaller input size and the exponential
complexity of the scheduling problem, finding solutions for the sum of sub-traces is
considerably less complex than for the full event trace.

In the following, we prove that the combined schedule is indeed an optimal schedule
for the full scheduling problem. To this end, we first define the notion of a split.

Definition 19 (Split of an Event Trace)
For an input (E,C, ts, tc, tp,m) the tuple (E1, E2) is called a split of E = {e1 . . . en} if
the following holds:

a) E1 = {e1 . . . ei} and E2 = {ei+1 . . . en} for some i with 1 ≤ i < n
b) For all d ∈ E1 and e ∈ E2 : tc(d) < ts(e)

Based on this definition, we now formulate the key theorem.

Theorem 2
Given an input (E,C, ts, tc, tp,m), with a split (E1, E2) of E and optimal schedules
Sj = (xj, yj) on (Ej, C, ts|Ej , tc|Ej , tp|Ej ,m|Ej), j ∈ {1, 2}, then S = (x, y) with

x(e) := xj(e) for e ∈ Ej

y(e) :=
 y1(e) for e ∈ E1

max
d∈E1

y1(d) + tp(d) + y2(e) for e ∈ E2

is an optimal schedule on (E,C, ts, tc, tp,m).

By iterative application of this theorem, we can compose an optimal schedule for
the entire trace from the individual splits. In order to prove the optimality of the
combined schedule, we first need to show its feasibility.

Lemma 4
Given an input (E,C, ts, tc, tp,m), with a split (E1, E2) of E and feasible schedules
Sj = (xj, yj) on (Ej, C, ts|Ej , tc|Ej , tp|Ej ,m|Ej), j ∈ {1, 2}, then S = (x, y) as defined
in Theorem 2 is a feasible schedule for (E,C, ts, tc, tp,m).

160 6. Performance Analysis of Parallel Expanded Event Simulations

Proof. We prove the two conditions of feasibility for the combined schedule S.
Definition 17 a): For d, e ∈ E, let x(d) = x(e) or m(d) = m(e). Since S1 and S2 are
feasible, the cases d, e ∈ E1 and d, e ∈ E2 are fulfilled by definition. Hence, we only
have to consider d ∈ E1, e ∈ E2:

y(d) + tp(d) = y1(d) + tp(d)
≤max

e′∈E1
y1(e′) + tp(e′)

≤max
e′∈E1

y1(e′) + tp(e′) + y2(e)

= y(e). (*)

Definition 17 b): Again, we only have to consider d ∈ E1, e ∈ E2 since S1 and S2
are feasible. Because (E1, E2) is a split of E, it follows tc(d) < ts(e). Finally, from
(*) follows Definition 17 b).

We can now prove Theorem 2:

Proof. We show that the combined schedule S fulfills the two conditions of optimal-
ity.
Definition 18 a): Follows directly from Lemma 4.
Definition 18 b): The runtime of the combined schedule is

R = max
e∈E

y(e) + tp(e)
(*)= max

e∈E2
y(e) + tp(e)

= max
e∈E2

max
d∈E1

y1(d) + tp(d) + y2(e) + tp(e)

=
(

max
d∈E1

y1(d) + tp(d)
)

+
(

max
e∈E2

y2(e) + tp(e)
)

= R1 +R2

Proof by contradiction: Assume there exists a feasible schedule S ′ = (x′, y′) with
R′ = maxe∈E y′(e) + tp(e) < R. Because S ′ has to first compute all events from
E1 before starting to compute events from E2 (or else S ′ would not be feasible
(Definition 17 b)), it takes at least R1 to finish the computation of E1 since S1 is
optimal. After that, S ′ needs at least R2 to finish the computation of E2 since S2 is
optimal as well. Therefore, it follows R′ ≥ R1 +R2 = R. Contradiction.

Concluding, splitting an event trace and calculating the total runtime from the
resulting sub-problems constitutes a valid means of improving the scalability of our
performance analysis scheme. We demonstrate the effectiveness of this optimization
in Section 6.6 and discuss limitations in Section 6.7.

6.5.2 Eliminating Events with Insignificant Processing Times

A further approach to reducing the input size of the MILP focuses on eliminating
events of very low computational complexity from the event trace. It bases on the
observation that the event processing times in a simulation model may span several

6.5. Scalability Improvements 161

orders of magnitude as shown in Figure 3.13 in Section 3.4.4.4. As a result, long
running events can completely dominate short running events in terms of the total
simulation runtime. In contrast, every event in the input to the MILP increases
the complexity of finding a solution, independent of its processing time. We thus
conclude that events with very short processing times have only a marginal impact
on the overall simulation runtime while at the same time contributing equally to the
complexity of the MILP.

By deleting all events with processing times below a threshold from the event trace,
the complexity of solving the MILP decreases. At the same time, the error intro-
duced by ignoring events remains within predictable bounds. Specifically, we can
derive the maximum error of the computed runtime from the set D ⊂ E of dropped
events, the number of CPUs |C|, and the runtime rd ∈ R≥0 calculated over the
remaining events:

Assuming that all dropped events can be equally distributed among all CPUs, the
lower bound r̃ for the actual runtime r is

r̃ = rd + 1
|C|
·
∑
d∈D

tp(d).

If instead all dropped events need to be executed sequentially because of mutual
dependencies, the maximum error εr̃ of r̃ is

εr̃ = |C| − 1
|C|

·
∑
d∈D

tp(d).

6.5.3 Relaxations

In addition to reducing the size of the input to the MILP, we can additionally
improve its scalability by relaxing its constraints at the price of less accurate results.
In the following, we discuss two different relaxations.

6.5.3.1 Relaxation 1: Overloading CPUs

The first relaxation replaces Constraints 6.3 and 6.4, which enforce that each CPU
executes only one event at a time, with a single less strict formulation:

∀c ∈ C :
∑
e∈E

(xe,c · tp(e)) ≤ r

“The sum of the processing times of all events e assigned to CPU c is a
lower bound for the runtime r.”

In contrast to requiring that a CPU must not be overloaded at any point in time,
i. e., not concurrently handling more than one event, the relaxed constraint allows
such an overloading of CPUs. This relaxation thus computes runtimes which are too
low. However, such overload situations occur only if more independent events than
CPUs are available. If, in contrast, the number of independent events is smaller than
the number of CPUs, some CPUs remain idle (see Figure 6.8), thereby compensating

162 6. Performance Analysis of Parallel Expanded Event Simulations

for a potential previous overloading. Hence, this relaxation effectively specifies that
a CPU must not be overloaded on average over the entire runtime r.
This introduces an interesting side effect in combination with the trace splitting
scheme. When applying the relaxed MILP to a split trace, the average load as-
signment is enforced on each sub-trace instead of the entire trace. As a result, r
becomes more precise with an increasing number of splits. In terms of complexity,
the relaxation defines only one constraint for each CPU instead of one for each pair
of overlapping events and each CPU. It thus considerably reduces the size of the
integer linear program while still retaining a reasonable lower bound on the overall
simulation runtime.

6.5.3.2 Relaxation 2: Disregarding CPUs

The second relaxation removes Constraints 6.1, 6.3 and 6.4 from the MILP. It
thus does not consider CPUs anymore, but focuses solely on event dependencies.
As a result, the predicted simulation runtime is a lower bound on the simulation
runtime given an unbounded number of CPUs. Hence, this relaxation corresponds
to a mathematical formulation of the critical path analysis [BJ85].
The results of the relaxed linear program provide information on the maximal degree
of parallelism in the model. To this end, we extract from the output of the MILP
solver the maximum number of events that execute in parallel, i. e., whose intervals
of execution time intersect:

pmax := max (|{e, e′ ∈ E|[y(e); y(e) + tp(e)] ∩ [y(e′); y(e′) + tp(e′)] 6= ∅}|)
From pmax, we can derive an upper bound on the number of useful CPUs. In fact,
extracting the maximal degree of parallelism from an event trace does not neces-
sarily require solving a integer linear program. Instead, one can easily extract the
maximum number of overlapping events from the trace in linear time by traversing
the trace sequentially. However, the complexity of the relaxed linear program is
small (see Section 6.6.3) and the declarative way of specifying a linear program is
convenient.
Concluding, by means of trace splitting, event dropping, and by applying relaxations,
the complexity of the MILP reduces significantly – with and without loss of accuracy.
We evaluate the exact impact of our scalability optimizations on the accuracy of the
results in the next section.

6.6 Evaluation

In the following sections, we evaluate accuracy, complexity, and performance of the
runtime analysis scheme and its optimizations. To this end, we first introduce the
evaluation methodology before presenting the actual evaluation results.

6.6.1 Methodology

Our evaluation comprises two components: i) An evaluation model, and ii) an im-
plementation of the MILP. We now describe each component in detail.

6.6. Evaluation 163

servers switches

ta
nd

em
s

…

…

…

…

…

Figure 6.6 Structure of the closed queueing network utilized in the evaluation. The servers
continuously process and forward incoming tasks. Each switch distributes in-
coming tasks randomly to the tandem queues.

6.6.1.1 Evaluation Model

For simplicity and controllability of the workload, we base the evaluation of our
performance analysis methodology on a model of a closed queueing network as de-
picted in Figure 6.6. The network consists of tandem queues, each composed of a
chain of servers and a switch. Initially, each server creates a task with a Time To
Live (TTL) value and sends it to its neighboring server. Subsequently, the servers
continuously process incoming tasks with an exponentially distributed service time,
decrement the TTL of the task, and forward the task again. Once the TTL of a
task reaches 0, it is discarded. Furthermore, a switch dispatches incoming tasks to
one of the tandem queues in a uniformly distributed manner. All the links in the
network exhibit a static propagation delay. In order to confront the integer linear
program with a wide range of event processing times, handling a task involves a
dummy computation of uniformly distributed length. The simulation ends when no
tasks remain in the network. Table 6.1 summarizes the exact parameters used in
the evaluation.

6.6.1.2 Implementation and Setup

We use an extended implementation of Horizon based on OMNeT++ 3.3 [Var01].
The modifications of Horizon mainly target the central event scheduler and com-
prise the necessary functionality to create an event trace during sequential execution.

The mixed integer linear program is implemented using Zimpl v3.1.0 (Zuse Institute
Mathematical Programming Language) [Koc11]. The Zimpl compiler translates the
description of the MILP and a given event trace into a format suitable for the IBM
ILOG CPLEX v12.4 MILP solver used in this evaluation. All measurements were
conducted on two 6-core AMD Opteron 2431 CPUs using 32GB of RAM and running
a 64-bit Ubuntu 9.10.

164 6. Performance Analysis of Parallel Expanded Event Simulations

Parameter Value(s)
Number of tandems 10
Number of servers per tandem 7
Link delay 1.5 s
Service mean time / event duration exponential, mean 0.1 s
Event processing time uniform, 0 - 0.3 s
Time-to-live per task 23

Table 6.1 Parameterization of the closed queueing network.

6.6.2 Accuracy

We assess the prediction accuracy of the MILP and its relaxations by comparing the
estimated runtimes against measurements of the actual simulation runtimes. To this
end, we first establish ground truth by executing the evaluation model in parallel
on different numbers of CPUs, ranging from 2 up to 6. Since we are only interested
in analyzing the parallel runtime performance, we omit sequential execution. For
each number of CPUs, we then apply the MILP, Relaxation 1, and Relaxation 2
to a previously collected event trace. Furthermore, because of the regular behavior
of the simulation model, we do not expect changes in the runtime behavior of the
simulation over time. Hence, we restrict the TTL of each task to 23, resulting in
a relatively short trace of about 1600 events. For all three versions of the linear
program, the MILP solver computes a solution within at least 0.1% optimality. See
Section 6.6.3 for a detailed analysis of the runtime of the MILP solver.

Figure 6.7 compares the measured runtimes of Horizon to the runtimes predicted
by the MILP and its relaxations. The figure clearly illustrates that the runtimes
of Horizon exceed all predicted runtimes. At first, we focus on the differences
between Horizon and the MILP.

6.6.2.1 MILP

The MILP accurately models the parallel expanded event simulation scheme and
allows for computing an optimal event schedule that minimizes the simulation run-
time. As expected, Horizon does not match the minimal runtime, but requires
roughly 8% longer runtimes. We argue that two factors contribute to this difference
in performance: i) The performance prediction methodology assumes an optimal
simulation framework without event handling overhead, and ii) Horizon is unable
to achieve an optimal event schedule.

Event Handling Overhead: The event trace contains only pure event processing
times and disregards the event handling overhead of the event scheduler, i. e.,
dequeueing an event, checking its overlapping, and offloading it to a worker
thread. As a result, the predicted runtime is optimal in the sense that an
optimal simulation framework imposes no such event handling overhead. In
contrast, since the tracing component measures the execution time of the event

6.6. Evaluation 165

2 3 4 5 6
Number of CPUs

70

80

90

100

110

120

130

Es
tim

at
ed

 S
im

ul
at

io
n

Ru
nt

im
e

[s
]

Horizon
MILP
Relaxation 1, split trace
Relaxation 1
Relaxation 2

Figure 6.7 Comparison of the predicted simulation runtimes computed by the MILP and
its relaxations with the actual runtime of Horizon. We only focus on parallel
runtime performance and hence omit sequential execution.

handlers, the event handling overhead encountered by workers, e. g., creation
and deletion of event, enqueueing events in the FES, is included in the mea-
surements. This enables framework developers to asses the performance im-
pact of the core of the simulation framework, i. e., the event scheduler and its
synchronization algorithm.
Recalling the evaluation results presented in Section 3.5.5.3, the optimized
event handling overhead of Horizon is about 1.5 µs per event. We deduce
from this that the combined event handling overhead for processing 1600 events
is at maximum 2-3ms. This overhead, however, is negligible in comparison to
the event processing times which average at 0.15 s and the total runtime of the
simulation which ranges between 85 s and 125 s. Thus, we conclude that the
event handling overhead of Horizon certainly contributes to the difference in
performance, yet its impact is insignificant.

Event Schedule: The second contributing factor to the performance difference be-
tween Horizon and the predicted runtime is that Horizon is not able to
distribute parallel events optimally to CPUs. To back up this claim, we com-
pare the first 24 events of the event schedule generated by Horizon to the
optimal schedule computed by the MILP in Figure 6.8. The figures show that
the optimal schedule indeed achieves a better CPU utilization, resulting in a
shorter runtime.
We identify three primary reasons for this result:

i) First, the event scheduler does not consider the processing times of the
events but merely identifies independent events based on their duration.
The processing time, however, determines the workload an event imposes
on a CPU, and hence the CPU utilization.

ii) In its current implementation, the centralized event scheduler offloads
events in First In First Out (FIFO) order. It may instead achieve a
better performance by first collecting the set of parallelizable events, i. e.,
all overlapping events, and then analyzing this sets, e. g., in terms of the
processing times, in order to achieve a better CPU utilization.

iii) Even if considering the set of parallelizable events and the correspond-
ing processing times, the event scheduler of Horizon has to make its

166 6. Performance Analysis of Parallel Expanded Event Simulations

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Simulation Time [s]

CPU 1
CPU 2
CPU 3

(a) Schedule used by the scheduler of Horizon.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Simulation Time [s]

CPU 1
CPU 2
CPU 3

(b) Optimal schedule.

Figure 6.8 Comparison of the schedule used by Horizon with an optimal schedule for the
first 24 events of the evaluation trace.

decisions at runtime. Hence, it has no global knowledge of the entire sim-
ulation run as opposed to the MILP which computes an optimal schedule
for the complete event trace. In particular, at any point in time during
a simulation run, the event scheduler of Horizon can only incorporate
those events in its scheduling decision which are in the future event set of
the simulation. As a result, a runtime event scheduler can only approxi-
mate an optimal event schedule.

Motivated by this analysis, a next logical step is to enhance the event scheduler
of Horizon. Hence, we outline a scheduling algorithm that considers the
completion time of expanded events in Section 7.3.1 as future work.

6.6.2.2 Relaxations

Revisiting Figure 6.7, we observe that both relaxations compute runtime bounds
which deviate noticeably from the optimal schedule. Since these relaxations allow
overloading of CPUs (Relaxation 1) or do not at all take CPUs into account (Re-
laxation 2), the resulting runtime bounds are too low. However, as pointed out
in Section 6.5.3, Relaxation 1 increases in accuracy when used in conjunction with
the trace splitting scheme. Figure 6.7 indicates that in the evaluation scenario at
hand, it indeed achieves better results which are closer to the optimal schedule when
applied to split traces.

Finally, because the solution of Relaxation 2 is independent of the number of CPUs,
it only provides information on the maximum degree of parallelism in the simulation
under investigation. In terms of accuracy it is hence equivalent to the critical path
analysis.

6.6.3 Scalability

In the following, we evaluate the performance improvements gained by the trace
splitting scheme and the relaxations of the MILP.

6.6. Evaluation 167

200 400 600 800 1000 1200 1400 1600
Number of events per trace

0

5

10

15

20

Nu
m

be
r o

f s
pl

its
 p

er
 tr

ac
e Number of splits per trace

Figure 6.9 Number of splits generated from input traces of specific length. The regular
behavior of the queueing network allows for evenly distributed splits.

6.6.3.1 Input Complexity

The primary goal of the trace splitting scheme is to reduce the input size of the
MILP-solver by dividing the full scheduling problem into a set of sub-problems. We
measure the input size of the MILP-solver in terms of the number of constraints and
the number of variables.

As described in Section 6.6.1.2, we use Zimpl to specify the mixed integer linear
program and compile it into an lp-file which CPLEX accepts as input. During the
compilation process, Zimpl reads the input trace and generates separate constraints
for all events that match a constraint in the Zimpl-specification. For instance, for
two overlapping events e and f in the input trace, Zimpl creates a set of specific
constraints in the lp-file according to all constraints in the Zimpl-specification that
match overlapping events. Hence, the number of constrains in the resulting lp-file is
dependent on the input data and is thus a direct measure of the input complexity
of CPLEX.

Our evaluation bases on event traces ranging from 200 to 1600 events and a fixed
number of 5 CPUs for the scheduling problem. Due to the regular structure of the
queueing network model, the traces are evenly splittable into sub-traces as illustrated
in Figure 6.9. Please note that in the following, results regarding split traces always
refer to the sum over all splits.

Figure 6.10(a) shows the total number of constraints in the resulting lp-files. It
clearly illustrates that the number of constraints increases polynomially for full in-
puts as opposed to a roughly linear growth for split inputs. In general, the number
of constraints in the lp-files is polynomial with respect to the input size due to
constraints which quantify over all combinations of events and CPUs, such as Con-
straints 6.3-6.7. However, the small and equal size of the splits prevents this poly-
nomial characteristic from gaining considerable impact per split. As a result, the
splitting scheme effectively transforms the polynomial growth into a linear growth
over the number of splits. In contrast, Figure 6.10(b) indicates that splitting has no
influence on the number of variables in the lp-files. The reason for this behavior is
that variables are tied to events and CPUs which remain constant over the sum of
all splits (cf. Definition 19).

168 6. Performance Analysis of Parallel Expanded Event Simulations

200 400 600 800 1000 1200 1400 1600
Number of events per trace

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

To
ta

l n
um

be
r o

f c
on

st
ra

in
ts

1e6
Split trace
Full trace

(a) Number of constraints in the mixed integer linear program after running Zimpl.

200 400 600 800 1000 1200 1400 1600
Number of events per trace

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

To
ta

l n
um

be
r o

f v
ar

ia
bl

es

1e4
Split trace
Full trace

(b) Number of variables in the mixed integer linear program after running Zimpl.

Figure 6.10 Size of the mixed integer linear program in terms of the number of constraints
and the number of variables after running Zimpl on full and split input traces
of varying length. The number of CPUs in the scheduling problem is fixed to
5. Results for split traces are the sum over all sub-traces.

6.6.3.2 Runtime

We analyze the performance improvements of the splitting scheme and the relax-
ations by investigating the runtime of the performance analysis scheme. Since our
implementation builds upon Zimpl and CPLEX, the total runtime of the analysis
scheme is the sum of the runtimes of both tools. We measure the runtime of Zimpl
by means of the UNIX tool “time” while CPLEX itself provides detailed information
on the time to solve a given problem.

Figure 6.11 illustrates the runtimes of Zimpl for the MILP, Relaxation 1 (both with
and without splitting), and Relaxation 2 for traces ranging from 200 to 1600 events.
For full event traces, the runtimes for the mixed integer linear program and its
relaxations increase polynomially. This is in line with the results of the previous
section which show a polynomial growth in the number of generated constraints. In
contrast, the runtimes grow roughly linearly for split inputs due to similarly sized
sub-traces.

Furthermore, Figure 6.12 depicts the runtimes of CPLEX. Specifically, as shown in
Figure 6.12(a), the runtimes of CPLEX for solving the MILP dominate the time
demand of all other schemes. This exponential growth confirms the computational

6.6. Evaluation 169

200 400 600 800 1000 1200 1400 16000

50

100

150

200

250

Ru
nt

im
e

of
 Z

im
pl

 [s
] MILP

Relaxation 1
Relaxation 2
MILP, split
Relaxation 1, split

Figure 6.11 Runtimes of Zimpl for traces of ranging from 200 to 1600 events. The MILP
and Relaxations 1 and 2 show a polynomial growth in runtime while the splitting
scheme reduces the growth to a roughly linear one.

200 400 600 800 1000 1200 1400 1600
Number of events per trace

0

2000

4000

6000

8000

10000

Ru
nt

im
e

of
 C

pl
ex

 [s
]

>25200 s

MILP
Relaxation 1
Relaxation 2
MILP, split
Relaxation 1, split

(a) Runtimes of CPLEX including the mixed integer linear program.

200 400 600 800 1000 1200 1400 1600
Number of events per trace

0
100
200
300
400
500
600
700
800
900

Ru
nt

im
e

of
 C

pl
ex

 [s
] Relaxation 1

Relaxation 2
MILP, split
Relaxation 1, split

(b) Runtimes of CPLEX without the runtimes of the mixed integer linear program.

Figure 6.12 Runtimes of the performance analysis schemes for traces of specific length. The
runtimes of CPLEX for the mixed integer linear program without splitting are
omitted for traces of more than 600 events due to excessive runtimes.

complexity of the scheduling problem. In fact, the scheduling problem becomes
computationally intractable for our purposes when the input exceeds 600 events.
Hence, we do not present results for the MILP and such traces.

To allow for a more detailed analysis of the remaining schemes, Figure 6.12(b) zooms
in on their runtimes. The runtimes of Relaxation 1 and 2 follow a similarly shaped
slow polynomial growth. Thus, these relaxed scheduling problems are indeed of
significantly reduced complexity in comparison to the strict MILP. In the case of

170 6. Performance Analysis of Parallel Expanded Event Simulations

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Simulation Time [s]

CPU 1
CPU 2
CPU 3

eb

(a) Schedule used by the scheduler of Horizon.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Simulation Time [s]

CPU 1
CPU 2
CPU 3 eb

(b) Optimal schedule.

Figure 6.13 Comparison of the schedule used by Horizon with an optimal schedule for
the first 24 events of the evaluation trace.

the MILP with split inputs, the graph shows alternating regions of no increase in
runtime and regions of considerable increases. We ascribe this to the fact that the
runtimes of the splitting scheme depend on the size of the splits. For a sequence
of equally sized splits, the runtime demand grows linearly whereas varying sizes
introduce fluctuations as visible in the figure: Analyzing Figure 6.9 reveals that no
splittable regions exist between event 1400 and 1600. As a result, the size of the last
split of the event trace increases. This in turn increases the complexity of finding
a solution for the scheduling problem, resulting in a longer runtime of the solver.
Moreover, due to the exponential complexity of the scheduling problem, an increase
in the input size has a larger impact on the runtime than the polynomial complexity
of Zimpl. Thus, the results for Zimpl in Figure 6.11 do not show similar fluctuations.
Lastly, we observe in Figure 6.12 that the runtime demand of Relaxation 1 for split
traces is barely noticeable at the bottom of the figure. Hence, the combination of
the splitting scheme and Relaxation 1 achieves a scalable runtime performance.

6.6.4 Analyzing Event Schedules for Performance Optimization

Finally, this section briefly illustrates how visualizing event schedules enables devel-
opers to identify performance bottlenecks. To this end, we again compare the first
24 events of the optimal event schedule with the schedule generated by Horizon as
shown in Figure 6.8. For the reader’s convenience, we reproduce the original figure
here as Figure 6.13.

We observe that in both schedules the highlighted event eb blocks progression of
the simulation, i. e., all later events depend on eb according to parallel expanded
event simulation. The event scheduler can thus offload further events only after
the completion of eb. As a result, two of the three CPUs remain idle, rendering
eb a severe performance bottleneck. Hence, visualizing event schedules indicates to
model developers which events constitute performance bottlenecks.

To eliminate such bottlenecks, model developers need to obtain an understanding
of how these events interact with the model. By means of the unique event ID,

6.7. Discussion and Limitations 171

developers can identify these events in the trace and determine their occurrence in
the model, i. e., the module they take place at. Given this insight, analyzing the
event interaction in the context of the model allows for deriving optimizations which
eliminate the apparent performance bottleneck. Such optimizations include:

Restructuring Event Dependencies: eb blocks parallel execution of later events ac-
cording to parallel expanded event simulation if the corresponding event dura-
tions do not overlap. Still, non-overlapping events might still be independent
if they do not influence each other as shown in Figure 4.4(b). If this is the
case, carefully adapting the durations of the involved events such that they
overlap enables parallel execution.

Sub-dividing the Event Workload: The visualized event schedules show that eb is
of non-trivial complexity. Based on this observation, developers may inves-
tigate if the event handler contains parallelizable computations, e. g., inde-
pendent loop iterations. If this is the case, distributing the workload of the
formerly monolithic event across multiple parallel events on separate modules
allows for creating a better CPU utilization. Examples include splitting up a
common channel module into separate modules for each network node or even
channel effect such as fading, pathloss, and shadowing.

Whether or not these optimizations are applicable is of course highly dependent
on the particular simulation model. Thus, visualizing event schedules is a powerful
means of identifying performance bottlenecks. Yet, eliminating these bottlenecks
remains a key challenge for model developers, involving thorough analysis and a
profound understanding of the model at hand.

6.7 Discussion and Limitations

The evaluation of our performance analysis methodology illustrates that the trace
splitting scheme and the relaxations of the MILP achieve a significant performance
improvement over the non-relaxed MILP. However, despite these optimizations,
only relatively short event traces can be handled by our methodology in a reasonable
amount of time. Since a typical simulation run comprises hundreds of thousands to
millions of events, it is certainly impractical to predict the runtime of an entire
simulation run. Nevertheless, we argue that the presented performance analysis
methodology is useful particularly in the early phases of the model development
process. Early evaluation scenarios are still of a small scale while at the same time
the structure of the model can still easily be changed in order to optimize parallel
performance. Furthermore, it is often simply not necessary to trace and analyze the
whole simulation run. Instead, one might be interested in analyzing just a specific
part of the simulation model or a specific sequence of events, e. g., after extending
a model with new functionality. In this case, selectively tracing the model under
investigation is sufficient and yields traces of acceptable size.

We showed that the trace splitting scheme is a correct and effective means to re-
duce the overall runtime of the performance analysis methodology. However, there

172 6. Performance Analysis of Parallel Expanded Event Simulations

is no guarantee that a given event trace is indeed splittable. In fact, we observe an
interesting relationship between the efficiency of parallel expanded event simulation
and the splittability of a trace: The more events overlap in a simulation model, the
more events can be processed in parallel at runtime, resulting in a good speedup.
Yet, a large number of overlapping events increases the computational complexity
of the MILP and reduces the chance of finding splits of short length. In this sit-
uation, however, good simulation performance reduces the need for conducting a
performance analysis to find bottlenecks.

Due to the trace-based approach of our performance analysis methodology, the esti-
mated runtimes are tightly coupled to the performance of the underlying hardware.
For instance, tracing a simulation run on a desktop machine yields event processing
times which are different from the event runtimes on a simulation server. However,
we do not expect asymmetric performance differences in terms of the event process-
ing times between different hardware platforms. Instead, the processing times of
all events scale by a linear factor on machines of different performance. Hence, the
relations between events remain valid and thus also the event schedule calculated
by the linear program.

Until now, we assumed that the processing time of an event is given by the time
span needed to actually execute an event by a worker thread. Hence, any differ-
ences between the calculated lower bound and actual measurements are due to a
combination of a potentially non-optimal schedule and the overhead of the event
scheduler (cf. Section 6.6.2.1). Despite showing that the impact of the overhead is
negligible in the context of events of non-trivial complexity, we can further mitigate
its influences. To this end, we assume that the event scheduler imposes a static
overhead for de-queueing the next event, checking its overlapping, and assigning it
to a worker. Based on this assumption, the tracing component may simply add this
approximated overhead to the measured event processing times in the trace file.

An apparent limitation of the trace-based approach is that each trace represents
only one simulation run and its parameterization. Consequently, the event schedule
computed by our scheme is only valid for one particular set of parameters. Neverthe-
less, we apply the same argumentation as for the multi-level parallelization scheme
(cf. Chapter 5). We hence assume that the order of events in different simulation
runs remains similar across varying parameter sets while the main differences are in
the local state of the simulation model.

6.8 Conclusions

In this chapter, we presented a performance analysis methodology which provides
simulation model developers with an insight into the execution behavior of parallel
expanded event simulations. Specifically, our methodology calculates an optimal
event schedule and thus the lower bound on the runtime of a given parallel simula-
tion model in our Horizon simulation framework. This insight supports developers
in assessing the efficiency of parallel event execution and aids the development of
performance optimizations for simulation models, frameworks, and evaluation se-
tups. Thus, by actively supporting the development process of parallel simulations,

6.8. Conclusions 173

we hope to foster the wide spread application of parallel simulation in the network
research community.

174 6. Performance Analysis of Parallel Expanded Event Simulations

7
Summary and Conclusions

Discrete event simulation constitutes a fundamental tool for developing, evaluating,
and analyzing communication systems. Despite abstracting from irrelevant technical
details in simulation, the complexity of a communication system under investiga-
tion often translates into computational complexity of the corresponding simulation
model. To mitigate the excessive simulation runtimes resulting from high computa-
tional complexity, the research community developed parallel simulation techniques
that distribute the computational workload across multiple processing units. Yet,
in this thesis, we identified two major developments that challenge the established
state-of-the-art in parallel simulation:

i) Multi-processor computers have become the de facto standard hardware plat-
form for desktop and server systems, providing parallel processing capabilities
to researchers. However, the majority of existing parallelization techniques
is rooted in distributed simulation on computing clusters whose hardware
properties fundamentally differ from multi-processor systems. Thus, existing
parallelization techniques do not fully exploit the processing power of multi-
processor systems.

ii) The focus of interest in the networking research community shifted from wired
to wireless communication systems due to the proliferation of IEEE 802.11 and
IEEE 802.14.5. In contrast to wired systems, network nodes in wireless net-
works are tightly coupled and interact frequently due to the broadcast nature
of the wireless channel. This tight coupling in turn constitutes a challenge for
parallel event execution.

Consequently, the overarching goal of this thesis is to develop paradigms, algorithms,
and tools that enable efficient parallel simulations on multi-processor systems. To
achieve this goal, we identify and tackle three distinct research questions:

Q1: How to achieve efficient parallel simulation of tightly coupled systems?
Tightly coupled systems, such as wireless networks, constitute a particular
challenge for parallel simulation. Specifically, the tight coupling of components

176 7. Summary and Conclusions

hinders the identification and safe parallel execution of independent events. As
a result, this thesis investigates how to achieve efficient parallel execution of
such tightly coupled systems.

Q2: How to exploit multi-processor systems?
Parallel discrete event simulation traditionally focused on distributed comput-
ing clusters. In contrast to such clusters, multi-processor systems provide a
single globally-shared memory space and fast thread synchronization primi-
tives. Hence, the second research question is how to design a parallelization
framework and corresponding synchronization algorithms that exploit the spe-
cific properties of multi-processor system in order to achieve i) efficient and
ii) simple-to-use parallel event execution.

Q3: How to Support Developers of Parallel Simulations?
Despite over two decades of research, parallel discrete event simulation is still
not widely employed in the networking research community. The primary rea-
son hindering general adoption of parallel simulation is the increased effort in
developing simulation models that deliver satisfying performance under par-
allel execution. Consequently, this thesis analyses how to provide support to
model developers in order to foster the adoption of parallel simulation.

7.1 Contributions and Achievements

This thesis makes four contributions that address the aforementioned questions. We
briefly summarize these four contributions and their key concepts in the following.

7.1.1 Parallel Expanded Event Simulation

Our first contribution is parallel expanded event simulation, a novel modeling ap-
proach to parallelization. Targeting an efficient parallel execution of tightly coupled
system models, its goal is to augment simulation models with event dependency in-
formation to aid event synchronization. It is based on the observation that physical
processes in a real system take time to complete. Hence, we extend discrete events
with a duration such that the resulting expanded events span a period of simulated
time, representing the (processing) duration of a physical process. Building on top of
the concept of expanded events, we furthermore define a conservative parallelization
scheme stating that overlapping expanded events are safe for parallel processing.

We show the viability of parallel expanded event simulation by implementing a
parallel simulation framework, named Horizon. Aiming specifically for ease-of-use,
Horizon avoids the need for explicit partitioning and load-balancing by utilizing
a simple master-worker architecture. Still, our evaluation shows that Horizon
achieves considerable speedups using synthetic and real-world simulation models.
In particular, Horizon outperforms traditional distributed parallel discrete event
simulation techniques implemented in the state-of-the-art OMNeT++ simulation
framework.

7.1. Contributions and Achievements 177

This contribution addresses two of the research questions formulated above, namely
Q1 and Q2. First, the parallelization scheme defined by parallel expanded event
simulation and the master-worker architecture of Horizon exploit the globally
shared memory of multi-processor systems. This enables fast thread synchronization
and relieves users from partitioning simulation models and applying load-balancing
schemes. Hence, parallel expanded event simulation constitutes an answer to ques-
tion Q1. Second, the duration of expanded events improve the timing information
available in conservative event synchronization. It thus gives an answer to question
Q2.

7.1.2 Probabilistic Synchronization

Our second contribution is a probabilistic synchronization scheme that aims at relax-
ing conservative synchronization while limiting the aggressiveness of optimistic syn-
chronization. To this end, probabilistic synchronization dynamically derives event
dependencies at runtime in order to guide parallel event execution. At the core
of our contribution are three different heuristics which continuously collect event
scheduling information, such as successor relations and arrival times, to learn event
dependencies. Given an event which is not eligible for parallel processing according
to conservative synchronization, i. e., beyond the current lookahead, the heuristics
estimate if executing this events will result in a causal violation. If the proba-
bility for a causal violation is below a user defined threshold, the synchronization
scheme speculatively executes the event. Our scheme outperforms both traditional
synchronization schemes as well as state-of-the-art approaches in probabilistic syn-
chronization.

Similar to parallel expanded event simulation, probabilistic synchronization provides
answers to the first two research questions of this thesis. For one, our implemen-
tation of probabilistic synchronization and the three heuristics fundamentally rely
on shared memory. Hence, our novel approach to event synchronization demon-
strates how to successfully exploit the properties of multi-processor systems, giving
an answer to question Q1. Additionally, by determining and analyzing the depen-
dencies between events, probabilistic synchronization is able to efficiently identify
independent events in simulation models of tightly coupled systems. Probabilistic
synchronization thus provides an answer to question Q2.

7.1.3 Multi-level Parallelism using GPUs

The third contribution of this thesis constitutes a multi-level parallelization scheme
that utilizes GPUs to achieve a time and cost efficient parallel execution of large
scale parameter studies. The basic idea is to exploit the massively parallel process-
ing power of GPUs to execute the individual simulation runs of a parameter study
in parallel. However, the streaming-based processing model of GPUs differs signifi-
cantly from classic (discrete) event simulation. Hence, our scheme uses two levels of
parallelism, internal and external parallelism, to define an event aggregation scheme
and a memory transfer pipeline in order to map parallel discrete event simulation
onto the streaming-based processing model of GPUs. We evaluate our contribution

178 7. Summary and Conclusions

by means of a prototype implementation. In comparison to a traditional CPU-bound
implementation, our scheme achieves considerably better performance at a fraction
of the hardware costs.

We consider GPUs to be specialized multi-processor in themselves, particularly due
to the fact that they feature a shared memory space across GPU-threads and, though
subject to restrictions, also between GPU and CPU memory. As a result, the multi-
level parallelism scheme shows how to exploit multi-processor systems for efficient
parallel simulation, thereby contributing an answer to question Q1.

7.1.4 Performance Prediction and Analysis

Our fourth and final contribution is a performance analysis and prediction method-
ology. Its goal is to aid simulation developers in understanding and optimizing the
performance of a parallel expanded event simulation. To this end, the methodology
computes an optimal event schedule, i. e., assignment of events to CPUs, under con-
sideration of event dependencies and CPU resources by means of a Mixed Integer
Linear Program (MILP). By visualizing and analyzing the resulting event schedule,
simulation model developers can identify performance bottlenecks, e. g., regions of
low parallelism, and attempt to improve performance by restructuring the simulation
model.

To mitigate the computational complexity of calculating an optimal event schedule,
we moreover develop complexity reduction techniques such as relaxations of the
MILP and an input splitting scheme. We demonstrate the accuracy and usability of
our performance analysis methodology as well as the effectiveness of our complexity
reduction techniques by means of a queueing network model. By aiming at providing
support to model developers, our methodology contributes an answer to research
question Q4.

7.2 Application of our Work

This thesis was born out of the necessity for reducing the runtime demand of accu-
rate and complex network simulation models in a simple-to-use fashion. Since its
first implementation, the Horizon simulation framework has been heavily used on a
day-to-day basis to investigate resource allocation and packet scheduling strategies in
LTE networks. In the context of these efforts, Horizon was employed by colleagues
[PG13] as well as students as part of two master and diploma theses [Gry12, Wey11].
This underlines the real-world applicability of Horizon and shows that we success-
fully reached our goal of creating a simple-to-use and efficient parallel simulation
framework.

In addition, the experience gained in academia during the genesis of this thesis
proved valuable in a cooperation project with industry. Analogous to our motiva-
tion for this thesis, our industry partner (a leading manufacturer of telecommuni-
cation equipment) experienced excessive simulation runtimes while struggling with
a reluctant adoption of parallelization techniques by simulation users. We provided
development support for an in-house parallel network simulator and supplied a user

7.3. Future Directions 179

support tool similar to our extended sequence chart [KTGW12]. Concluding, the
motivation for this project as well as the challenges encountered during its realiza-
tion closely match the core problems addressed by this thesis, thereby highlighting
the relevance of our work.

7.3 Future Directions

Building on top of the status established by our contributions, we identify future
directions of this research work in the following and briefly sketch the envisioned
approaches.

7.3.1 Earliest-Completion-Time-First Scheduling

A future effort in the context of this thesis aims at improving the efficiency of the
centralized event scheduler. In particular, we envision an alternative scheduling
scheme, denoted Earliest Completion Time First (ECTF) scheduling, that offloads
events such that the barrier tb advances as soon as possible to maximize the paral-
lelization window.

In the current state of Horizon, the event scheduler continuously dequeues the
event e with the earliest starting time from the FES, checks if ts(e) ≤ tb holds true
and if so, offloads e to the workers. This strategy guarantees causal correctness,
i. e., the central scheduler offloads non-overlapping expanded events in increasing
starting time order (cf. Chapter 3). As a result, given a set of independent events,
the scheduler offloads the events within this set according to their starting time order
as well, denoted as Earliest Starting Time First (ESTF) scheduling. In general,
however, independent events can be offloaded in any order.

The goal of earliest-completion-time-first scheduling is to offload events such that
the barrier tb advances as soon as possible. By moving the barrier forward, further
events might become eligible for parallel processing, thereby limiting the risk of
blocking while at the same time improving the resource utilization. The reasoning
underlying earliest-completion-time-first scheduling is as follows:

Consider a set of mutually overlapping independent events I ⊆ F which have not yet
been offloaded, i. e., I ∩ O = ∅. Then, earliest-completion-time-first scheduling of-
floads the event e′ ∈ I with the smallest completion time, i. e., e′ = arg min{tc(e)|e ∈
I}. Recall furthermore that tb is defined by the minimal completion time of all off-
loaded events e ∈ O. Hence, offloading e′ will likely update the barrier to tb = tc(e′).
Yet processing e′ first will also very likely result in e′ in finishing early, thereby en-
abling the barrier to move to the next event.

Figure 7.1 illustrates the problem and our proposed solution graphically. Given
are two CPUs and a set of expanded events as shown in Figure 7.1(a). In this
situation the current scheduling strategy of Horizon performs considerably worse
(see Figure 7.1(b)) than the proposed strategy (see Figure 7.1(c)) in terms of resource
utilization.

180 7. Summary and Conclusions

simulated time

e1

e2

e3

e4

Event duration

Expanded Events:

(a) Expanded events in simu-
lated time.

wall-clock time

e1 e3 e4

e2

CPU1

CPU2

CPU utilization

ESTF Scheduling:

(b) The scheduler first offloads
e1 and e2. Afterwards, the
non-overlapping events e3
and e4 need to execute se-
quentially.

wall-clock time

e3

e2 e4

e1 CPU1

CPU2

CPU utilization

ECTF Scheduling:

(c) The scheduler first offloads
e3 and e2. After their com-
pletion it can offload both
overlapping events e1 and
e2 in parallel.

Figure 7.1 The earliest-completion-time-first scheduler selects the event with the smallest
completion time. It thereby immediately advances the barrier to maximize the
number of parallelizable events and hence the CPU utilization.

The primary challenge of this work is to study and understand the model properties
which enable a performance improvement of ECTF over ESTF scheduling. From
these properties, we can then derive metrics which aid developers in selecting the
best performing strategy for a given simulation model. Moreover, we investigate how
to further improve the resource utilization by additionally taking the computational
complexity of events into account. Given knowledge of the processing time of an
event on a CPU, the event scheduler can approximate the optimal event schedule as
computed by our performance analysis methodology.

7.3.2 Automatic Configuration of Probabilistic Synchronization

Future efforts regarding probabilistic synchronization focus primarily on extending
the synchronization scheme with automatic configuration and performance tuning
capabilities. This is motivated by the observation that our evaluation of probabilistic
synchronization shows large differences in performance between i) the individual
heuristics and ii) different configurations of the heuristics. As a result, users need
to have a profound understanding of the properties of the three heuristics and good
knowledge of the behavior of the simulation model in order to find a well performing
configuration. These requirements, however, hinder efficient use of our probabilistic
synchronization scheme, especially by novice users.

Given a simulation model, the task of the envisioned configuration component is to
i) select an appropriate heuristic, and ii) fine-tune the configuration of the selected
heuristic. To this end, we propose a two-staged approach consisting of an initial
offline selection of a heuristic, followed by a continuous online re-configuration of
the selected heuristic at runtime:

Offline Selection of Heuristic: In order to select an appropriate heuristic for the
given simulation model, we first need to obtain information about the runtime
properties of the model which influence the performance of the heuristics.

7.3. Future Directions 181

Hence, we conduct an initial simulation run to measure model properties such
as event complexities, event arrival patterns, or the length of the simulation
run. The configuration component then matches the measurements against a
previously established decision tree to select a heuristic. It should be sufficient
to perform this step only once for each simulation model.

Online Re-configuration: At runtime, the configuration component dynamically
adapts the parameterization of the selected heuristic to maximize simulation
performance. To determine the impact of these adaptations, the configuration
component measures the current simulation performance, e. g., in processed
events per seconds, and the accuracy of the heuristics, e. g., the average num-
ber of rollbacks per event. Depending on the dynamics of the simulation
model it suffices to perform the adaptation only once and re-use the resulting
parameterization for all succeeding simulation runs, or it might be necessary
to continuously adapt the configuration.

The challenge of this work is to identify accurate performance metrics and under-
stand how changes of the configuration parameters impact simulation performance.
Moreover, the adaptation algorithm needs to avoid local maxima, but instead quickly
converge to a globally optimal parameterization.

7.3.3 Multi-level Parallelism on GPUs

In the context of our multi-level parallelization scheme, we identify two directions for
future work. The first direction envisions a speculative event pre-processing scheme
that integrates tightly with internal parallelism and the event transfer pipeline. The
second line of work addresses advanced algorithms for mapping events to streaming
processors on GPUs.

7.3.3.1 Speculative Pre-processing of Events

We envision a speculative event execution scheme which improves simulation perfor-
mance by i) pre-processing events which are not yet eligible for parallel processing
according to conservative synchronization, and by ii) increasing the resource uti-
lization of the PCIe bus and the GPU. Specifically, we observe that the effects of
executing an event are two-fold, consisting of a modified event state and newly gen-
erated successor events. However, both effects influence the global simulation state
only after copying the modified event state and the successor events back from GPU-
to CPU-memory.

The anticipated scheme exploits this fact by speculatively dispatching events to the
first pipeline stage (“copy state to GPU-memory”) and the second stage (“execute
event on GPU”), but skipping the third stage (“copy state to CPU-memory”). In-
stead, it temporarily stores the modified event states and successor events in GPU
memory. If the speculatively executed events do not create a causal violation with
respect to conservatively offloaded events, the execution scheme copies the corre-
sponding event states back to CPU memory and enqueues newly generated events
in the future event set (see Figure 7.2(a)). If, however, a speculatively executed

182 7. Summary and Conclusions

simulated time

e1

e2 e3 e4

GPU

e5

Conservative offloading
Speculative offloading
Successor events

(a) No causal violation: The successor event
e5 of a previously offloaded event e2 suc-
ceeds the speculatively offloaded events e3
and e4. The scheme can hence commit the
pre-computed results of e3 and e4.

simulated time

e1

e2 e3 e4

GPU

e5

Conservative offloading
Speculative offloading
Successor events

(b) Causal violation: The successor event e5
of a previously offloaded event e2 precedes
the speculatively offloaded events e3 and e4.
The scheme discards the pre-computed re-
sults of e3 and e4.

Figure 7.2 Speculative pre-processing of events on the GPU.

event triggers a causal violation, the execution scheme simply discards all modified
event states and successor events (see Figure 7.2(b)).

Since this scheme only commits the results of correctly executed events, i. e., copies
them to CPUmemory, it is not entirely optimistic in nature. Instead, it pre-computes
events utilizing resources that would otherwise be left unused. Hence, the key chal-
lenge of this work is managing the memory resources on the GPU and the utilization
of the PCIe bus such that speculative event execution does not interfere with normal
event execution.

7.3.3.2 Advanced Event Mapping Algorithms

Lastly, we target the development of advanced event mapping algorithms that mit-
igate the performance impact of divergent code paths which occur within event
handlers of the same type. This is necessary since the event mapping algorithms
presented in Chapter 5 apply sorting and padding of events only on the basis of
different event types. Hence, these algorithms cannot handle divergent code paths
which result from conditional branches in the code of events of the same type.

Since the target of conditional branches often depends on the value of local state
variables, we intend to develop advanced mapping algorithms that explicitly take
the state of an event into account. We anticipate to employ automated source
code instrumentation techniques to identify relevant state variables and expose their
values to the mapping algorithms. The key challenge of this work is to transparently
integrate such techniques in the development and execution process of a simulation
model while limiting the runtime overhead.

7.4 Final Remarks

A fundamental concept of our contributions is a centralized event handling and
scheduling architecture. In the context of parallelization, this constitutes a rather

7.4. Final Remarks 183

unconventional approach as it contradicts the intuitive notion that good parallel
performance requires a distributed, i. e., parallel, architecture. However, targeting
small and medium scale multi-processor systems, we explicitly favor a centralized
architecture for two reasons:

i) Distributed architectures are often too complex for typical simulation users
since these architectures require additional efforts such as explicit partitioning
or load balancing. Based on our experience from work in academia [Pei12] as
well as in industry, simulation users are seldom willing to learn and effectively
configure these schemes. Instead, our simple centralized parallelization scheme
was well accepted in practice.

ii) A centralized architecture provides a prolific foundation for truly novel ap-
proaches to parallelization. We demonstrated this property by developing new
heuristics for probabilistic synchronization and a multi-level parallelization
scheme.

Taking these two aspects into account, we regard our approach to parallelization
successful and expect that it will find further application in practice in the future.

184 7. Summary and Conclusions

Glossary

ACK Acknowledgment

API Application Programming
Interface

APP Accelerated Parallel
Processing

CDF Cumulative Distribution
Function

CDMA Code Division Multiple Access

NUMA Non-Uniform Memory Access

CUDA Compute Unified Device
Architecture

CPU Central Processing Unit

CSI Channel State Information

DES Discrete Event Simulation

ECTF Earliest Completion Time
First

EIT Earliest Input Time

eNodeB Evolved NodeB

EOT Earliest Output Time

EPT Earliest Processing Time

ESTF Earliest Starting Time First

FES Future Event Set

FIFO First In First Out

FPGA Field Programmable Gate
Array

FPR False Positive Rate

GPU Graphics Processing Unit

GSM Global System for Mobile
Communications

GVT Global Virtual Time

HLA High Level Architecture

IDE Integrated Development
Environment

ISP Ideal Simulation Protocol

LBTS Lower Bound on incoming
Time Stamps

LCG Linear Congruential Generator

LP Logical Process

LTE 3GPP Long Term Evolution

MANET Mobile Ad-hoc Network

MILP Mixed Integer Linear Program

MPI Message Passing Interface

NMA Null Message Algorithm

OFDMA Orthogonal
Frequency-Division Multiple
Access

OS Operating System

PCIe Peripheral Component
Interconnect Express

PDES Parallel Discrete Event
Simulation

PDF Probability Density Function

pdns Parallel/Distributed ns

PR Positive Rate

SIFS Short Interframe Space

186 7. Summary and Conclusions

SIMT Single Instruction Multiple
Threads

SINR Signal-to-Interference-plus-
Noise
Ratio

SISO Single-Input Single-Output

SSF Scalable Simulation
Framework

TDD Time Division Duplex

TTI Transmission Time Interval

TTL Time To Live

UE User Equipment

UMTS Universal Mobile
Telecommunications System

UVA Unified Virtual Addressing

WMN Wireless Mesh Network

WSN Wireless Sensor Network

Index 187

Index

Arrival Pattern Heuristic, 100

barrier event, 76
bounded lag, 49

causal correctness, 12
causal violation, 19
conflict probability, 102
conflicting nodes, 104
context switch, 76
critical path analysis, 151

degree of parallelism, 149
distributed multi-threaded simulation,

29
distributed simulation, 28

earliest input time, 24
earliest output time, 23
ECTF scheduling, 179
ESTF scheduling, 179
evaluation methods

analytical modeling, 13
emulation, 14
simulation, 13
testbeds and prototypes, 14

event
discrete event, 12, 41
expanded event, 41
completion time, 41
duration, 41, 155
starting time, 41

instance, 12
type, 12

event density, 23
event handler function, 12
event offloading, 46

pull-based, 77
push-based, 77

event offloading overhead, 75
event processing time, 155
event scheduler, 12
event scheduling problem

feasibility, 156
input, 155
optimality, 156
schedule, 155
split, 159

event state, 128
event type, 128
expanded event simulation, 41
external parallelism, 122, 127

federate, 19
future event set, 12

Global Order Heuristic, 102
GloMoSim, 31
GTNetS, 30

integer linear programming, 151
internal parallelism, 123, 131
interval branching, 51

local causality constraint, 22
Local Order Heuristic, 103
lockstep, 124
logical process, 21
lookahead, 23
lower bound on incoming time

stamps, 24

module, 60
multi-level parallelization, 7
multi-threaded simulation, 29

ns-3, 30
Null Message Algorithm, 25

offloaded event set, 56
offloading delay, 76
OMNeT++, 30
opaque periods, 50
overlapping events, 46

parallel expanded event simulation, 6

188 Index

parallel machine scheduling problem,
150

PARSEC, 31
partitioning

channel parallel, 20
space parallel, 19
time parallel, 20

pending event, 100
performance analysis methodology, 7
probabilistic synchronization, 6

reverse computation, 27
rollback, 26
ROOT-Sim, 31

simulation framework, 11
simulation model, 11
simulation run, 12
speedup, 64
successor event, 41
synchronization

conservative, 22
optimistic, 26

synchronization barrier, 55, 56

temporal uncertainty, 50
time

simulated time, 12
simulation time, 13

time creeping problem, 25
Time Warp Algorithm, 26

uncertainty interval, 50

warp, 124

Bibliography

[AKLW10] M. H. Alizai, G. Kunz, O. Landsiedel, and K. Wehrle. Promoting Power
to a First Class Metric in Network Simulations. In Proceedings of the
Workshop on Energy Aware Systems and Methods, in conjunction with
GI/ITG ARCS 2010, 2010.

[Amd67] G. M. Amdahl. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. In Proceedings of the Spring Joint
Computer Conference, 1967.

[ASW05] G. W. Allen, P. Swieskowski, and M. Welsh. MoteLab: A Wireless
Sensor Network Testbed. In Proceedings of the 4th International Sym-
posium on Information Processing in Sensor Networks, 2005.

[AWK+11] M. H. Alizai, H. Wirtz, G. Kunz, B. Grap, and K. Wehrle. Efficient
Online Estimation of Bursty Wireless Links. In Proceedings of the 16th
IEEE Symposium on Computers and Communications, 2011.

[BBC+12] P. D. Barnes, J. M. Brase, T. W. Canale, M. M. Damante, M. A.
Horsley, D. R. Jefferson, and R. A. Soltz. A Benchmark Model for
Parallel ns-3. In Proceedings of the 5th International ICST Conference
on Simulation Tools and Techniques, 2012.

[BCF+95] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-second Local
Area Network. Micro, 15(1):29–36, February 1995.

[BD87] G. E. P. Box and N. R. Draper. Empirical Model-building and Response
Surfaces. John Wiley & Sons, 1987.

[BEF+00] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Ya Xu, and Haobo Yu. Advances
in Network Simulation. Computer, 33(5):59–67, May 2000.

[Bel05] F. Bellard. QEMU, a fast and Portable Dynamic Translator. In
USENIX Annual Technical Conference, 2005.

[BFBC06] L. Bononi, M. Di Felice, M. Bertini, and E. Croci. Parallel and Dis-
tributed Simulation of Wireless Vehicular Ad hoc Networks. In Pro-
ceedings of the 9th International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, 2006.

190 Bibliography

[BGMW07] M. Bohge, J. Gross, M. Meyer, and A. Wolisz. Dynamic Resource Allo-
cation in OFDM Systems: An Overview of Cross-Layer Optimization
Principles and Techniques. IEEE Network Magazine, Special Issue:
“Evolution toward 4G Wireless Networking”, 21(1):53 – 59, 2007.

[BGT93] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit
Error-correcting Coding and Decoding: Turbo-Codes. In IEEE Inter-
national Conference on Communications, 1993.

[BJ85] O. Berry and D. Jefferson. Critical Path Analysis of Distributed Simu-
lation. In Proceedings of the SCS Conference on Distributed Simulation,
1985.

[BJK+95] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An Efficient Multithreaded Runtime Sys-
tem. In Proceedings of the 5th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, 1995.

[BL94] R. L. Bagrodia and W.-T. Liao. Maisie: A Language for the Design of
Efficient Discrete-Event Simulations. IEEE Transactions on Software
Engineering, 20(4):225–238, 1994.

[BLKW08] A. Becher, O. Landsiedel, G. Kunz, and K. Wehrle. Towards Short-
Term Wireless Link Quality Estimation. In Proceedings of Fifth Work-
shop on Embedded Networked Sensors, 2008.

[BMP08] D. W. Bauer, Matthew McMahon, and E. H. P. An Approach for the
Effective Utilization of GP-GPUs in Parallel Combined Simulation. In
Proceedings of the 40th Winter Simulation Conference, 2008.

[Box76] G. E. P. Box. Science and Statistics. Journal of the American Statistical
Association, 71(356):791–799, 1976.

[BRM12] R. Birke, G. Rodriguez, and C. Minkenberg. Towards Massively Par-
allel Simulations of Massively Parallel High-Performance Computing
Systems. In Proceedings of the 5th International ICST Conference on
Simulation Tools and Techniques, 2012.

[Bro86] E. D. Brooks. The Butterfly Barrier. International Journal of Parallel
Programming, 15(4):295–307, August 1986.

[BT02] R. L. Bagrodia and M. Takai. Performance Evaluation of Conservative
Algorithms in Parallel Simulation Languages. IEEE Transactions on
Parallel and Distributed Systems, 11(4):395–411, 2002.

[BTC+98] R. Bagrodia, M. Takai, Y. Chen, X. Zeng, and J. Martin. Parsec: A
Parallel Simulation Environment for Complex Systems. IEEE Com-
puter, 31(10):77–85, 1998.

[BZvR04] R. Barr, H. Zygmunt, and R. van Renesse. JiST: Embedding Simula-
tion Time Into a Virtual Machine. In Proceedings of EuroSim Congress
on Modelling and Simulation, 2004.

Bibliography 191

[CDB09] D. Chatterjee, A. DeOrio, and V. Bertacco. Event-driven Gate-level
Simulation with GP-GPUs. In Proceeding of the 46th ACM/IEEE De-
sign Automation Conference, 2009.

[Cha99] X. Chang. Network Simulations with OPNET. In Proceedings of the
Winter Simulation Conference, 1999.

[Che90] T. Cheng. A State-of-the-art Review of Parallel-machine Scheduling
Research. European Journal of Operational Research, 47(3):271–292,
August 1990.

[CK06] M.-K. Chung and C.-M. Kyung. Improving Lookahead in Parallel Mul-
tiprocessor Simulation Using Dynamic Execution Path Prediction. In
Proceedings of the 20th Workshop on Principles of Advanced and Dis-
tributed Simulation, 2006.

[CM79] K. M. Chandy and J. Misra. Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs. IEEE Transactions
on Software Engineering, SE-5(5):440–452, September 1979.

[CNO99] J. H. Cowie, D. M. Nicol, and A. T. Ogielski. Modeling the Global
Internet. Computing in Science & Engineering, 1(1):42–50, January
1999.

[CON02] J. Cowie, A. Ogielski, and D. M. Nicol. The SSFNet Network Sim-
ulator. Software on-line: http://www.ssfnet.org/homePage.html,
2002.

[CPF99] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto. Efficient Opti-
mistic Parallel Simulations using Reverse Computation. ACM Trans-
actions on Modeling and Computer Simulations, 9(3):224–253, July
1999.

[CS90] B. Cota and R. Sargent. A Framework for Automatic Lookahead Com-
putation in Conservative Distributed Simulations. In Proceedings of the
SCS Multiconference on Distributed Simulation, 1990.

[CS05] G. Chen and B. K. Szymanski. DSIM: Scaling Time Warp to 1,033
Processors. In Proceedings of the 37th Winter Simulation Conference,
2005.

[DM98] L. Dagum and R. Menon. OpenMP: An Industry Standard API for
Shared-memory Programming. IEEE Computational Science and En-
gineering, 5(1):46–55, January 1998.

[Fal99] K. Fall. Network Emulation in the Vint/NS Simulator. In Proceedings
of the 4th IEEE Symposium on Computers and Communications, 1999.

[FC94] A. Ferscha and G. Chiola. Self-adaptive Logical Processes: The Prob-
abilistic Distributed Simulation Protocol. In Proceedings of the 27th
Annual Simulation Symposium, 1994.

http://www.ssfnet.org/homePage.html

192 Bibliography

[Fer95] A. Ferscha. Probabilistic Adaptive Direct Optimism Control in Time
Warp. In Proceedings of the 9th Workshop on Parallel and Distributed
Simulation, 1995.

[FH98] R. M. Fujimoto and P. Hoare. HLA RTI Performance in High Speed
LAN Environments. In Proceedings of the Fall Simulation Interoper-
ability Workshop, 1998.

[FPP+03] R. M. Fujimoto, K. S. Perumalla, A. Park, H. Wu, M. H. Ammar, and
G. F. Riley. Large-Scale Network Simulation: How Big? How Fast?
In Proceedings of 11th International IEEE Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
2003.

[FTG92] R. M. Fujimoto, J. J. Tsai, and G. C. Gopalakrishnan. Design and
Evaluation of the Rollback Chip: Special Purpose Hardware for Time
Warp. IEEE Transactions on Computers, 41(1):68–82, January 1992.

[Fuj90a] R. M. Fujimoto. Parallel Discrete Event Simulation. Communications
of the ACM, 33(10):30–53, 1990.

[Fuj90b] R. M. Fujimoto. Performance of Time Warp under Synthetic Work-
loads. In Proceedings of the SCS Multiconference on Distributed Sim-
ulation, 1990.

[Fuj98] R. M. Fujimoto. Time Management in the High Level Architecture.
Transactions of The Society for Modeling and Simulation International,
71(6):388–400, 1998.

[Fuj99a] R. M. Fujimoto. Exploiting Temporal Uncertainty in Parallel and Dis-
tributed Simulations. In Proceedings of the 13th Workshop on Parallel
and Distributed Simulation, 1999.

[Fuj99b] R. M. Fujimoto. Parallel and Distributed Simulation. In Proceedings
of the Winter Simulation Conference, 1999.

[GG10] J. Gross and M. Güneş. Introduction. In K. Wehrle, M. Günes, and
J. Gross, editors, Modeling and Tools for Network Simulation, chap-
ter 1, pages 1–11. Springer, Berlin, Germany, April 2010.

[GK06] P. Gepner and M. F. Kowalik. Multi-Core Processors: New Way to
Achieve High System Performance. In Proceedings of the International
Symposium on Parallel Computing in Electrical Engineering, 2006.

[Gry12] M. Grysla. Inter-cell Interference Optimization for Dynamic Scheduling
in LTE. Master’s Thesis, RWTH Aachen University, 2012.

[GSS+03] D. Gesbert, M. Shafi, D. Shiu, P. J. Smith, and A. Naguib. From
Theory to Practice: An Overview of MIMO Space-time Coded Wire-
less Systems. IEEE Journal on Selected Areas in Communications,
21(3):281–302, April 2003.

Bibliography 193

[HAW08] D. Halperin, T. Anderson, and D. Wetherall. Taking the Sting out of
Carrier Sense: Interference Cancellation for Wireless LANs. In Proceed-
ings of the 14th ACM International Conference on Mobile Computing
and Networking, 2008.

[HBE+01] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat, K. Chan Lan,
Y. Xu, W. Ye, D. Estrin, and R. Govindan. Effects of Detail in Wireless
Network Simulation. In Proceedings of the SCS Multiconference on
Distributed Simulation, 2001.

[HF97] M. Hybinette and R. M. Fujimoto. Cloning: A Novel Method for In-
teractive Parallel Simulation. In Proceedings of the 29th Winter Simu-
lation Conference, 1997.

[HF01] M. Hybinette and R. M. Fujimoto. Cloning Parallel Simulations. ACM
Transactions on Modeling and Computer Simulation, 11(4):378–407,
October 2001.

[HJPM10] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a GPU-
Accelerated Software Router. In Proceedings of the ACM SIGCOMM
Conference, 2010.

[HRFR06] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley. ns-3 Project
Goals. In Proceedings of the 2006 Workshop on ns-2: The IP Network
Simulator, 2006.

[iee] IEEE 802.3 Ethernet Working Group. online [last accessed 26 Septem-
ber 2012].

[inf] InfiniBand Trade Association. online [last accessed 26 September 2012].

[Jai91] R. Jain. The Art of Computer Systems Performance Analysis, volume
182. John Wiley & Sons New York, 1991.

[JB94] V. Jha and R. L. Bagrodia. A Unified Framework for Conservative and
Optimistic Distributed Simulation. In Proceedings of the 8th Workshop
on Parallel and Distributed Simulation, 1994.

[Jef85] D. R. Jefferson. Virtual Time. ACM Transactions on Programming
Languages and Systems, 7(3):404–425, July 1985.

[JM05] S. Jansen and A. McGregor. Simulation with Real World Network
Stacks. In Proceedings of the 37th Winter Simulation Conference, 2005.

[JR91] D. Jefferson and P. Reiher. Supercritical Speedup. In Proceedings of
the 24th Annual Simulation Symposium, 1991.

[JTKG03] Z. Juhasz, S. Turner, K. Kuntner, and M. Gerzson. A Performance
Analyser and Prediction Tool for Parallel Discrete Event Simulation.
International Journal of Simulation, 4(1):7–22, May 2003.

194 Bibliography

[JZT+04] Z. Ji, J. Zhou, M. Takai, J. Martin, and R. L. Bagrodia. Optimizing
Parallel Execution of Detailed Wireless Network Simulation. In In
Proceedings of 18th Workshop on Parallel and Distributed Simulation,
2004.

[JZTB06] Z. Ji, J. Zhou, M. Takai, and R. L. Bagrodia. Improving Scalabil-
ity of Wireless Network Simulation with Bounded Inaccuracies. ACM
Transactions on Modeling Computer Simulation, 16(4):329–356, 2006.

[KBV09] M. Kozlovszky, A. Balasko, and A. Varga. Enabling OMNeT++-based
Simulations on Grid Systems. In Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, 2009.

[KDL+05] T. Kempf, M. Doerper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel, and
B. Vanthournout. A Modular Simulation Framework for Spatial and
Temporal Task Mapping onto Multi-processor SoC Platforms. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe,
2005.

[Kie05] T. Kiesling. Using Approximation with Time-Parallel Simulation. Sim-
ulation, 81(4):255–266, April 2005.

[KLG+10] G. Kunz, O. Landsiedel, J. Gross, S. Götz, F. Naghibi, and K. Wehrle.
Expanding the Event Horizon in Parallelized Network Simulations. In
Proceedings of the 18th International IEEE Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
2010.

[KLGW09] G. Kunz, O. Landsiedel, S. Götz, and K. Wehrle. Poster Abstract: Pro-
tocol Factory: Reuse for Network Experimentation, 2009. 6th USENIX
Symposium on Networked Systems Design and Implementation.

[KLW09] G. Kunz, O. Landsiedel, and K. Wehrle. Poster Abstract: Horizon
- Exploiting Timing Information for Parallel Network Simulation. In
Proceedings of the 17th International IEEE Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
2009.

[KLW10] G. Kunz, O. Landsiedel, and G. Wittenburg. From Simulations to
Deployments. In K. Wehrle, M. Günes, and J. Gross, editors, Modeling
and Tools for Network Simulation, chapter 6, pages 83–97. Springer,
Berlin, Germany, April 2010.

[Koc11] T. Koch. Zimpl User Guide, 2011.

[KRT02] I. Koffman, V. Roman, and R. Technol. Broadband Wireless Access
Solutions based on OFDM Access in IEEE 802.16. IEEE Communica-
tions Magazine, 40(4):96–103, 2002.

[KSGW11] G. Kunz, M. Stoffers, J. Gross, and K. Wehrle. Runtime Efficient Event
Scheduling in Muti-threaded Network Simulation. In Proceedings of the
4th International Workshop on OMNeT++, 2011.

Bibliography 195

[KSGW12a] G. Kunz, D. Schemmel, J. Gross, and K. Wehrle. Multi-level Paral-
lelism for Time- and Cost-efficient Parallel Discrete Event Simulation
on GPUs. In Proceedings of the 26th ACM/IEEE/SCS Workshop on
Principles of Advanced and Distributed Simulation, 2012.

[KSGW12b] G. Kunz, M. Stoffers, J. Gross, and K. Wehrle. Know Thy Simulation
Model: Analyzing Event Interactions for Probabilistic Synchronization
in Parallel Simulations. In Proceedings of the 5th International ICST
Conference on Simulation Tools and Techniques, 2012.

[KSW+08] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, PT Haneveld, TEV
Parker, OW Visser, HS Lichte, and S. Valentin. Simulating Wireless
and Mobile Networks in OMNeT++ – The MiXiM Vision. In Pro-
ceedings of the 1st International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops,
2008.

[KTGW11] G. Kunz, S. Tenbusch, J. Gross, and K. Wehrle. Predicting Runtime
Performance Bounds of Expanded Parallel Discrete Event Simulations.
In Proceedings of the 19th International IEEE Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
2011.

[KTGW12] G. Kunz, S. Tenbusch, J. Gross, and K. Wehrle. Poster Abstract: Ex-
tending the OMNeT++ Sequence Chart for Supporting Parallel Sim-
ulations in Horizon, 2012.

[Kun10] G. Kunz. Parallel Discrete Event Simulation. In K. Wehrle, M. Günes,
and J. Gross, editors, Modeling and Tools for Network Simulation,
chapter 8, pages 121–131. Springer, Berlin, Germany, April 2010.

[LA96] M. Liljenstam and R. Ayani. A Model for Parallel Simulation of Mobile
Telecommunication Systems. In Proceedings of 4th International IEEE
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 1996.

[LA97] M. Liljenstam and R. Ayani. Partitioning PCS for Parallel Simula-
tion. In Proceedings 5th International IEEE Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
1997.

[Law96] K. P. Lawton. Bochs: A Portable PC Emulator for Unix/X. Linux
Journal, 1996(29):7, 1996.

[LAW08] O. Landsiedel, H. Alizai, and K. Wehrle. When Timing Matters: En-
abling Time Accurate and Scalable Simulation of Sensor Network Ap-
plications. In Proceedings of the 2008 International Conference on In-
formation Processing in Sensor Networks, 2008.

[LF00] M. Loper and R. M. Fujimoto. Pre-sampling as an Approach for Ex-
ploiting Temporal Uncertainty. In Proceedings of the 14th Workshop
on Parallel and Distributed Simulation, 2000.

196 Bibliography

[LF04] M. Loper and R. M. Fujimoto. A Case Study in Exploiting Temporal
Uncertainty in Parallel Simulations. In Proceedings of the 2004 Inter-
national Conference on Parallel Processing, 2004.

[LGW06] O. Landsiedel, S. Gotz, and K. Wehrle. Towards Scalable Mobility in
Distributed Hash Tables. In Proceedings of the International Confer-
ence on Peer-to-Peer Computing, 2006.

[Lin92] Y. B. Lin. Parallelism Analyzers for Parallel Discrete Event Simula-
tion. Transactions on Modeling and Computer Simulation, 2(3):239–
264, July 1992.

[Liu09] J. Liu. Parallel Discrete-Event Simulation. John Wiley & Sons, 2009.

[LK78] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of Scheduling
under Precedence Constraints. Operations Research, 26(1):22–35, 1978.

[LKGW09] O. Landsiedel, G. Kunz, S. Götz, and K. Wehrle. A Virtual Plat-
form for Network Experimentation. In Proceedings of the 1st ACM
SIGCOMM Workshop on Virtualized Infastructure Systems and Archi-
tectures, 2009.

[LL91] Y. B. Lin and E. D. Lazowska. A time-division Algorithm for Parallel
Simulation. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 1(1):73–83, January 1991.

[LLH09] J. Liu, Y. Li, and Y. He. A Large-scale Real-time Network Simulation
Study Using PRIME. In Proceedings of the 2009 Winter Simulation
Conference, 2009.

[LN01] J. Liu and D. Nicol. Learning Not to Share. In Proceedings 15th
Workshop on Parallel and Distributed Simulation, 2001.

[LN02] J. Liu and D. M. Nicol. Lookahead Revisited in Wireless Network
Simulations. In Proceedings of the 16th Workshop on Parallel and Dis-
tributed Simulation, 2002.

[LNPP99] J. Liu, D. M. Nicol, B. J. Premore, and A. L. Poplawski. Performance
Prediction of a Parallel Simulator. In Proceedings of the 13th Workshop
on Parallel and Distributed Simulation, 1999.

[LNT01] J. Liu, D. M. Nicol, and K. Tan. Lock-free Scheduling of Logical Pro-
cesses in Parallel Simulation. In Proceedings of the 15th Workshop on
Parallel and Distributed Simulation, 2001.

[LR09] E. W. Lynch and G. F. Riley. Hardware Supported Time Syn-
chronization in Multi-core Architectures. In Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Dis-
tributed Simulation, 2009.

[LTE06] 3rd Generation Partnership Project. Technical Specification Group Ra-
dio Access Network. Physical layer aspects for evolved Universal Ter-
restrial Radio Access (UTRA) (Release 7), 3GPP TR 25.814 V7.1.0,
2006.

Bibliography 197

[Lub88] B. D. Lubachevsky. Efficient Distributed Event Driven Simulations
of Multiple-loop Networks. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, 1988.

[Mat93] F. Mattern. Efficient Algorithms for Distributed Snapshots and Global
Virtual Time Approximation. In Journal of Parallel and Distributed
Computing, 1993.

[MB98] R. A. Meyer and R. L. Bagrodia. Improving Lookahead in Parallel
Wireless Network Simulation. In Proceedings of the 6th International
IEEE Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, 1998.

[MB99] R. A. Meyer and R. L. Bagrodia. Path Lookahead: A Data Flow View
of PDES Models. In Proceedings of the 13th Workshop on Parallel and
Distributed Simulation, 1999.

[MCE+02] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Håll-
berg, J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A
Full System Simulation Platform. Computer, 35(2):50–58, 2002.

[MCM11] M. Moeng, Sangyeun Cho, and R. Melhem. Scalable Multi-cache Sim-
ulation Using GPUs. In Proceedings of the 19th International IEEE
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2011.

[MF99] S. McCanne and S. Floyd. UCB/LBNL/VINT Network Simulator - ns
(version 2), 1999.

[mob] Mobility Framework. http://mobility-fw.sourceforge.net/.

[Moo65] G. E. Moore. Cramming more Components onto Integrated Circuits.
Electronics, 38(8):82–85, 1965.

[MSMO97] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Be-
havior of the TCP Congestion Avoidance Algorithm. SIGCOMM Com-
puter Communication Review, 27(3):67–82, July 1997.

[MTK06] A. Markopoulou, F. Tobagi, and M. Karam. Loss and Delay
Measurements of Internet Backbones. Computer Communications,
29(10):1590–1604, June 2006.

[MVB10] S. De Munck, K. Vanmechelen, and J. Broeckhove. Design and Perfor-
mance Evaluation of a Conservative Parallel Discrete Event Core for
GES. In Proceedings of the 3rd International Conference on Simulation
Tools and Techniques, 2010.

[NG10] F. Naghibi and J. Gross. How Bad is Interference in IEEE 802.16e
Systems? In Proceedings of the 16th European Wireless Conference,
2010.

[Nic96] D. M. Nicol. Principles of Conservative Parallel Simulation. In Pro-
ceedings of the 28th Winter Simulation Conference, 1996.

http://mobility-fw.sourceforge.net/

198 Bibliography

[Nic03] D. M. Nicol. Darpa Network Modeling and Simulation (NMS) Baseline
Network Topology. online, [last accessed 3rd June 2012], 2003.

[NL02] D. M. Nicol and J. Liu. Composite Synchronization in Parallel Discrete-
Event Simulation. IEEE Transactions on Parallel Distributed Systems,
13(5):433–446, May 2002.

[NPJS10] M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla. SCGPSim:
A fast SystemC Simulator on GPUs. In Proceedings of the 15th Asia
and South Pacific Design Automation Conference, 2010.

[NVI] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. Whitepaper, V1.1.

[OLG+07] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell. A Survey of General-Purpose Computa-
tion on Graphics Hardware. Computer Graphics Forum, 26(1):80–113,
March 2007.

[omna] OMNeT++ 4.2 Manual. online [last accessed 26 September 2012].

[omnb] OMNeT++ Website. online [last accessed 26 September 2012].

[opn] OPNET Modeler, OPNET Technologies, Inc., Bethesda, Maryland,
USA. online [last accessed 26 September 2012].

[PAYS09] K. S. Perumalla, B. G. Aaby, S. B. Yoginath, and S. K. Seal. GPU-
based Real-Time Execution of Vehicular Mobility Models in Large-
Scale Road Network Scenarios. In Proceedings of the 23rd Workshop
on Principles of Advanced and Distributed Simulation, 2009.

[pdn] PDNS - Parallel/Distributed NS. http://www.cc.gatech.edu/
computing/compass/pdns/.

[PEG11] O. Puñal, H. Escudero, and J. Gross. Performance Comparison of
Loading Algorithms for 80 MHz IEEE 802.11 WLANs. In Proceedings
of the 73rd IEEE Vehicular Technology Conference, 2011.

[Pei12] M. Peiter. Load Balancing in Parallel Discrete Event Simulations on
Multiprocessor Systems. Bachelor’s Thesis, RWTH Aachen University,
2012.

[Per05] K. S. Perumalla. µsik – A Micro-Kernel for Parallel/Distributed Sim-
ulation Systems. In Proceedings of the 19th Workshop on Principles of
Advanced and Distributed Simulation, 2005.

[Per06a] K. S. Perumalla. Discrete-event Execution Alternatives on General
Purpose Graphical Processing Units (GPGPUs). In Proceedings of the
20th Workshop on Principles of Advanced and Distributed Simulation,
2006.

[Per06b] K. S. Perumalla. Parallel and Distributed Simulation: Traditional
Techniques and Recent Advances. In Proceedings of the 38th Winter
Simulation Conference, 2006.

http://www.cc.gatech.edu/computing/compass/pdns/
http://www.cc.gatech.edu/computing/compass/pdns/

Bibliography 199

[PF10] H. Park and P. A. Fishwick. A GPU-Based Application Framework
Supporting Fast Discrete-Event Simulation. Simulation, 86(10):613–
628, October 2010.

[PF11] H. Park and P. A. Fishwick. An Analysis of Queuing Network Simula-
tion using GPU-based Hardware Acceleration. ACM Transactions on
Modeling and Computer Simulation, 21(3):18:1–18:22, February 2011.

[PFTK98] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
Throughput: A Simple Model and its Empirical Validation. SIG-
COMM Computer Communication Review, 28(4):303–314, October
1998.

[PG13] D. Parruca and J. Gross. Rate Selection Analysis under Semi-Persistent
Scheduling in LTE Networks. In Proceedings of the International Con-
ference on Computing, Networking and Communications, 2013.

[PGM08] P. Peschlow, M. Geuer, and P. Martini. Logical Process Based Sequen-
tial Simulation Cloning. In Proceedings of the 41st Annual Simulation
Symposium, 2008.

[PHM07] P. Peschlow, T. Honecker, and P. Martini. A Flexible Dynamic Parti-
tioning Algorithm for Optimistic Distributed Simulation. In Proceed-
ings of the 21st International Workshop on Principles of Advanced and
Distributed Simulation, 2007.

[PM07] P. Peschlow and P. Martini. Efficient Analysis of Simultaneous Events
in Distributed Simulation. In Proceedings of the 11th IEEE Interna-
tional Symposium on Distributed Simulation and Real-Time Applica-
tions, 2007.

[PML08] P. Peschlow, P. Martini, and J. Liu. Interval Branching. In Proceed-
ings of the 22nd Workshop on Principles of Advanced and Distributed
Simulation, 2008.

[PPFR03] K. S. Perumalla, A. Park, R. M. Fujimoto, and G. F. Riley. Scalable
RTI-Based Parallel Simulation of Networks. In Proceedings of the 17th
Workshop on Parallel and Distributed Simulation, 2003.

[PR11] J. Pelkey and G. F. Riley. Distributed Simulation with MPI in ns-3. In
Proceedings of the 4th International ICST Conference on Simulation
Tools and Techniques, 2011.

[PVM09] P. Peschlow, A. Voss, and P. Martini. Good News for Parallel Wireless
Network Simulations. In Proceedings of the 12th International Con-
ference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, 2009.

[PVPS09] T. Preis, P. Virnau, W. Paul, and J. J. Schneider. GPU Accelerated
Monte Carlo Simulation of the 2D and 3D Ising Model. Journal of
Computational Physics, 228(12):4468–4477, July 2009.

200 Bibliography

[PVQ09] A. Pellegrini, R. Vitali, and F. Quaglia. Di-DyMeLoR: Logging
only Dirty Chunks for Efficient Management of Dynamic Memory
Based Optimistic Simulation Objects. In Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Dis-
tributed Simulation, 2009.

[PVQ11] A. Pellegrini, R. Vitali, and F. Quaglia. The ROme OpTimistic Simula-
tor: Core Internals and Programming Model. In Proceedings of the 4th
International ICST Conference of Simualtion Tools and Techniques,
2011.

[QS03] F. Quaglia and A. Santoro. Nonblocking Checkpointing for Optimistic
Parallel Simulation: Description and an Implementation. IEEE Trans-
actions on Parallel and Distributed Systems, 14(6):593–610, 2003.

[qua] Qualnet Simulator, SCALABLE Network Technologies, Inc., Los An-
geles, California, USA. online [last accessed 26 September 2012].

[Qua01] F. Quaglia. A Cost Model for Selecting Checkpoint Positions in Time
Warp Parallel Simulation. IEEE Transactions on Parallel Distributed
Systems, 12(4):346–362, April 2001.

[RAT93] H. Rajaei, R. Ayani, and L.-E. Thorelli. The Local Time Warp Ap-
proach to Parallel Simulation. In Proceedings of the 7th Workshop on
Parallel and Distributed Simulation, 1993.

[RBF08] M. Ramadas, S. Burleigh, and S. Farrell. Licklider Transmission Pro-
tocol - Specification. RFC 5326 (Proposed Standard), September 2008.

[Rei07] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly Media, Inc., 2007.

[RFA99] G. F. Riley, R. M. Fujimoto, and M. H. Ammar. A Generic Framework
for Parallelization of Network Simulations. In Proceedings of the 7th
International IEEE Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, 1999.

[Ril03] G. F. Riley. The Georgia Tech Network Simulator. In Proceedings
of the ACM SIGCOMM Workshop on Models, Methods and Tools for
Reproducible Network Research, 2003.

[SB07] K. L. Scott and S. Burleigh. Bundle Protocol Specification. RFC 5050
(Proposed Standard), November 2007.

[SBW88] L. M. Sokol, D. P. Briscoe, and A. P. Wieland. MTW: A Strategy for
Scheduling Discrete Simulation Events for Concurrent Execution. In
SCS Multiconference on Distributed Simulation, 1988.

[Sch11] D. Schemmel. Exploiting Multi-Level Parallelism in Discrete Event
Simulations using General Purpose Programming Techniques on
Graphics Processing Units. Bachelor’s Thesis, RWTH Aachen Uni-
versity, 2011.

Bibliography 201

[Sch12] S. Schöppel. Predicting the Resource Usage of Web Applications.
Diploma Thesis, RWTH Aachen University, 2012.

[Seg09] G. Seguin. Multi-core Parallelism for ns-3 Simulator. Technical report,
INRIA Sophia-Antipolis, 2009.

[SF87] S. M. Swope and R. M. Fujimoto. Optimal Performance of Distributed
Simulation Programs. In Proceedings of the 19th Winter Simulation
Conference, 1987.

[SHC+04] V. Shnayder, M. Hempstead, B. Chen, G. Werner Allen, and M. Welsh.
Simulating the Power Consumption of Large-scale Sensor Network Ap-
plications. In Proceedings of the 2nd Internal Conference on Embedded
Networked Sensor Systems, 2004.

[SL05] H. Sutter and J. Larus. Software and the Concurrency Revolution.
Queue – Multiprocessors, 3(7):54–62, September 2005.

[SMD+10] A. C. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Es-
baugh. Parallelism via Multithreaded and Multicore CPUs. Computer,
43(3):24–32, March 2010.

[SPBP06] N. Spring, L. Peterson, A. Bavier, and V. Pai. Using PlanetLab for Net-
work Research: Myths, Realities, and Best Practices. ACM SIGOPS
Operating Systems Review, 40(1):17–24, January 2006.

[SR93] S. Srinivasan and P. F. Reynolds. On Critical Path Analysis of Parallel
Discrete Event Simulations, May 1993. Technical Report No. CS-93-29,
University of Virginia.

[SR95] S. Srinivasan and P. F. Reynolds. Super-criticality Revisited. In Pro-
ceedings of the 9th Workshop on Parallel and Distributed Simulation,
1995.

[SRTR09] R. Seggelmann, I. Rüngeler, M. Tüxen, and E. P. Rathgeb. Paralleliz-
ing OMNeT++ Simulations using Xgrid. In Proceedings of the 2nd
International Conference on Simulation Tools and Techniques, 2009.

[SS98] T. K. Som and R. G. Sargent. A Probabilistic Event Scheduling Policy
for Optimistic Parallel Discrete Event Simulation. In Proceedings of
the 12th Workshop on Parallel and Distributed Simulation, 1998.

[Ste93] J. S. Steinman. Breathing Time Warp. In Proceedings of the 7th Work-
shop on Parallel and Distributed Simulation, 1993.

[Sto11] M. Stoffers. Heuristic Based Synchronization in Parallel Discrete Event
Simulations using Automatic Dependency Analysis. Master’s Thesis,
RWTH Aachen University, 2011.

[Sut05] H. Sutter. The Free Lunch is Over: A Fundamental Turn toward
Concurrency in Software. Dr. Dobb’s Journal, 30(3):202–210, 2005.

202 Bibliography

[SVE03] A. Sekercioglu, A. Varga, and G. Egan. Parallel Simulation Made
Easy with OMNeT++. In Proceedings of the European Simulation
Symposium, 2003.

[SW05] R. Steinmetz and K. Wehrle. Peer-to-Peer Systems and Applications,
volume 3485. Springer, 2005.

[SWM91] L. M. Sokol, J. B. Weissman, and P. A. Mutchler. MTW: An Empiri-
cal Performance Study. In Proceedings of the 23rd Winter Simulation
Conference, 1991.

[Ten10] S. Tenbusch. Load Scheduling and Performance Estimation in Parallel
Network Simulation. Bachelor’s Thesis, RWTH Aachen University,
2010.

[TLP05] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable Sensor
Network Simulation with Precise Timing. In Proceedings of the 4th In-
ternational Symposium on Information Processing in Sensor Networks,
2005.

[TMB01] M. Takai, J. Martin, and R. L. Bagrodia. Effects of Wireless Phys-
ical Layer Modeling in Mobile Ad-hoc Networks. In Proceedings of
the 2nd ACM Internal Symposium on Mobile Ad-hoc Networking and
Computing, 2001.

[Tod02] M. J. Todd. The Many Facets of Linear Programming. Mathematical
Programming, 91(3):417–436, February 2002.

[TPF+05] Y. Tang, K. S. Perumalla, R. M. Fujimoto, H. Karimabadi, J. Driscoll,
and Y. Omelchenko. Optimistic Parallel Discrete Event Simulations of
Physical Systems Using Reverse Computation. In Proceedings of the
19th Workshop on Principles of Advanced and Distributed Simulation,
2005.

[TQ08] R. Toccaceli and F. Quaglia. DyMeLoR: Dynamic Memory Logger
and Restorer Library for Optimistic Simulation Objects with Generic
Memory Layout. In Proceedings of the 22nd Workshop on Principles
of Advanced and Distributed Simulation, 2008.

[TX92] S. Turner and M. Xu. Performance Evaluation of the Bounded Time
Warp Algorithm. In Proceedings of the 6th Workshop on Parallel and
Distributed Simulation, 1992.

[Var01] A. Varga. The OMNeT++ Discrete Event Simulation System. In
Proceedings of the 15th European Simulation Multiconference, 2001.

[VH08] A. Varga and R. Hornig. An Overview of the OMNeT++ Simulation
Environment. In Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, 2008.

Bibliography 203

[VPQ10] R. Vitali, A. Pellegrini, and F. Quaglia. Autonomic Log/Restore for
Advanced Optimistic Simulation Systems. In Proceedings of the 18th
International IEEE Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, 2010.

[VPQ12] Roberto V., A. Pellegrini, and F. Quaglia. Towards Symmetric Multi-
threaded Optimistic Simulation Kernels. In Proceedings of the 26th
ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed
Simulation, 2012.

[VSE03] A. Varga, Y. A. Sekercioglu, and G. K. Egan. A Practical Efficiency
Criterion for the Null Message Algorithm. In Proceedings of the Euro-
pean Simulation Symposium, pages 26–29, 2003.

[Wey11] M. Weyres. Clustering of Mobile Stations for Interference Coordina-
tion in Dynamic OFDMA Systems. Diploma Thesis, RWTH Aachen
University, 2011.

[WGG10] K. Wehrle, M. Günes, and J. Gross, editors. Modeling and Tools for
Network Simulation. Springer Verlag, Berlin, Germany, April 2010.

[WGLW12] E. Weingaertner, R. Glebke, M. Lang, and K. Wehrle. Building a mod-
ular BitTorrent model for ns-3. In Proceedings of the 2012 workshop
on ns-3, 2012.

[WSR+92] F. Wieland, T. Som, P. Reiher, J. Wedel, and D. Jefferson. A Crit-
ical Path tool for Parallel Simulation Performance Optimization. In
Proceedings of the 25th Hawaii International Conference on System
Sciences, 1992.

[XB07] Z. Xu and R. Bagrodia. GPU-Accelerated Evaluation Platform for
High Fidelity Network Modeling. In Proceedings of the 21st Internal
Workshop on Principles of Advanced and Distributed Simulation, 2007.

[YM89] C. Q. Yang and B. P. Miller. Performance Measurement for Parallel
and Distributed Programs: A Structured and Automatic Approach.
IEEE Transactions on Software Engineering, 15(12):1615–1629, 1989.

[YWC07] J. Yang, Y. Wang, and Y. Chen. GPU Accelerated Molecular Dynam-
ics Simulation of Thermal Conductivities. Journal of Computational
Physics, 221(2):799–804, February 2007.

[ZBG98] X. Zeng, R. L. Bagrodia, and M. Gerla. GloMoSim: A Library for
Parallel Simulation of Large-scale Wireless Networks. In Proceedings
of the 12th Workshop on Parallel and Distributed Simulation, 1998.

[ZPK00] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and
Simulation: Integrating Discrete Event and Complex Dynamic Sys-
tems. Academic Press, 2000.

204 Bibliography

Curriculum Vitae

Personal Details

Last Name: Kunz
First Name: Georg Johannes
Date of Birth: January 25, 1982
Place of Birth: Emmerich, NRW, Germany
Nationality: German

Education

High School Freiherr-vom-Stein Gymnasium, Kleve
1992 – 2001 Abitur: June 2001

University RWTH Aachen University
2002 – 2007 Major: Computer Science, Minor: Biology

Degree: Dipl.-Inform., with honors

PhD Student RWTH Aachen University
2008 – 2013 Chair of Communication and Distributed Systems

Adviser: Prof. Dr.-Ing. Klaus Wehrle

	Title
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Problem Analysis
	1.1.1 Performance Factors of Parallel Discrete Event Simulation
	1.1.2 Problem Statement
	1.1.3 Research Questions

	1.2 Contributions
	1.2.1 Interplay of Contributions and Research Questions
	1.2.2 Relationship of Contributions

	1.3 Outline

	2 Parallel Discrete Event Simulation
	2.1 Discrete Event Simulation
	2.1.1 Nomenclature
	2.1.2 Execution Model
	2.1.3 Modeling Principle
	2.1.4 Comparison with other Evaluation Methodologies

	2.2 Goals and Challenges of Parallelization
	2.2.1 The Need for Parallel Discrete Event Simulation
	2.2.2 Approaches to Parallelization
	2.2.3 Challenges of Parallel Event Execution

	2.3 Concepts of Parallel Discrete Event Simulation
	2.3.1 Workload Partitioning
	2.3.2 Causal Correctness
	2.3.3 Synchronization Schemes
	2.3.4 Parallel Event Execution Environments

	2.4 Parallel Discrete Event Simulation Frameworks
	2.4.1 Overview
	2.4.2 Comparison and Conclusion

	3 Parallel Expanded Event Simulation
	3.1 Motivation
	3.2 Problem Analysis
	3.2.1 Properties of Wireless System Models
	3.2.2 Modeling Time-Spans in Discrete Event Simulation
	3.2.3 Goals

	3.3 Parallel Expanded Event Simulation
	3.3.1 General Idea
	3.3.2 Expanded Events
	3.3.3 Sequential Expanded Event Execution Model
	3.3.4 Parallel Expanded Event Execution Model
	3.3.5 Determining Event Durations
	3.3.6 Related Work
	3.3.7 Summary

	3.4 The Horizon Simulation Framework
	3.4.1 Centralized Parallelization Architecture
	3.4.2 Implementation of the Horizon Framework
	3.4.3 Related Work
	3.4.4 Evaluation
	3.4.5 Summary

	3.5 Minimizing the Parallelization Overhead
	3.5.1 Analyzing the Parallelization Overhead
	3.5.2 Goals and Achievements
	3.5.3 Efficient Event Scheduling
	3.5.4 Related Work
	3.5.5 Evaluation
	3.5.6 Summary

	3.6 Discussion and Limitations
	3.6.1 Parallel Expanded Event Simulation
	3.6.2 Horizon

	3.7 Conclusions

	4 Probabilistic Synchronization
	4.1 Motivation
	4.2 Problem Analysis
	4.2.1 Limitations of Classic Synchronization
	4.2.2 Complexity vs. Accuracy

	4.3 Related Work
	4.3.1 Limiting Optimism By Means of Time Windows
	4.3.2 Probabilistic Synchronization
	4.3.3 Lookahead Extraction
	4.3.4 Hybrid Synchronization Schemes

	4.4 Probabilistic Synchronization
	4.4.1 Design Goals and General Concept
	4.4.2 Arrival Pattern Heuristic
	4.4.3 Global Order Heuristic
	4.4.4 Local Order Heuristic

	4.5 Discussion
	4.5.1 Relation to Parallel Expanded Event Simulation
	4.5.2 Relation to Horizon

	4.6 Evaluation
	4.6.1 Implementation
	4.6.2 Synthetic Benchmarks
	4.6.3 Case Study
	4.6.4 Synchronization Phases

	4.7 Conclusions

	5 Multi-level Parallelism on GPUs
	5.1 Motivation
	5.2 Challenges of Integrating GPUs with PDES
	5.2.1 Lockstep Execution of Threads
	5.2.2 Memory Size, Latency, and Control Overhead

	5.3 Related Work
	5.3.1 Integrating GPUs with PDES
	5.3.2 Efficient Execution of Parameter Studies

	5.4 Multi-level Parallelization on GPUs
	5.4.1 SIMT-compatible workload using External Parallelism
	5.4.2 Hiding Memory Latencies using Internal Parallelism

	5.5 Discussion
	5.5.1 Integration of Parallel Expanded Event Simulation
	5.5.2 Restrictions of the Programming Environment
	5.5.3 Limited GPU-Memory

	5.6 Implementation
	5.6.1 Programming Interface
	5.6.2 Memory Management
	5.6.3 Pipelined Execution

	5.7 Evaluation
	5.7.1 Synthetic Benchmarks
	5.7.2 Case Study

	5.8 Conclusions

	6 Performance Analysis of Parallel Expanded Event Simulations
	6.1 Motivation
	6.2 Problem Analysis
	6.3 Related Work
	6.3.1 Critical Path Analysis
	6.3.2 Synchronization Overhead Estimation
	6.3.3 Resource-based Performance Analyzers

	6.4 Performance Analysis Methodology
	6.4.1 Tracing Simulation Runtime Data
	6.4.2 Problem Definition
	6.4.3 Mixed Integer Linear Program Formulation

	6.5 Scalability Improvements
	6.5.1 Splitting Schedules
	6.5.2 Eliminating Events with Insignificant Processing Times
	6.5.3 Relaxations

	6.6 Evaluation
	6.6.1 Methodology
	6.6.2 Accuracy
	6.6.3 Scalability
	6.6.4 Analyzing Event Schedules for Performance Optimization

	6.7 Discussion and Limitations
	6.8 Conclusions

	7 Summary and Conclusions
	7.1 Contributions and Achievements
	7.1.1 Parallel Expanded Event Simulation
	7.1.2 Probabilistic Synchronization
	7.1.3 Multi-level Parallelism using GPUs
	7.1.4 Performance Prediction and Analysis

	7.2 Application of our Work
	7.3 Future Directions
	7.3.1 Earliest-Completion-Time-First Scheduling
	7.3.2 Automatic Configuration of Probabilistic Synchronization
	7.3.3 Multi-level Parallelism on GPUs

	7.4 Final Remarks

	Glossary
	Bibliography

