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Abstract—We study here the problem of Antenna Domain
Formation (ADF) in cloud RAN systems, whereby multiple
remote radio-heads (RRHs) are each to be assigned to a set
of antenna domains (ADs), such that the total interference
between the ADs is minimized. We formulate the corresponding
optimization problem, by introducing the concept of interference
coupling coefficients among pairs of radio-heads. We then propose
a low-overhead algorithm that allows the problem to be solved in
a distributed fashion, among the aggregation nodes (ANs), and
establish basic convergence results. Moreover, we also propose a
simple relaxation to the problem, thus enabling us to characterize
its maximum performance. We follow a layered coordination
structure: after the ADs are formed, radio-heads are clustered
to perform coordinated beamforming using the well known
Weighted-MMSE algorithm. Finally, our simulations show that
using the proposed ADF mechanism would significantly increase
the sum-rate of the system (with respect to random assignment
of radio-heads).

Index Terms—5G, Cloud RAN, radio head assignment, antenna
domain formation, interference coupling, block coordination
descent

I. INTRODUCTION

The Cloud-Radio Access Network (C-RAN) is identified as
one of the promising architectures to address the challenges
of 5G systems, namely, the requirement for high spectral
efficiency within a particularly dense deployment (both users
and access nodes) [1]. C-RAN systems are characterized as
a centralized solution for interference coordination: remote
radio-heads (RRH) act as access nodes, and their baseband
processing capabilities vary from full digital signal processing
capability (i.e., base stations), to ‘dumb antennas’ with no
baseband capabilities (such as distributed MIMO systems).
Such radio-heads are connected via high-capacity (possibly
wireless) links to so-called aggregation nodes (ANs), each
essentially acting as a large processing unit. Thus, such archi-
tectures are natural candidates for interference coordination.

In dense deployments, coordination among base stations
was identified as the key to achieving high spectral efficiency:
indeed the ideas of Coordinated Multi-point (CoMP) [2], [3]
and Interference Alignment (IA) [4], [5] were central to
achieve higher spectral efficiency. However, when applied
to conventional cellular systems, such techniques have the
stringent requirement that they need to be distributed, i.e., to
only use local CSI at each node: the overhead associated with
such techniques has been identified as a (potentially) limiting
factor of the sum-rate gains brought about by techniques such
as IA [6], [7], [8] and [9]. This essentially puts hard limits

on the effectiveness of the latter techniques. However, this
limitation is lifted in the C-RAN architecture, since ANs
can be assumed to have perfect CSI of a large area, and
can perform coordination in a centralized manner. Earlier
related work has been reported in [10] where the authors
investigate the beamforming design problem (for sum-rate
maximization), in the context of cellular systems with limited
backhaul capacity.

In [11], the authors study the problem of dynamic clustering
in dense deployments (for joint transmission), by characteriz-
ing the statistics of the instantaneous signal-to-interference-
and-noise ratio (SINR), via tools from stochastic geometry. In
our earlier paper [12], we investigated radio-head coordination
(namely coordinated beamforming), in a typical Cloud RAN
setup, with a large number of radio-heads and users, served
by one AN. In this work, however, we look higher into the
coordination hierarchy, by investigating the so-called Antenna
Domain Formation (ADF) problem: given a set of radio-heads
(each serving a set of users), and a set of ANs, what is the
best assignment of radio-heads to ANs, such that the total
interference leakage between the ADs, is minimized. Studying
the latter setup is the main contribution and novelty of this
paper. In that sense, we formulate the ADF problem as integer
programming problem, and devise an iterative algorithm for
solving it. We also relax the latter problem to obtain a
lower bound on the maximum performance of our algorithm.
Moreover, we investigate the effect of using a layered coor-
dination structure, whereby further coordination mechanism
(coordinated beamforming) are put in place. We underline the
that fact that this work is currently being extended to a journal
form[13].

In the following, we use bold upper-case letters to denote
matrices, bold lower-case to denote vectors, and calligraphic
letters to denote sets. Furthermore, for a given matrix AAA,
[AAA]i:j denotes the matrix formed by taking columns i to j,
of AAA, ‖AAA‖2F its Frobenius norm, |AAA| its determinant, AAAT

its transpose, and AAA† its conjugate transpose . [AAA]i,j = ai,j
denotes element (i, j) in a matrix AAA, and [aaa]i element i in
a vector aaa. While IIIn denotes the n × n identity matrix,
111n denotes the n × 1 vector of ones, BN denotes space of
N -dimensional binary vectors, and ΠS [xxx] is the Euclidean
projection of a vector xxx, into some (possibly non-convex) set
S.
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Fig. 1: Toy Example

II. SYSTEM MODEL

Given a large area of interest, i.e. a spatial area of a certain
size, with N of RRHs and A ANs, we wish to address the
issue of ADF, i.e. which radio heads should be assigned to
which AN. In other words, given a set R of radio heads in an
area, the problem is to assign them to a set of ADs (where each
AD is controlled by one AN) A , such that total interference
coupling between the ADs is minimal. Let A denote a set of
ANs (where A , |A|), and R the set of radio-heads where
N = |R|.

We assume that radio head i ∈ R is equipped with Mi

antennas, and serving users which are single-antenna receivers
(we assume single antenna users for simplicity of exposition,
though this can be extended to multi-antenna receivers). Let
Ui be the set of users served by radio head i ∈ R. Then,
HHHi,j ∈ C|Uj |×Mi denotes the channel from the antennas of
radio head i ∈ R, to the users served by radio head j ∈ R, i.e.
Uj , and WWW i ∈ CMi×|Ui| be the precoder that RRH i employs
to serve its users Ui. A small toy example is illustrated in
Fig. 1.

This work essentially addresses the interference between
ADs, as this type of interference limits significantly the
performance of the entire system. It is clear that for any
form of operation within the ADs, as well as for any type
of interference mitigation technique applied between the ADs,
there are more suitable and less suitable AD choices for the
radio heads.

We assume that the load has been pre-allocated among all
ANs, implying that the kth AN will have a load of γk ≥ 0. A
special case of this is when the load is equally distributed
across all ANs, i.e., γk is the same among all the ANs.
Furthermore, each RRH is to be assigned to one AN only.
Moreover, it is assumed that each AN has perfect CSI of the
users to which it is associated.

Hence, the main idea in order to form ADs is to reduce the

interference coupling between the different ADs. Denote by
αi,j ∈ R+ the interference leakage between radio head i ∈ R
and radio head j ∈ R, and note that this denotes the leakage
in the direction of j, i.e. αi,j is a measure that represents
the interference caused by RRH i on terminals associated to
RRH j, if i and j are assigned to be in different ADs. Due to
asymmetric channel gains and terminal associations, notice in
particular that αi,j 6= αj,i.

Thus, we define a coupling coefficient ci,j as the interfer-
ence coupling coefficient between RRH i and RRH j. The
latter can be then viewed as the cost of having both radio
heads in the same AD. Thus, one intuitive choice for the latter
is to select ci,j as the total interference leakage between the
two radio heads, i.e.,

ci,j = αi,j + αj,i = ‖HHHi,jWWW j‖2F + ‖HHHj,iWWW i‖2F (1)
However, incorporating the precoders into the coupling co-
efficients makes the overall system quite challenging since
the coupling coefficients have to be updated quite frequently.
Thus, we formally define the latter quantity as,

ci,j =

{
‖HHHi,j‖2F + ‖HHHj,i‖2F , ∀ i 6= j

0 ,∀i = j
(2)

Let ΨΨΨ be the matrix formed by gathering all those coefficients,
i.e. [ΨΨΨ]i,j = ci,j , ∀ (i, j) ∈ R2, where ΨΨΨ ∈ RN×N

+ is such
that ΨΨΨ = ΨΨΨT .

Furthermore, denote by xi,k ∈ {0, 1} the binary decision
variable if RRH i is assigned to AD k (or not), and denote
by xxxk ∈ {0, 1}N the assignment vector of AN k ∈ A.
We formulate the ADF problem as the following integer
programming problem:

(P1)


min f({xi,j}) =

∑A
k=1

∑A
l 6=k

(∑N
i=1

∑N
j 6=i ci,jxi,kxj,l

)
s. t.

∑N
i=1 βi,kxi,k = γk, ∀k ∈ A∑A
k=1 xi,k ≤ 1, ∀i ∈ R

xi,k ∈ {0, 1}, ∀(i, k) ∈ A×R
Note that one can rewrite the above problem in terms of {xxxk}
as follows,

(P2)


min f({xxxk}) =

∑A
k=1

∑A
l 6=k xxx

T
k ΨΨΨxxxl

s. t.
∑A

k=1 xxxk ≤ 111N

βββT
kxxxk = γk, xxxk ∈ BN , ∀k ∈ A

where the above inequality holds element-wise. In the above,∑A
k=1 xxxk ≤ 111N is the assignment constraint forcing that each

RRH is assigned to at most one AD. Moreover, denoting by
βββk ∈ RN

+ the set of loading factors for AD k (such that
111Tβββk = 1, ∀k ∈ A), βββT

kxxxk = γk is the loading constraint
for the kth AD (i.e. the load profile for AD k). Using this
equivalent form, it becomes evident that f indeed is not jointly
convex in all the variables, due to the coupling among xxxk and
xxxl. However, this does reveal an inherent bi-linear structure
of f (taken separately in each variable, f is linear) that we
exploit for the optimization. Intuitively, f models the sum-total
coupling that exists between the individual ADs.



III. PROPOSED ALGORITHM

A. Block Coordinate Descent

The coupling among the variables in f(xxx1, ...,xxxA), makes
(P2) a perfect candidate for a Block-Coordinate Descent
(BCD) approach (also known as the Gauss-Siedel method). In
a nutshell, BCD works iteratively, by fixing all variables but
one block, i.e. fix (xxx1, ...,xxxk−1,xxxk+1, ...,xxxA), and optimize
for xxxk, iteratively. Let n denote the iteration number, i.e.,
xxx

(n)
k denotes the value of xxxk at the nth iteration. At the nth

iteration, given that (xxx
(n)
1 , ...,xxx

(n)
k−1,xxx

(n)
k+1, ...,xxx

(n)
A ) are fixed,

xxxk is optimized accordingly.

{xxx(n+1)
k } = argmin

xxxk

f(xxx
(n+1)
1 , ...,xxx

(n+1)
k−1 ,xxxk,xxx

(n)
k+1, ...,xxx

(n)
A ),

= argmin
xxxk

f(xxxk, zzz
(n)
k ), ∀k ∈ A (3)

where
zzz

(n)
k = (xxx

(n+1)
1 , ...,xxx

(n+1)
k−1 ,xxx

(n)
k+1, ...,xxx

(n)
A )

denotes the block of fixed variables in the above BCD iter-
ation. Stated differently, in the above, xxx(n+1)

k−1 indicates that
block xxxk−1 (for instance) has been already updated, while
block xxxk+1 hasn’t. Thus, as seen from (3), BCD generates a
sequence of iterations {xxx(n)

k } that converge to a limit point
(this will be formalized later in this section). Moreover, we
note that f(xxxk, zzz

(n)
k ) (which denotes the function f(xxxk), when

the variables in block zzz(n)
k are fixed), can be rewritten as,

f(xxxk, zzz
(n)
k ) = xxxTk ΨΨΨ

(
k−1∑
l=1

xxx
(n+1)
l +

A∑
l=k+1

xxx
(n)
l

)
, xxxTk rrr

(n)
k

where rrr(n)
k , ΨΨΨ

(
k−1∑
l=1

xxx
(n+1)
l +

A∑
l=k+1

xxx
(n)
l

)
(4)

is referred to as the residual of AD k, at the nth iteration.
Moreover, we clearly see that f(xxxk, zzz

(n)
k ) is linear, implying

that when all but one block are fixed, f is linear. This indeed
shows that (P2) is equivalent to a series of problems that
are solved iteratively, and block-by-block. Now that we have
described the BCD framework, we focus on the solution of
the optimization problem in (3), within each BCD iteration.

With that in mind, the update for xxxk, i.e. xxx(n+1)
k in (3), is,

xxx
(n+1)
k =

argmin
xxxk

f(xxxk, zzz
(n)
k )

s. t. βββT
kxxxk = γk, xxxk ≤ ωωω(n)

k , xxxk ∈ BN
(5)

where ωωω(n)
k is the vector of residual assignments dependent

on the the assignments of all other ADs.

ωωω
(n)
k , 111N −

(
k−1∑
l=1

xxx
(n+1)
l +

A∑
l=k+1

xxx
(n)
l

)
(6)

The above problem is known as a mixed integer linear pro-
gram, and is NP-hard due to its inherent combinatorial nature.
However, there exists many polynomial-time approximation
algorithms that, for all practical purposes, solve it globally
(such efficient solvers are found in MATLAB and CVX).

It becomes clear at this stage that BCD transforms (P2)
into a series of A parallel subproblems, where each can be
solved in a distributed way, i.e. locally at each AN.

B. Algorithm Description

The use of BCD for solving (P2) goes hand in hand with
making the problem naturally decoupled: when {xxxl}l 6=k are
fixed, the cost function decouples in xxxk can thus be solved sep-
arately by AD k, without any loss in optimality. In that sense,
the optimal update for xxxk at AD k, depends on the assignments
at all the other ADs, that have to be shared. Given assignments
from other ADs, (xxx

(n+1)
1 , ...,xxx

(n+1)
k−1 ,xxx

(n)
k+1, ...,xxx

(n)
A ), AD k

forms the residual rrr(n)
k , and can proceed to solve its opti-

mization problem locally, and update xxx(n+1)
k . The process is

formalized in Algorithm 1.

Algorithm 1 ADF via BCD

Input: ΨΨΨ, N, A
for n = 0, 1, · · · , L− 1 do

// procedure at each AN
obtain (xxx

(n+1)
1 , ...,xxx

(n+1)
k−1 ,xxx

(n)
k+1, ...,xxx

(n)
A ) at AD k

compute residual rrr(n)
k , using (4)

compute residual assignment ωωωk, using (6)
compute xxx(n+1)

k as solution to (5)
end for
Output: {xxx(L)

1 , ...,xxx
(L)
A }

C. Convergence

Let {xxx(n)
k } be the sequence iterates produced by the BCD

in (3), and {xxx?k} , limn→∞{xxx(n)
k }. The monotonic nature of

the BCD iterations is established below.

Lemma 1 (Monotonicity). With each update xxx(n)
k → xxx

(n)
k+1, f

is non-increasing. Moreover, the sequence of function iterates
{f(xxx

(n)
1 , ...,xxx

(n)
A )}n converges to a limit point f({xxx?k}).

Proof: Refer to Appendix A
Although the above result establishes the convergence of

the proposed BCD method, it only establishes convergence to
a limit.

Remark 1. Although the updates generated by the BCD
iteration are shown to converge monotonically to a limit
point, it cannot be established that the latter corresponds to
a stationary point of f , namely due to

- the presence of the binary constraint, that prevents the
use of advanced BCD convergence results such as [14]

- the coupling in the assignment constraint, i.e. xxx1 +
... + xxxA ≤ 111N , cannot be handled by standard BCD
convergence results.

D. Performance bounds

Here we attempt to shed light on the maximum performance
that Algorithm 1 can deliver. This is achieved by relaxing
the original problem in (P2). One of the most well known
relaxations for problems such as (P2) is done by relaxing the



binary constraint on xxxk. In this case however, we note that the
loading constraint, βββT

kxxxk = γk, does not make much sense:
a quick look at this case reveals that the loading constraint
makes some problems infeasible (this is expected since it is
only effective when xxx is binary). We thus conclude that a
sensible relaxation has to involve both the binary constraint,
and the loading constraint. The resulting problem becomes,

(P3)


min f({wwwk}) =

∑A
k=1

∑A
l 6=kwww

T
k ΨΨΨwwwl

s. t.
∑A

k=1wwwk ≤ 111N ,

wwwk ∈ [0, 1]N , ∀k ∈ A
where {wwwk}, the optimization variables are no longer binary.
The fact that the optimal solution of (P3) is a lower bound
on the original problem (P2), follows immediately from the
relaxation arguments. Despite its simple form, globally solving
the above problem is not straightforward, namely due to
coupling among the variables, {wwwk}, and that f is not convex
in {wwwk} (since ΨΨΨ is not positive-definite). However, we recall
that the same BCD procedure that was used to solve (P2),
can be applied to the relaxed problem. Thus, the sequence of
iterates generated by the BCD is given by,

www
(n+1)
k =

argmin
wwwk

f(wwwk, zzz
(n)
k )

s. t. wwwk ≤ ωωω(n)
k , wwwk ∈ [0, 1]N

(7)

where f(wwwk, zzz
(n)
k ) and ωωω(n)

k are given as follows,

f(wwwk, zzz
(n)
k ) = wwwT

k ΨΨΨ

(
k−1∑
l=1

www
(n+1)
l +

A∑
l=k+1

www
(n)
l

)
, wwwT

k rrr
(n)
k

ωωω
(n)
k = 111N −

(
k−1∑
l=1

www
(n+1)
l +

A∑
l=k+1

www
(n)
l

)
(8)

Let {www(n)
k } be the sequence iterates produced by the BCD

in (7), and {www?
k} , limn→∞{www(n)

k }. Then, by applying BCD
to relaxed problem (P3), yields the desired lower bound
on (P2). Moreover, the resulting solution to (P3), {www?

k}
is such that f({xxx?k}) ≥ f({www?

k}). We recall at this stage
that {www?

k} doesn’t necessarily correspond to an assignment
variable. Thus, a natural question is whether one can obtain
an estimate of the solution to (P2), {x̂xx?k}, from the solution
of the relaxed problem {www?

k}. The relation between x̂xx?k and
www?

k can be formalized as follows,
x̂xx?k = ΠDk

[www?
k], ∀k ∈ A

where Dk = {www | www ∈ BN , βββT
kwww = γk} (9)

Stated differently, x̂xx?k is the Euclidean projection of www?
k, on the

non-convex set Dk. However, a closer look at the latter reveals
that the projection in this case, does not always yield a unique
point x̂xx?k. Consequently, although the solution of the relaxed
problem, www?

k, cannot be used as a basis for assignment, we
indeed use it as a lower bound on the cost function value that
Algorithm 1 yields.

E. System-level Operation
We use Algorithm 1 to perform the assignment of RRHs

to ADs. Then, there are additional coordination mechanisms

deployed within each AD: cooperation within the latter is done
via clusters of cooperating RRHs, that in turn are formed
based on geographical distance (using algorithms such as the
K-means). Moreover, all the radio heads in the latter cluster
perform coordinated beamforming (CB) (using the well known
Weighted MMSE (WMMSE) [15]), to iteratively optimize
their precoders. The steps in this coordination hierarchy are
detailed in the table below.

System level operation:
- Assign users to RRHs based on highest channel energy
- Compute coupling coefficients matrix ΨΨΨ
- Run ADF algorithm to obtain RRH-to-AD assignment
for each AD do

- Cluster RRH into C clusters using k-means (optional)
- Run WMMSE (within each cluster) to optimize pre-

coders
end for

The result of combining the latter two ‘coordination mech-
anisms’ is a hierarchical cooperation model: at the highest
level, RRHs are assigned into ADs (using Algorithm 1), then,
RRHs are grouped to form coordination clusters (where each
is performing coordinated beamforming). The resting network
structure is illustrated in Fig. 2. Next, we mathematically
formalized the operation and performance of the system.

1) Sum-rate performance: We assume for simplicity that
each RRH is serving J users, and that the size of each cluster,
|C(l)

m |, is the same. Moreover, let C denote the number of
clusters within each AD. Let C(l)

m denote the mth cluster (1 ≤
m ≤ C) in AN l (1 ≤ l ≤ A): then C(l)

m ⊂ R is the set of
cooperating radio heads within the lth AD (Fig 2).

For shorthand notation, we denote by ik, the ith user (1 ≤
i ≤ J), served by RRH k (1 ≤ k ≤ K). Then, hhh(l,m)

ik,j
is the

(MISO) channel from RRH j, to user ik, in C(l)
m . Similarly, we

define vvv(l,m)
ik

at the transmit precoder, used to serve user ik, in
C(l)
m . Letting Pt denote the transmit power of all radio-heads,

the SINR of user ik, in C(l)
m , is given by (10). Thus, treating

interference as noise at the users, the achievable sum-rate of
the system is as follows,

RΣ =
∑
l∈A

C∑
m=1

J∑
i=1

K∑
k=1

log2(1 + SINR(l,m)
ik

) (11)

Under this setup we advocate, each user is subject to
residual interference from users within its coordination cluster,
interference emanating from users in other clusters (but still
within the same AD), as well as interference coming from all
users present in other ADs.

2) Practical Aspects: The matrix of coupling coefficients
ΨΨΨ should available at all the ANs, prior to the start of the
algorithm: the latter can be “populated” sequentially, by having
each AD estimate all channels (both to its served users, and to
users from other ADs) via training, in an orthogonal manner.

Due to the fact that the assignment variables are binary, one
only needs a low-rate control link between all the ANs. In the
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SINR(l,m)
ik

=
Pt|(hhh(l,m)

ik,i
)†vvv

(l,m)
ik
|2∑

(p,q)6=(i,k)

Pt|(hhh(l,m)
pq,i

)†vvv
(l,m)
ik
|2 +

∑
(r,s) 6=(l,m)

∑
(p,q)

Pt|(hhh(r,s)
pq,i

)†vvv
(r,s)
pq |2 + (σ

(l,m)
ik

)2
(10)

case where A = 2, due to the bilinear structure of f , only one
iteration of Algorithm 1 is required for convergence: this is
quite beneficial since it keeps the communication overhead to a
minimal level. Moreover, one can initialize the algorithm with
several feasible solutions, and pick the best optimal solution
among them.

IV. NUMERICAL RESULTS

A. Simulation Setup

Both radio heads and users are dropped uniformly within the
area of interest (their positions are kept fixed throughout the
simulation), where no mobility is considered. Then, for each
simulation run, channels are generated randomly: all channels
are complex i.i.d, assumed to be slowly block fading.

We first investigate a system where N = 16 radio heads are
deployed, each equipped with M = 4 transmit antennas and
serving J = 2 single-antenna users (for a total of K = 32
users). The RRHs are to be assigned to one of two ANs (i.e.,
A = 2). In our simulations we assume that within each AD,
radio heads form one cluster (i.e. C = 1), thereby forming
global coordination (GC) cluster within each AD. Then,
WMMSE is employed to iteratively optimize the precoders
within each cluster. Moreover, we assume that the loading
factors are identical, whereby the RRH load is split equally
among the two ADs, i.e. βββk = 111, ∀k and γk = N/A, ∀k .

For the assignment of radio heads to ANs, we benchmark
our proposed scheme, Algorithm 1, against a randomized
assignment where radio heads are randomly assigned to each
of the ANs. Despite the fact that the latter is not a good choice,
it is however intended to be used as a lower bound on the
performance of our algorithm (the latter assignment still takes
into account the equal-loading constraint, and the fact that each
RRH is assigned to one AD only). Moreover, for this particular
(relatively small) case, we are able to find the globally optimal
solution to the ADF problem, via exhaustive search of (P1).

We also investigate two (extreme) special cases of ADF,
- ADF based on instantaneous CSI is the case detailed

in (2) where matrix of coupling coefficients ΨΨΨ is based on
instantaneous CSI: in this case, ΨΨΨ is updated every time
the channel changes, and consequently, the ADs have to
be recomputed at every channel realization

- ADF based on statistical CSI, where the coupling coef-
ficients are given by,

ci,j =

{
‖H̃HHi,j‖2F + ‖H̃HHj,i‖2F , ∀ i 6= j

0 ,∀i = j
(12)

where, analogously to HHHi,j , we define H̃HHi,j ∈ C|Uj |×Mi

as the matrix of pathloss factors from the antennas of
radio head i ∈ R, to the users of radio head j ∈ R.
Unlike the instantaneous CSI case, here ΨΨΨ is computed
at the beginning of the simulation, the ADF performed,
and remains static throughout the simulation run (since
users are static).

B. Results

The sum-rate performance (refer to (11)) that results from
the above setup is shown in Fig 3, where we compare the
performance of our algorithm, against both the random as-
signment and the optimal exhaustive search. Instantaneous CSI
is assumed for all schemes. We can clearly see a significant
performance gap between the performance of our scheme, and
that of the benchmark. Moreover, looking at the performance
of the exhasutive search, reveals that there are rather large
gains from finding the globally optimal solution to the ADF
problem.

We next investigate the extent to which replacing Instanta-
neous CSI with long-term Statistical CSI, degrades the sum-
rate performance of the system in question (we follow the
exact same setup used for the instantaneous CSI case). As
shown in Fig 4, we see the same trends discussed just above.



Power allocation per RRH (dBm)
-10 -5 0 5 10 15 20

A
v
e
ra

g
e
 s

u
m

 r
a
te

 (
b
it
s
/s

/H
z
)

25

30

35

40

45

50

55

60

Proposed ADF 

Random Assignment 

Exhaustive Search

Fig. 3: Average sum-rate performance using instantaneous CSI
M = 4, N = 16,K = 32, C = 1, J = 2
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Fig. 4: Average sum-rate performance using statistical CSI
M = 4, N = 16,K = 32, C = 1, J = 2

Fig. 5: Average leakage value (M = 4, N = 16,K = 32, C =
1, J = 2)

More importantly, as far as our algorithm is concerned, the
degradation observed by going from instantaneous to statis-
tical CSI, is extremely negligible. This can be exploited to
massively reduce the overhead and complexity of the system
(detailed in next subsection).

Following the same setup as above, we shed light on the
behavior of the proposed ADF algorithm 1, as a function of the
SNR. In Fig 5 we show the average value of f that is achieved
by Algorithm 1, as well as the lower bound discussed in III-D.
Though our algorithm greatly outperforms the benchmark, it is
relatively far from the lower-bound (derived from the relaxed
problem (P3)): however, we reiterate the fact that solutions
such as the latter, do not correspond to feasible solutions for
the ADF problem (thus are potentially not achievable within
our setup).

C. Discussions
The numerical results all point to a good performance

brought about by the application of our proposed method (both
in terms of achievable sum-rates for the system, and total
interference leakage between the ADs). Moreover, as shown
in Algorithm 1, the communication overhead requirement
among the ANs is quite negligible since it consists of binary
vectors only. With that in mind, the overhead would consist
of obtaining all the CSI needed to compute ΨΨΨ, and propagate
it to all the ANs (as often as needed). Though this might
seem too high, our simulations also clearly indicated that for
relatively static settings, ADF based on pathloss (i.e., location-
based) has virtually the same performance as the one based
on instantaneous CSI.

V. CONCLUSION AND FUTURE WORK

In this work we tackled the problem of ADF in C-RAN
systems by formulating it as an integer programming problem.
We employ the well-known BCD framework for solving the
problem and devising an iterative algorithm for that purpose.
We shed light on the convergence of the algorithm, as well
as its ‘maximal performance’ via simple relaxations. Our
simulations reveal that this approach promises to deliver good
sum-rate performance, in typical C-RAN deployments.

As mentioned earlier, we started to investigate more analyt-
ical aspects of the ADF problem, namely, better relaxation
techniques (e.g. Lagrange Relaxation), decomposition tech-
niques (e.g. Dantzig-Wolfe Decomposition), and dual problem
analysis. The latter will provide us with insights into funda-
mental lower bounds for the ADF problem. In addition, we
extended the problem formulation used here, to include both
the channel and precoder effect, rather than just the channel
energy (as seen in (1)). All the above issues are investigated
in great detail, in our subsequent work [13]. We also wish
to investigate more practical scenarios, namely the so-called
hybrid CSI case, consisting of a mix between instantaneous
and statistical CSI.
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APPENDIX

A. Proof of Lemma 1

Note that the following is a direct consequence of (5)

f({xxx(n)
k }) ≥ f(xxx

(n+1)
1 , zzz

(n)
1 ) ≥ f(xxx

(n+1)
2 , zzz

(n)
2 )...

≥ f(xxx
(n+1)
A , zzz

(n)
A ) , f({xxx(n+1)

k })
where the last equality follows from the fact that
f(xxx

(n+1)
A , zzz

(n)
A ) corresponds to the case where all vari-

ables (xxx1, ....,xxxA), are updated. It follows that the sequence
{f(xxx

(n)
1 , ...,xxx

(n)
A )}n converges monotonically to a limit point

f0
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