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Abstract—Recently, the wireless networking community is
getting more and more interested in novel protocol designs for
safety-critical applications. These new applications come with
unprecedented latency and reliability constraints which poses
many open challenges. A particularly important one relates to the
question how to develop such systems. Traditionally, development
of wireless systems has mainly relied on simulations to identify
viable architectures. However, in this case the drawbacks of
simulations — in particular increasing run-times — rule out its
application. Instead, in this paper we propose to use probabilistic
model checking, a formal model-based verification technique,
to evaluate different system variants during the design phase.
Apart from allowing evaluations and therefore design iterations
with much smaller periods, probabilistic model checking provides
bounds on the reliability of the considered design choices. We
demonstrate these salient features with respect to the novel
EchoRing protocol, which is a token-based system designed for
safety-critical industrial applications. Several mechanisms for
dealing with a token loss are modeled and evaluated through
probabilistic model checking, showing its potential as suitable
evaluation tool for such novel wireless protocols. In particular,
we show by probabilistic model checking that wireless token-
passing systems can benefit tremendously from the considered
fault-tolerant methods. The obtained performance guarantees for
the different mechanisms even provide reasonable bounds for
experimental results obtained from a real-world implementation.

I. INTRODUCTION

With the increasing interest in critical machine-to-machine
applications, the research community faces new challenges
with respect to designing wireless networks. Traditionally,
developing wireless systems has been driven mainly by voice,
video, or data applications, characterized by soft latency and/or
reliability requirements. However, demands of critical machine-
to-machine applications are quite different as they necessitate
very short latencies (1 — 10 ms) accompanied by guaranteed
reliabilities of 1 — 1E-6 and higher. Example applications of
interest can be found in the area of industrial automation,
the smart grid, and car-to-car communications. These new
requirements open up many new challenges. On the one
hand, it is currently much debated under which circumstances
such requirements can be met, and which combination of
physical layer and link layer mechanisms achieve optimal
system performance [1]. These discussions are based mostly on
communication-theoretic modeling and mathematical analysis
to obtain principle insights.

On the other hand, a more practical challenge relates
to development methodologies to be applied once theoretic
guidelines are clarified. Two major problems arise in this
context. As the wireless channel is a random communication
medium, system design methodologies need to account for
stochastic metrics. During the design phase of protocols,
this has mainly been addressed so far through simulations.
However, due to the extremely high reliability requirements,
simulations become prohibitive with respect to their durations
when evaluating systems rigorously at an appropriate level
of confidence. A second issue relates to the parameterization
of simulations. While simulations require the definition of a
given set of parameters, a bigger interest is in providing worst-
case bounds over a set of parameter ranges. In this case, non-
determinism plays an important role, i. e., for certain parameters
it is not possible or not useful to specify a probability of
occurrence up front. With respect to simulations this leads
to an even higher computational burden as a much wider
parameter set has to be evaluated always with respect to the high
reliability levels and statistical confidence requirements. Finally,
studies [2] have shown a wide range of performance results for
a given system model when evaluating with different simulation
tools, questioning in general the credibility of simulation results.

In order to address these challenges, in this work we propose
to apply probabilistic model checking [3], [4] during the devel-
opment phase of ultra-reliable low-latency wireless networks.
Given the importance of timing requirements in this case, we
specifically employ Probabilistic Timed Automata (PTAs) [5],
[6]. PTAs extend timed automata, the main formal modeling
technique for real-time systems, with discrete probabilistic
branching. We study the suitability of PTA modeling and
analysis during the design phase of an ultra-reliable low-latency
wireless protocol called EchoRing [7]. EchoRing is an evolved
token-passing protocol featuring cooperative communication
primitives to drastically increase reliability. Several fault-
tolerant design alternatives exist with respect to dealing with
token losses. Based on a PTA-model, we study the implications
of these design alternatives on the reliability, demonstrating
that probabilistic model checking serves as a viable evaluation
tool for wireless system design, speeding-up the development
phase in comparison to simulations. The novelty of our work
relates to the application of probabilistic model checking during
the design phase of wireless systems, and by validating results



against a real-world implementation. Literature shows that
PTAs have been applied to a-posteriori verification of various
existing communication protocols [8]-[10] and other fields in
natural science, but to the best of the authors’ knowledge not to
assist in an on-going design process. To evaluate these protocols
significant pre-processing is carried out [8], [11] to reduce the
complexity such that less involved formalisms like Markov
chains can be utilized. This not only requires a deep protocol
understanding, which typically is not given while developing a
new protocol, but is also likely to abstract from critical timing
aspects. However, for time-sensitive protocols exposed to a
dynamic communication channel this may not be feasible. To
circumvent some of the drawbacks of abstractions required
in verification, hybrid approaches [12] are proposed that use
channel models from simulation engines. Other work [13]
incorporates other formal tools to alleviate the effects of state
space explosion and abstraction errors. Further, the validity of
the results in real-world environments is rarely addressed, but
identified to be crucial [12].

This work is structured as follows. Sec. II briefly presents
the wireless token ring protocol under study. Sec. III introduces
PTAs, whereas Sec. IV gives details about the developed
protocol model and the channel model. In Sec. V, we evaluate
our PTA model to derive performance bounds, and investigate
the accuracy of the predictions. Sec. VI concludes this work.

II. OVERVIEW OF ECHORING AND PROBLEM STATEMENT

In this section we first give a basic overview of the design
of EchoRing. We then provide more details on possible fault-
tolerant schemes to handle token losses.

A. Basic Protocol Functionality

The EchoRing Medium Access Control (MAC) protocol
follows a token-passing approach, comparable to the Wireless
Token Ring Protocol (WTRP) [14]. A token-passing MAC
allows the network to be decentralized and self-configuring,
two important properties that enable the network to react to
wireless channel dynamics. A further important property of
the wireless channel is its broadcast nature, i.e., stations in
range of each other can overhear others’ transmissions. This
necessitates the stations to access the medium in a logical
unambiguous ordering to avoid transmission collisions. The
resulting logical order is a ring, in which each station has a
well-defined predecessor and a successor. Such a logical ring
is distinguished by an identification number (ID) provided by
the first operating station.

The exclusive right to transmit in a ring is determined by
holding a token. Every station holds it for a specified amount
of time called Token Holding Time (THT), and forwards it at
the end of the THT. Within this period, a station may transmit
DATA packets including ACK and forwards the token to its
successor. If no packets are to be transmitted, the station sends a
NODATA packet and forwards its token. A station retransmits its
token to prevent a token loss. Token retransmissions require the
successor station to start its THT after the last token has been
received. This avoids collisions with a potentially still ongoing
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Fig. 1. Simplified Finite State Machine of the EchoRing protocol

token forwarding process. Hence, the first tokens are marked
as INTTOKEN and only the last one is marked as TOKEN.
Once the successor receives an intermediate token, it sends an
AcCK explicitly, except for the last one (the TOKEN) which is
acknowledged implicitly by a DATA or NODATA packet. This
is done to save transmission time and explains the need to
send a NODATA packet if no real payload is to be sent. After
a certain period called Token Rotation Time (TRT), a station
receives the token again. The maximum length of this period
is the Target Token Rotation Time (TTRT). TRT and TTRT
depend on the actual system load and the number of stations in
the ring. Exact timings are given in the following. Let N > 0
and M > 0 be the maximum number of token and payload
packet retransmissions, respectively. Header Length (HL) and
Payload Length (PL) represent the durations of control and
payload packets, respectively. Considering the actual number
of stations in the ring, n, the maximum number of supported
stations, n*, and Payload Transmission Time (PTT) and Token
Passing Time (TPT), these equations hold:

PTT = (M +1) - (2-HL + PL)
TPT = (N +1)-(2-HL)
THT = PTT + TPT — HL

TTRT = n* - THT
TRT = n - THT
TRT < TTRT

Token passing provides three important features for real-time
applications: It provides guaranteed medium access as the
TRT is upper-bounded. The protocol works in a distributed
fashion, eliminating the problem of a single point of failure of
centralized schemes. Finally, it keeps its characteristics even
under high utilization, in contrast to random access protocols.

B. Recovery Mechanisms

Token passing has two drawbacks. Firstly, exchanging the
token imposes overhead that requires capacity even if a station
has no payload. Yet, at least for control applications spectral
efficiency is usually of minor concern as they favor reliable data
exchange of fairly small packets. More problematic is a foken
loss. A token loss can cause a cascade of errors and therefore
the Finite State Machine (FSM) becomes complex. Under
normal conditions a station is in the IDLE, MONITORING, or
SENDING mode (shown green in Fig. 1). If token forwarding to
the respective successor is unsuccessful despite retransmissions,
the station sets a flag to leave and rejoin the ring (at a different
logical position) with potentially more favorable link conditions.
This event is called ring instability. On leaving the ring,
the station evolves to the OFFLINE mode in which it is not
allowed to process packets. Typically, this jeopardizes real-
time guarantees. Timers ensure that a token is not lost entirely.



In case retransmissions cannot prevent a token loss, a token
creation is achieved by a timer expiry at the successor. If a
station has not received a token after TTRT time units since
the receipt of the previous token, it creates a new token and
notifies the other stations by transmitting a CLAIMTOKEN
packet. After transmitting the CLAIMTOKEN or on receiving a
normal token from its predecessor, the station resets its timer
for detecting a lost token.

To prevent frequent ring instabilities, EchoRing introduces
an additional RECOVERY mode (highlighted red in Fig. 1).
This extension consists of advanced packet inspection routines.
The additional recovery strategies are aimed at enhancing the
ring stability by dynamically interpreting the condition of the
entire ring, based on partial information about the ring’s status.
The broadcast nature of the wireless channel allows to overhear
other transmissions, analyze the incoming packets, and react
to certain ones. This is exploited for the recovery mechanisms.
Hence, a station may return to the IDLE mode instead of leaving
and later rejoining the ring. Such an approach likely improves
the stability since most of the time the wireless connection is
degraded only temporarily due to fading. It can actually make
a link appear broken, when in reality it will be stable for the
next token rotation.

To successfully complete a token-forwarding process, at
least one token has to reach the successor, and an ACK has
to be received by the current token holder, be it explicit
or implicit. As the forward and backward direction may
exhibit different transmission characteristics, a token may be
successfully received, while the ACK is not. Since the token
holder is unaware of this, it leaves the ring according to the
EchoRing protocol. Another token-forwarding error occurs if
the successor does not receive at least one TOKEN. The default
routine is to wait for a CLAIMTOKEN of the successor. Current
conditions between both involved stations, however, may result
into all packets being destroyed. The current token holder
evolves to the OFFLINE in case of such a bi-directional error.

We treat RECOVERY mechanisms for two error conditions:

« Recovery 1- Uni-directional transmission error: Miss-
ing the ACK triggers this recovery mechanism. The station
has to assume that the successor never received the packet,
yielding a ring instability. If this had been the case, the
successor would have sent a CLAIMTOKEN and changed
the ring ID. If the ring ID however did not change, the
station can conclude that its successor did receive the
packet. Hence, checking for a change in the ring ID of
any overheard packet constitutes the first mechanism.

« Recovery 2 - Bi-directional transmission error: Losing
connectivity to its successor in both directions is another
major transmission error. In this case, the successor
station creates a new logical ring with a new ring ID.
This is detected again by overhearing packets from other
uninvolved stations and observing that the ring ID changed
to that of the successor. Then, the previous token holding
station assumes a short-term degradation and continues
normal operation. After receiving the TOKEN again, the
station notifies its successor of its ongoing presence.

Both mechanisms can be combined, yielding Recovery 1+2.
Once one of these errors in the current rotation is resolved,
the protocol mechanisms can repair another potential error in
the next rotation. Problems arise in solving multiple errors per
rotation, since the ring might easily get bisected as no station
has global knowledge about the condition of the entire ring.
This may result into a prolonging phase of packet collisions
due to concurrently existing logical rings. To avoid faulty ring
state interpretations, a station is not allowed to claim the token
after it failed to forward the token in the last rotation.

III. FORMAL MODELING

Treating token losses with dedicated recovery mechanisms
yields a complex protocol state machine. This complicates
checking the correctness of EchoRing, e.g., the absence of
deadlocks. In addition, an important question is to what extent
the recovery mechanisms improve the protocol’s reliability.
The features below are crucial for modeling EchoRing:

« Stochastic influence, e. g., behavior of wireless channels;

o Non-determinism, used to model packet queues and
interleaving of distributed processes;

« Notion of real-time, as EchoRing is highly time-sensitive;

« Very precise reliability statements to be enforced.

Evidently, the analysis of a model to ensure that the design
proposal is correct and can achieve the intended performance
goals is a key step. As a by-product, such a model is
helpful for fine-tuning and finding ambiguities in the informal
protocol description. Unfortunately, the traditional model-based
approaches for protocol evaluation, especially simulations, are
not a good fit as the extreme reliability levels require immense
simulation efforts. Analytical protocol evaluation techniques
are not directly applicable either, due to the complexity of the
EchoRing protocol. The various interdependencies and timing
constraints make a Markov-chain based model hard to achieve.
We therefore resort to more powerful models: Probabilistic
Timed Automata (PTAs) [5], [6], an automata-based model that
allows to account for probabilistic behavior, non-determinism,
and real-time aspects. By analyzing them in an automated
manner with the help of model checking [15], we can then
check properties, e. g., if the probability of a station leaving
the ring within ¢ time units is at most 1E-5.

A. Model Checking

Model checking is a formal verification technique. Based on
a model of the system at hand and a concise description of the
desired properties, it automatically checks whether the model
satisfies the properties. The latter are written in mathematical
logic, yielding a rigorous and unambiguous description. In
contrast to testing and simulation, model checking is not biased
to certain scenarios, but instead relies on an exhaustive state
space exploration. A model-checking result true means that the
model satisfies the property, i.e., there is no possible behavior
of the model violating it. Such hard guarantees cannot be
given using simulation or testing and are the main reason why
model checking is recommended by bodies such as National
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Aeronautics and Space Administration (NASA) and Federal
Avionics Association (FAA).

As for any model-based technique, the reliability of verifica-
tion results relies on the correctness of the system model, i.e.,
is the model adequately describing the EchoRing protocol. As
models are by nature abstractions of the reality, inaccuracies
are inevitable. We therefore developed the protocol models in
close collaboration with the protocol engineers, used a modeling
language that naturally reflects the protocol structure.

B. Probabilistic Timed Automata

PTAs extend timed automata [16], the prime formal mod-
eling technique for real-time systems, by adding probabilistic
transitions. Besides a transition system with transitions over
locations (control states), a PTA contains a set of clocks, real-
valued variables, that are used to measure the elapse of time. A
PTA state, is thus, its current location together with the actual
clock values. State changes happen in two ways: Either (i)
time progresses, causing all clocks to increase by the amount
of time passed while residing in its location, or (ii) a discrete
action occurs, assumed to happen instantaneously. By executing
an action, the PTA evolves to a given location and resets the
specified clocks to zero, as governed by a specified distribution.
Each location may be equipped with an invariant (upper bound
on clocks). This restricts the progress of time. Time can only
advance as long as the invariant is not violated. Likewise,
actions can be equipped with guards (lower and / or upper
bounds on clocks), restricting the states in which the action
can be executed. Note that clocks can only be set to zero.

Example 1: Let us give a simple PTA example. We model
a transmission attempt of a sender via a lossy channel. The
sender sends a packet, which means it is put onto the channel.
With probability 0.9, the transmission is successful and the
packet is subsequently delivered; otherwise, the packet is lost
(cf. Fig. 2c). There is one send action. On taking this action,
the clock c is set to zero. With probability 0.1, the PTA returns
to location £y. With probability 0.9, the PTA moves to /1. The
deliver action can be taken at any time point to return to .

The station attempts two transmissions (cf. Fig. 2a without time
constraints). We assume that the transmitter is not usable for
one time unit after sending a message. Once a message is sent,
the clock is reset. Exactly one time unit is then spent in location
¢ before issuing the action send_done, as indicated by the
invariant ¢ < 1 and the guard ¢ > 1. Example states of the
PTA TU are (¢1,c=0), ({1,c=%v/2), and ({1, c=1), whereas
(¢1,¢=3) is not a state as it violates the invariant of /.

A monolithic PTA for this simple example is given by
the dark part in Fig. 3. Starting left, either time passes or
a first send action is taken. Now, either the transmission is
successful (upper path, probability 0.9), and the message is
directly delivered with no elapse of time. After that, we wait
exactly one time-unit before we arrive at location Eg. Otherwise,
if the transmission is not successful, we wait a time unit before
we can send another message.

A PTA is in fact a symbolic representation of a Markov
Decision Process (MDP) which has an uncountable state space
due to the real-valued clocks. Verifying PTAs is decidable
thanks to an automated finite abstraction construction [6].
This comes with at the price of a high complexity. Checking
reachability for PTAs with just two clocks is EXPTIME-
complete [17]. To keep the complexity manageable, we exploit
a so-called digital clock semantics [6] which give rise to coarser
finite abstractions. This poses mild restrictions on the clocks
and the PTA structure, e. g., by rounding timer values to integral
numbers. For our model, these restrictions do not impose a
restriction.

C. Compositional PTA Modeling

Whereas PTAs support the appropriate mechanisms—real-
time and randomness—to model EchoRing, the sheer complex-
ity of such protocols makes a monolithic approach infeasible.
We therefore exploit the fact that PTAs can be composed, i.e.,
we can model a complex system or protocol by composing
several simpler PTAs. These component PTAs run in parallel
and synchronize on the passage of time (time evolves at the
same pace in all PTAs), as well as on common actions. This
keeps the model comprehensible and allows them to reflect
the real system structure in a natural manner.

Example 2: The station PTA, TU, and channel synchronize
on the common action send. This means that this action can
only take place if all three PTAs are able to perform it. Once it
is performed, all PTAs evolve synchronously to their respective
location. A state of such a PTA network is given by all three
PTA locations, together with the value of all clocks. Fig. 3
(including the gray part) depicts the product of these three
component PTAs. The gray locations are in fact not reachable,
and are removed in a preprocessing step. Note that formally
we have two clocks (both named c), but as they are always
synchronously reset, one has been eliminated (for the sake of
readability, the result after elimination is depicted).

To enable the modeling of complex protocols such as
EchoRing, we describe PTAs by the MODEST language [18].
This language supports the composition of PTAs, is conceptu-
ally close to programming languages, and yields comprehensive



Channel () {
clock c;
do {
send {= ¢ =0 =}
invariant (c <= 0) palt {
:9: deliver
1l {==
}
}
}
Transmitter () {
clock cj;
do {
send {= ¢ = 0 =};
invariant (¢ <= 1) when(c >= 1) send_done
}
}
Station (i) {
when (i > 0)
}
par {
:: Channel ()
Station (2)
: Transmitter ()

send; Station(i-1)

Listing 1. MODEST description of the component PTAs of Fig. 3

and easily extensible models. The MODEST tool [10] allows
a direct translation to PTAs [19] (with variables). Using the
digital clock semantics [6], such variable PTAs are mapped
onto finite (but typically huge) MDPs, by encoding the values
of clocks in a symbolic manner. The models are then amenable
to model checking by software tools such as PRISM.
Example 3: The Channel () process of Listing 1 repeatedly
synchronizes itself on the send action with a subsequent
probabilistic alternative (palt) between the deliver action
and doing nothing. Likewise, the Transmitter () process
repeatedly synchronizes on the send action, and waits for one
(ensured by when) and only one (ensured by invariant) time
unit before it starts over. The Station (i) process makes ¢
recursive calls. All processes start in parallel with 7 := 2.

IV. A PTA MODEL OF ECHORING

We describe the model of a station’s behavior, the recovery

mechanisms, packet transmission and the channel model.

A high-level view on our model is given in Fig. 4. Each
station model is built on top of a module describing the
transmission scheme, which decouples the modeling of the
actual medium access and the control schemes. The modeling
of the transmission is done on top of the (virtual) channels

to other stations, and model the outcome of the transmission.

Channels model the access to the medium, which is shared
with other stations. The main life-cycle of a station is divided
into two parts, depending on whether it currently holds the
token or not. Both parts are then divided into token-related
actions and others.

A. Station Model

For the station model, we distinguish the station to believe
it either has the token (hasToken) or not. The code listings
are for an arbitrary station.

___________ ----| no token has token
Station /—\
Transmission " receive token  transmit data
Channel | = '| Channel T J
- receive packets : transmit token
Medium AN u

Fig. 4. A stacked model view on the modeling.

HasToken () {

urgent palt { :99: SendData (STATION_C)

:01: SendNoData() }
invariant (stationTimer <= PTT)
when (stationTimer == PTT) EnterTransmitToken ()

}

Listing 2. HASTOKEN representation

Station has Token: As described in Sec. II, on receiving
a token, a station uses exactly PTT time units for data trans-
mission. When no data is to be transmitted, a NODATA packet
is sent to serve as implicit acknowledgment. We assume that
the first data packet is sent as soon as possible. After data
transmission, the station starts the token forwarding process.
Listing 2 shows the variant that data transmission is stochastic:
In 1% of the cases no data is available. Variants of this
scheme can be easily modeled. Note that the model requires
SendData and SendNoData to return within PTT time
units. SendNoData models the forwarding and delay of
pushing the according packet to the Physical Layer (PHY).
SendData waits for an additional known duration such that
an acknowledgment (ACK) can be received. After this data
transmission, we initiate the token transmission.

The counter retries keeps track of how many times
a token has been retransmitted. INTTOKEN is send first if
retries</N, and an ACK is awaited for. It then starts
listening for a given time period, measured by auxClock.
If the station receives an ACK during this period, it sets the
variable rcvAck to true. Once this period ends, we initialize
the next token retransmission. The case retries=N is
handled similarly, except that TOKEN is used.

Station has No Token: If the timer has not expired yet, a
station waits to Receivex packets according to Listing 4.
Dedicated processes handle packets depending on the content.
On receiving the final TOKEN, a station either normally
continues or evolves to OFFLINE. Once the IDLETIMER expires
(that maintains the TTRT), then depending on having had an
error in the last token forwarding process or not, the station
moves to either OFFLINE or continues, possibly by claiming
the TOKEN. Claiming a token entails that a station informs
all stations to switch to a ring with the id of the claimer. The
station then switches to this ring assuming it has the token.

The IDLETIMER deadline (itd) is set to TTRT — THT.
During initialization, we have to set adapted deadlines to
account for the fact that all clocks are initially set to zero.



EnterTransmitToken () { TransmitToken (0, false) }
TransmitToken (retries, bool rcvAck) {
urgent {= stationTimer = 0 =};
urgent alt {
:: when(retries < N)
urgent {= auxClock = 0 =}
SendIntToken () ;
WaitForAckIntToken () ;
TransmitToken (retries+1l, rcvAck)
: when (retries == N)
urgent {= auxClock = 0 =}
SendToken () ;
WaitForAckToken () ;
EnterIdle (rcvAck)
}
}
WaitForAckIntToken () {
invariant (auxClock <= 2xHL) alt {
: ReceivelIntAckToken ()
:: ReceiveUpdateRing(); WaitForAckIntToken ()
:: OverhearOther (); WaitForAckIntToken ()
: when (auxClock >= 2 && (msg_type == 0 ||
transClock != DEL_DELAY)) {==

Listing 3. TOKEN handling

EnterIdle (rcvAck)
Idle (false, rcvAck ? NO_ERR

}

Idle (rcvIntTok, errorMode) {
invariant (stationClock <= itd) alt {

TX_ERR)

: MsgFromOtherRing(); Idle(rcvIntTok, errorMode)
: ReceiveUpdateRing(); Idle(rcvIntTok, errorMode)
: ReceiveToken () ;
urgent alt ({
: when (errorMode == NO_ERR) LeavelIdle (true)
: when (errorMode != NO_ERR) Offline()
}
: ReceiveIntToken(); Idle(true, errorMode)

:: ReceiveData(); Idle(rcvIntTok, errorMode)
:: when(stationClock >= itd && (msg_type == Il

transClock != DEL_DELAY))
urgent alt {
:: when (errorMode == NO_ERR)
LeavelIdle (! rcvIntToken)
: when (errorMode != NO_ERR)
Offline ()
}
}
}
ReceiveToken () {
when (msg_type == TOKEN && msg_receiver == id &&
msg_ring == ring) receive;

}

LeavelIdle (claimToken) {
{= stationClock = 0 =
alt ¢

: when (claimToken) ClaimToken ()
:: when(!claimToken) {==
bi
HasToken ()
}

}i

Listing 4. Idle and packet reception handling in station PTA

transmit

Fig. 5. The Gilbert-Elliot channel model

transmit

Recovery Mechanisms: Recovery 1: In all but the Msg—
FromOtherRing () process, the error mode is changed to
NO_ERR. If now a station receives a packet on the ring it was
on when entering the IDLE mode, it leaves the error mode.
Recovery 2: In all but the MsgFromOtherRing () pro-
cess, a station additionally listens on the ring whose id
equals its successor. A station leaves the error mode if it
receives a packet on the ring created by its successor. Process
MsgFromOtherRing () ignores packets from rings other
than the current ring and the ring created by its successor.
Recovery 1+2: In addition, the error mode is left on receiving
a packet on one of the two rings we are listening on.

B. Packet Transmission

In the EchoRing protocol all received packets are of interest,
no matter to whom they were sent. Thus, when a Sta. A sends a
packet to B, it may also arrive at Sta. C'. The (virtual) channels
A — B and A — C are independent, i.e., whether a packet
reception succeeds at B and C' is independent of each other.
If a packet arrives at multiple stations, it arrives (roughly)
synchronously in time. We furthermore assume that either the
complete packet arrives or it does not arrive. For each packet
transmission, the station involves a helper routine, which hides
the low-level modeling of the transmission from the station-
model. The subroutine assigns the content of the packet to
medium, then starts a timer and waits until the sender can
be informed that the send routine can finish. The subroutine
waits a parameterized time until actually distributing the packet
over the channels.

On the receiver side, we have to handle both, successful and
unsuccessful receptions. Now, if the channel synchronizes via
receive, the packet can be read, and the station synchronizes
via arrive with all other stations. Here, it is important to
prevent (i) leaking information to stations that do not receive
the packet, and (ii) blocking behavior by stations that do not
receive the packet. We omit details of the modeling for brevity.

C. More Realistic Channel Models

A proper link characterization is required to obtain reason-
able PTA predictions. Since the protocol accesses the wireless
channel on very short time scales, successive transmission
attempts are not independent (as with the channel model used
in Sec. III). Neglecting the correlation factor leads to an over-
optimistic prediction that does not match reality. We use the
Gilbert-Elliot channel model [20] to more accurately capture
this effect. It is a Markov modulated process with a GOOD
and a BAD state, shown to also hold for wireless links [20].

Our channel model features two actions: Packet transmission
and changing (updating) the channel’s state. Let p, and p,



Channel_good (pg,
alt {
: send_via_this_channel {= ¢ = 0 =};
urgent palt {

pb, i) {

ipg: invariant (¢ <= 0) receive_A;
urgent Channel_good(pg, pb, 1i)
:100-pg: urgent Channel bad(pg, pb, 1)
}
: reset_Aout; palt {
i urgent Channel_good(pg, pb, 1)
:100-1: urgent Channel_bad(pg, pb, 1)

}
}
}

Listing 5. Channel model inspired by Gilbert-Elliot
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Fig. 6. PTA corresponding to our channel module

be the probability for successful packet transmission in the
GooD and BAD state, respectively (Fig. 5). To keep the channel
model simple, we couple updating and transmission, i.e., in
GoOD the transmission succeeds with probability p, and the
channel remains in the GOOD state. With probability 1—p,,
the transmission fails and the channel switches to the BAD
state. We display a PTA in Fig. 6. To account for short-time
correlation, we use a reset action. This action can be used
to reset the channel, being in the GOOD (BAD) state with
probability ¢ (1—7) because after a long period, the channel
can be assumed to be uncorrelated again, e. g., after a TRT. This
reset action can be either triggered by a timer or from the
outside. The GOOD channel process is displayed in Listing 5,
the BAD one is analogous.

Using a timer is more general, but as the EchoRing protocol
has exact timings, we can also use our knowledge about
when the timer would expire, and manually reset the channels
before the next transmission, e.g., before sending the ACK
and possibly before the TOKEN transmissions. Employing the
channel model above also means that the channel from Sta. A
to Sta. B is independent of the channel in the other direction,
which reflects real-world channels for which reciprocity is only
realized under perfectly symmetric conditions. We emphasize
that we can replace the channel model by any other PTA over
actions transmit and receive. Moreover, we can employ
different PTAs for different channels.

V. ANALYSIS RESULTS

Realizing a PTA model while developing EchoRing enabled
deep insights into the protocol. Formal modeling revealed
various inconsistencies and ambiguities. Yet, formal verification
using PTAs provides more than a check for correctness. Two
questions are of interest: (i) Which gains can be realized
with the proposed recovery mechanisms, and (ii) how closely

TABLE I
DEFINITION OF EVALUATION SCENARIOS (M =1,N =1,Z =1)

pg, 1 — 2 Db, 1 — 2 Dg,2 — 1 Pp,2 — 1
©) 0.99 0.25 0.99 0.25
® 0.99 0.25 0 0
® 0 0 0 0

the predicted behavior resembles that of real systems. After
describing the performance measure in Sec. V-A, Sec. V-B
explains the general verification set-up and gives detailed
insights into the performance gains for varying scenarios.
Sec. V-C addresses the topic of how verification results match
reality by comparing them to real-world measurements. This
enables statements about the validity of applying PTAs to judge
on the performance of real-world systems.

A. Evaluation Metric

The focus of our formal verification is on ring stability.
This motivates to consider the probability of a station moving
into the OFFLINE mode (cf. Fig. 1). Evidently, this probability
increases with the time the station is operational in the ring.

This stems from the fact that the likelihood of an erroneous
token forwarding increases when the number Z of token
rotations increases, and the fact that in our model the OFFLINE
mode cannot be left. Ring instability of Sta. A is thus

ria(Z) = Pr{Sta. A in OFFLINE within Z token rotations} .

To check the correctness of our PTA model, we checked a.o.
the probability (a) to reach a deadlock, (b) of two stations
assuming they hold the token and (c) of a station sending
anything beside ACKs when it has no token. For these checks,
only NODATA packets are sent.

B. Formal Verification Results

Verification set-up: The model checker is executed on one
CPU core of a MacBook Pro with a 2.7 GHz Intel Core i5
processor and 16 GB RAM. In the verified PTA model, the
station of interest increments a counter k on every completed
rotation. The logical formula

Pmax=? [ (k <= Z) U ("station_1=OFFLINE")]

inquires the maximum probability over all possible non-
deterministic behaviors (e. g., interleavings of distributed pro-
cesses) that a particular station reaches the OFFLINE mode
within Z rotations.

The initial state of the model is set to mimic the behavior that
the station of interest just joined the ring. Formal verifications
of the PTA model focus on ring configurations with n = 3
through n = 5 stations. Here, we consider some simplified
channel configurations. For all rings, we assume that channels
which do not connect to Sta. 1 are perfect, i.e., packets arrive
deterministically. The same holds for all outgoing channels
from Sta. 1 to Sta. j, with 2 < j < n, i.e., to stations which are
not successor of Sta. 1. The corresponding incoming channels
are parameterized with (pg,pp) = (0.99,0.25).



TABLE II
PTA-BASED ANALYSIS OF RING INSTABILITY FOR VARIOUS RING SIZES

©) No Recovery Recovery 1 Recovery 2 Recovery 1&2

n=3 7.53E-3 7.50E-5 7.45E-3 3.16E-9
n=4 7.53E-3 7.50E-5 7.45E-3 1.78E-13
n=>5 7.53E-3 7.50E-5 7.45E-3 1.78E-15

® No Recovery Recovery 1 Recovery 2 Recovery 1&2

n=3 1 7.50E-3 9.93E-1 5.63E-5
n=4 1 7.50E-3 9.93e-1 3.16E-9
n=>5 1 7.50E-3 9.93E-1 3.16E-11

No Recovery Recovery 1 Recovery 2 Recovery 1&2

n=3 1 1 5.62E-5 5.63E-5
n=4 1 1 3.16E-9 3.16E-9
n=2>5 1 1 3.16E-11 3.16E-11

First, we consider three scenarios particularly well-suited to
give some basic insights into the performance of the recovery
mechanisms. We construct the scenarios such that they are
simple enough to understand manually and expose the situations
we want to recover from. The first scenario is the baseline,
the second scenario suffers from deterministic one-directional
errors, the third from deterministic bi-directional errors. The
scenarios are given in Table I, the first two columns describe
parameters for the channel from Sta. 1 to Sta. 2, the second
set of rows describes the parameters for the reverse direction.
It is assumed that ?=1 for all channels.

Model checking results: We analyze the probability of an
EchoRing station to evolve into the OFFLINE mode within a
single rotation (Z=1) under varying channel conditions. We
consider four cases: no additional recovery mechanism, the
recovery mechanisms for uni-directional and bi-directional
transmission (separately), and the setting with both recovery
mechanisms. Results are listed in Table II for M =0, N=1.
State space sizes of the PTA model vary from 558 states
for n=3 without recovery in Scenario (3), to about 580,000
states for n=5, with both recovery mechanisms in Scenario (D).
Generating the underlying MDP from MoDeST for each model
takes around 3s. These MDPs contain between 1,000 and
80,000 transition-sets. The vast majority of the model-checking
time is spent on the explicit state space construction (15 —
1000s). Verifying the model is almost instantaneous, even for
large models (< 1%). One eminent lesson is that the uni-
directional error handling has a much larger influence than the
bi-directional error handling, as the probability of observing a
bi-directional error case is less likely. Moreover, we see that
the potential of increased traffic in larger rings significantly
improves the ring stability when both recovery mechanisms
are used. If only one mechanism is in place, the unhandled
failure case overshadows the effect of the other mechanism, and
therefore, additional traffic is not significantly increasing the
ring stability. Only in Scenario (3), there is no uni-directional
error case, which implies that no unhandled failure case exists.

Verification results also allow to analyze some protocol
trends; two examples are given in Fig. 7 (for n=4 and
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Fig. 7. Changing parameters in Scenario (D), n=4

Scenario (1)). Fig. 7a plots the probability of being offline versus
the number of token transmissions (for one rotation). It shows
that in this scenario the benefit of additional token transmissions
is limited. This is mainly due to the correlation of multiple
short-timed transmissions. Especially the recovery mechanisms
additionally benefit from the increased amount of traffic, which
helps the recovery. This becomes evident when both recovery
strategies are used, as the majority of possible error schemes are
then covered. Fig. 7b shows that for without combined recovery,
the relative effects of the recovery can indeed be assessed using
only one iteration. For the combined recovery mechanism,
we observe a much lower failure probability within the first
iteration. This can be explained as follows. At initialization
all stations start in the same ring and the join of Sta. 1 is
successful. Thus, Sta. 1 can safely claim a TOKEN in the first
rotation, if it could recover from a transition failure at the start
of the rotation. In later rotations, this is not always the case.
Such scenarios rarely occur (roughly with probability 1E-6)
which makes this initialization artifact hardly visible except
when recovery strategies are combined (as then these kind of
failures are the major source of failure).

C. Validating Verification Results by Measurements

Now we evaluate the accuracy of the verification model.
Knowing whether verification results are accurate is crucial to
derive valid bounds for the envisioned industrial applications.

Experimentation Set-up: The experimental study was
performed by implementing EchoRing on the Wireless Open-
Access Research Platform (WARP) [21]. An OFDM system
that resembles IEEE 802.11A is used as the PHY layer. The
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network consists of n = 3 stations. Setting N = 1 allows for
an additional retransmission of the TOKEN. Payload packets
were generated periodically and enqueued in measurement
runs, each lasting for 10 min. The environment in which the
measurements were carried out is an office environment with
distances of 3 — 15m between stations. In order to see a
reasonable number of error situations, we chose transmit powers
that resulted in empirical error rates fluctuating between 1E-5
and 1E-1. Evaluating the accuracy of PTA predictions is based
on parameters derived a-posteriori from these measurements.
Stations record certain events depending on which station is
predecessor and which is successor. A station further counted
the inter-arrival times of erroneous situations, i.e., how many
rotations it takes between joining the ring and having to leave
again. Within each measurement run, all recovery mechanisms
were enabled, but their application was tracked separately.
This led to no transitions to OFFLINE overall. However, to
obtain information about the effectiveness of the single recovery
mechanisms, certain events that were correctly resolved have
been counted as a transition to OFFLINE, e.g., to make
statements about the first recovery mechanism, we counted the
application of the second mechanism as an error event.
Channel Model Parameters: To properly parameterize
the previously introduced channel model, the measurement
results are analyzed afterwards. Stations record subsequently
transmitted pairs of packets, e. g., an INTTOKEN and a TOKEN.
By counting how often certain combinations of transmission
errors of these packets occur allows to describe the temporal
correlation. For this, we apply the Gilbert-Elliot model to the
recorded events to obtain p, and p;, empirically.
Experimental Results: In the following, the probability
of a ring instability is plotted against an increasing number
of rotations for the four protocol variants introduced in
Sec. II-B. We show experimentally measured error events and
the corresponding PTA predictions for up to Z = 20 rotations.
Discussion of Results: We start by examining a measure-
ment scenario in Fig. 8 for a rather stable connection with
an averaged empirical packet error rate of 6.19E-5 between
the station of interest and its successor. In the observed
measurement trace, only the first recovery mechanism found
application. Furthermore, no event occurred for which neither
recovery mechanism could resolve the transmission error, and
hence, the green and blue dashed curves are missing. The model
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checker prediction is in accordance with this observation, i.e.,
the model checker predicts probabilities starting in the range
of 1E-12. The obtained measurement trace is not long enough
to make a statement about this level of precision. Hence, the
dashed blue and green curves are missing in Fig. 8. However, in
case of no additional recovery mechanisms, erroneous situations
sporadically occur (dashed black curve). Model checking
generates a curve close to that of the measurement (solid black
curve). Given that a notable amount of observed packet errors
came in bursts (6 incidents happened within 3 rotations, 4
incidents distributed across 100 to 100,000 rotations), the
prediction is close to the actual measurement trace for small Z,
but later on increases steadily. The channel model as well as its
parameterization result into a rather pessimistic prediction as
an error is expected for every rotation with the same likeliness.
The actual trace however contained only several bursts, hinting
towards the need for better long-term correlation models.

In addition to very good channel conditions, we present in
Fig. 9 a situation with a significant packet error rate of 5.1%.
This leads to a substantial number of situations in which a
station has to move to OFFLINE mode and rejoin the ring later
on. In contrast to Fig. 8, the experimentally and theoretically
derived curves show in general a worse ring stability, but
are also closer to each other as the situation is of long-
lasting nature and cannot be attributed towards an error burst.
Due to the channel parameterization, verification presumes a
lot more bi-directional transmission errors (which cause the
predicted instability reflected by the green solid curve). Yet,
the actual measurement trace does not contain a single event
of applying the second recovery mechanism. To improve the
accuracy, a more precise channel model needs to be added
to the system that captures correlations between forward and
backward direction. Drawing a conclusion based on these
observations leads to an underestimation of the actual protocol
performance. Since the link from the predecessor to the station
of interest is perfect in the obtained measurement trace, the
proposed recovery mechanisms are able to cope with all token
forwarding errors. This allows the PTA to predict no instabilities
at all, which was also observed in the trace.

Summarizing these observations, it can be seen that verifica-
tion results indeed accurately estimate the protocol behavior.
However, as is the case with every model-driven tool, important
aspects of the environment need to be captured correctly.



TABLE III
MODEL CHECKING PRECISION VS. COMPUTATION TIME.

error margin | 1E-3 1E-6 1E-9 1E-12

0.001401  0.001401215 0.001401215741 0.001401215741
11.1£0.2 11.4+£0.2 11.7+0.2 11.8 +£0.2

result
time (sec)

D. Precision of the Results

For the high reliability that EchoRing and similar protocols
aim for, any method employed to assess its reliability needs a
high precision. Assessing reliability with a high precision is
known to be intrinsically hard [22], [23] as a reasonable number
of events of interest has to be captured. For simulations, a rule
of thumb is to generate at least two orders of magnitude more
events than the targeted statement of interest, e. g., generating
at least 1E14 packets allows to make statements on an error
floor of 1E-12 with reasonable confidence.

We briefly compare how model checking scales with respect
to the required precision. Table III gives the time required to
analyze the model with frequent transmission errors for eight
rotations, for four different levels of precision. The emphasized
results are forced to be correct by the precision level, we
display the result up to the correct decimal. While a higher
precision requires some more analysis time, it shows that for
the current models the construction of the state space has the
highest computational effort, and that therefore obtaining a
higher precision in the analysis phase comes at no significant
costs. In contrast, performing experiments using simulations or
real-world measurement campaigns takes significantly longer.
Considering a real-world campaign in which packets are
generated every 5ms, it would take roughly 42d to reach
an error rate of 1E-9, but 4,200d to make statements with
reasonable confidence. Even if simulations can speed up this
execution time, the general rule of thumb still holds; the higher
the reliability guarantees are, the longer the run-times will be.

VI. CONCLUSIONS

This paper presented the formal modeling and the resulting
verification of the EchoRing protocol, a promising solution
for hard real-time communication for low-latency wireless
industrial networks. We presented a compositional modeling of
the protocol that naturally reflects the protocol’s functioning.
The risk of making unnecessary abstraction errors is thus kept
to a minimum. The formal modeling has revealed several am-
biguities in the informal protocol description. Its compositional
nature enables easy modifications and experimentation with
several stability enhancing mechanisms. Together with formal
verification, it has provided deep insights into the protocol
behavior. One of the benefits of our approach is that it allows
determining correctness as well as studying the performance
under varying conditions. In addition, the protocol development
process can be guided and streamlined by ruling out inferior
alternatives in early design phases without the need of long-
lasting measurement campaigns. It is shown how certain choices
and procedures affect the protocol stability. We firmly believe
that PTAs are the right means to model and analyze highly
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time-dependent protocols that are subject to random effects
such as ultra-reliable low-latency wireless protocols.
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