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ABSTRACT
Explosive growth in the use of smart wireless devices has
necessitated the provision of higher data rates and always-
on connectivity, which are the main motivators for designing
the fifth generation (5G) systems. To achieve higher system
efficiency, massive antenna deployment with tight coordina-
tion is one potential strategy for designing 5G systems, but
has two types of associated system overhead. First is the
synchronization overhead, which can be reduced by imple-
menting a cloud radio access network (CRAN)-based archi-
tecture design, that separates the baseband processing and
radio access functionality to achieve better system synchro-
nization. Second is the overhead for acquiring channel state
information (CSI) of the users present in the system, which,
however, increases tremendously when instantaneous CSI is
used to serve high-mobility users. To serve a large number
of users, a CRAN system with a dense deployment of re-
mote radio heads (RRHs) is considered, such that each user
has a line-of-sight (LOS) link with the corresponding RRH.
Since, the trajectory for high-mobility users is predictable,
therefore, fairly accurate position estimates for those users
can be obtained, and can be used for resource allocation to
serve the considered users. The resource allocation is depen-
dent upon various correlated system parameters, and these
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correlations can be learned using well-known machine learn-
ing algorithms. This paper proposes a novel learning-based
resource allocation scheme for time division duplex (TDD)
based 5G CRAN systems with dense RRH deployment, by
using only the users’ position estimates for resource alloca-
tion, thus avoiding the need for CSI acquisition. Also, an
overhead model based on the proposed frame structure for
5G TDD is presented, both for user’s position and its CSI
acquisition. The proposed scheme achieves about 86% of
the optimal system performance, with an overhead of 2.4%,
compared to the traditional CSI-based resource allocation
scheme which has an overhead of about 19%. The proposed
scheme is also fairly robust to changes in the propagation
environment with a maximum performance loss of 5% when
either the scatterers’ density or the shadowing effect varies.
Avoiding the need for CSI acquisition reduces the overall sys-
tem overhead significantly, while still achieving near-optimal
system performance, and thus, better system efficiency is
achieved at reduced cost.
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1. INTRODUCTION
Increased usage of smart electronic and wireless-capable

devices, such as hand-held mobile sets, tablets and laptops,
in the recent years, has resulted in increased demand for
higher data rates. Furthermore, the users of such devices de-
mand full-time access to data packet connection, irrespective
of their location and surrounding environment. Therefore,
future communication systems are expected to have greater
system efficiency and better provision of data service to the
users compared to existing fourth generation (4G) technol-
ogy [1]. The fifth generation (5G) systems will be designed
to provide a ×1000 increase in the system capacity [2], as
well as almost ×10 decrease in latency [3], compared to
Long Term Evolution-Advanced (LTE-A) systems. More-



over, they will be able to provide high system efficiency and
always-on connectivity, specially to high mobility users, in
Ultra-Dense Network (UDN) deployments [4].

To achieve these goals for 5G, one possible approach is
to massively increase the number of antennas (either cen-
trally or de-centrally) [5]. Research from the last few years
indicates that significant performance gain can be obtained
from massive antenna deployment, if transmission from such
antennas is tightly coordinated [6], [7]. This tight coordina-
tion includes phase-level synchronization, which is needed
for joint transmission, as well as the synchronization needed
for coordinated precoding. Using tight synchronization be-
tween these large number of antennas leads to a coordination
overhead [8]. To overcome this problem, the cloud radio
access network (CRAN) architecture has been introduced,
which is a centralized, cloud-computing based network archi-
tecture [9]. In CRAN, the baseband units (the main signal
processing units of the network) are connected to the cloud
to form a pool of centralized processors, which is then con-
nected to the set of distributed antennas (the radio access
units) in the system. Thus, separating the baseband units
from the radio access units helps in achieving synchronized
coordination between large sets of antennas, at a relatively
reduced cost in the system. However, besides the synchro-
nization overhead, the overhead for acquiring channel state
information (CSI) of the mobile users still exists, which in-
creases with the number of antennas, the granularity of the
acquired CSI as well as the mobility of the terminal users.

The main purpose of CSI acquisition is to perform the al-
location of resources such that all users can be served well.
The resources include time and/or frequency resources, cod-
ing rates, modulation schemes, transmit beamforming, and
many more. Much work has been done in the past few
years for designing efficient resource allocation schemes, spe-
cific to certain 5G system characteristics. A non-orthogonal
resource allocation scheme, called non-orthogonal multiple
access (NOMA) [10], has been investigated in [11], for in-
creased system throughput and accommodating maximum
users by sharing time and frequency resources. The tech-
nique of dynamic time domain duplexing for centralized and
decentralized resource allocation in 5G has been studied in
[4]. In [12], a radio resource allocation scheme for multi-
beam operating systems has been proposed, where the al-
location of the radio resources to a user is based on its
channel state and the beam serving that user. The authors
in [13] propose a resource block (RB) allocation algorithm,
which exploits the combination of multi-user diversity and
users’ CSI for allocation of RBs, with carrier aggregation,
and modulation and coding scheme (MCS) for throughput
maximization in 5G LTE-A network.

Exploiting CSI for high mobility users is associated with
significant system overhead, which is not considered in those
studies. On the other hand, the system’s performance is af-
fected if outdated CSI is used for resource allocation for
high mobility users [14]. One of the network deployment ar-
chitectures suited for achieving the expected targets of a 5G
system is the ultra-dense small cell deployment, in which the
users are expected to be in line-of-sight (LOS) with the serv-
ing base stations at almost all times. In this case, the users’
position information can be used instead of their CSI [15].
More precisely, the optimal allocation of resources depends
on many system parameters (including users’ position, users’
velocity, propagation environment, interference in the sys-

tem, and so on), which are inherently correlated. One way
of exploiting these hidden correlations among system param-
eters for efficient allocation of resources is through Machine
Learning. Various machine learning algorithms have been
used in the state of art for resource allocation in wireless
communication systems; some examples include using sup-
port vector machines (SVMs) for power control in CDMA
systems [16], prediction of the next cell of a mobile user us-
ing supervised learning techniques and CSI [17], and rate
adaptation using random forests (a form of supervised ma-
chine learning technique) in vehicular networks [18]. Use of
machine learning has also been investigated for orthogonal
frequency division multiplex-multiple input, multiple output
(OFDM-MIMO) based 5G systems [19], [20]. However, for
time division duplex (TDD) MIMO systems, the resource
allocation is done based on instantaneous CSI availability
(without using learning, or considering the CSI acquistion
overhead), where resource allocation is referred to RB as-
signment [13], rate allocation [21] and beamforming for joint
transmission-based coordinated multipoint (CoMP) [22].

This paper proposes and evaluates a novel learning-based
resource allocation scheme for TDD multi-user MIMO (MU-
MIMO) CRAN systems that uses position estimates of high-
mobility users for resource allocation, instead of instanta-
neous CSI measurements. The output of the proposed scheme
based on machine learning, which is performed by means of
a ‘random forest’ algorithm, is the assignment of resources
to users including transmit beam, receive filter and packet
size. The robustness of the proposed resource allocation
scheme is tested by using different values in training and
test datasets for random forest, such as using accurate po-
sition estimates for training the random forest and testing
its performance using data having inaccurate position es-
timates of the users. Afterwards, the system goodput is
computed for the proposed resource allocation scheme and
is compared to the system goodput when instantaneous CSI
of users (with a system overhead) is used for resource allo-
cation. The results show that the proposed scheme achieves
about 86% of the system performance obtained for tradi-
tional CSI-based resource allocation scheme. Furthermore,
a maximum performance loss of 5% is observed when either
the scatterers’ density or the shadowing effect varies, thus
showing the robustness of the proposed scheme to changes
in the propagation environment.

To highlight the effectiveness of the proposed scheme, an
overhead model based on the frame structure for 5G TDD
proposed in [23] is also presented, for both the user’s position
and CSI acquisition, and its effect on the system throughput
is evaluated. The results show that the proposed scheme,
based on user’s position acquisition, incurs a system over-
head of only 2.4% compared to the traditional CSI acquisition-
based resource allocation which has an overhead of 19%.
The structure for the rest of the paper is as follows: Section
2 presents the system model, as well as the details regarding
the overhead model for 5G TDD. Details of the proposed
learning-based resource allocation scheme, and the ‘random
forest ’ algorithm are presented in section 3. Simulation re-
sults and relevant discussions are presented in section 4. Sec-
tion 5 concludes the paper.

2. SYSTEM MODEL
Consider a scenario (Figure 1), based on CRAN archi-

tecture, where N users are being served by R remote radio
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Figure 1: The CRAN architecture for 5G system

heads (RRHs), and all RRHs are connected to an aggrega-
tion node (AN). The AN is the computational hub where
all baseband processing takes place, whereas RRHs mainly
serve as radio frequency (RF) front ends. Further details of
the CRAN based system model can be found in [24]. This
work focuses on the downlink communication of the afore-
mentioned 5G CRAN system model. A TDD based frame
structure is considered for downlink communication, and the
operational frequency of the CRAN system is fc. The users
are assumed to be moving at high speeds (vRx > 50 km/h).
The RRHs are densely deployed (UDN deployment), such
that the users are expected to be in LOS with the serving
RRHs. Also, each user is equipped with NRx antennas, each
at a height of hRx from the ground, and will be served by
an RRH having RTx antennas, each at a height of hTx from
the ground.

The channel between the RRH r and user n is charac-
terized by the spatial system parameters [such as the an-
gle of arrival (AoA) and the angle of departure (AoD)], the
frequency-based system parameters (such as operational fre-
quency of the system, and the Doppler shift), as well as the
time-dependent system parameters (such as change in user’s
position, change in scatterers’ density, propagation environ-
ment, etc.). All RRHs are expected to serve at least one
user, in the same time-slot, implying that all users will ex-
perience interference from other users being served by the
same RRH, as well as cross-channel interference from the
neighboring RRHs. Each RRH is connected to the AN,
which acts as a resource allocation unit, and consists of a
set of resources, including transmit beams, receive filters,
and packet sizes, to serve a given user. Full-buffer condition
is assumed, which means that at each time, at least one user
n needs to be allocated resources by the AN for being served
by the associated RRH r. A fixed set of transmit beams BTx

is available to serve the users, based on the geometry of the
propagation scenario, and is also used to design a set of re-
ceive filters BRx, which will be used by the terminal users
for reduced-interference reception. The position coordinates
Pn,(x,y,z) of the nth user are available at the rth RRH, with
some inaccuracy, and is the primary parameter used for al-
location of resources by the AN connected to the RRH.

For simplifying the analysis, we consider that each RRH
is serving only one user in a given time-slot, so that only
cross-RRH (or inter-RRH) interference exists in the system.
Based on all these parameters, the signal-to-interference-
and-noise ratio (SINR) for a user n, at time t, is calculated

as follows:
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where, Pn,t is the received signal power for a user n, at time
t, and is given by:
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Here, PTx is the allocated transmit power per RRH, h2
PL

denotes the pathloss, φa
n is the azimuth AoA of user n, and

φd
n is its azimuth AoD. UUU(φa

n) is the receive filter with the
main beam focused in the direction closest to φa
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is the transmit beamformer with the main beam located in
the direction closest to φd

n (details regarding beamforming
can be found in [25]). HHHn,t(φ

a
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d
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for an instance of time t for a given φa
n and φd

n, and σ2 is
the noise power. (.)† denotes the Hermitian of a vector or a
matrix.

The SINR computed for a given combination ofUUU(φa
n) and

VVV (φd
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is used to compute the transport capacity for user n by the
following formula:

Cn,t = S × log2(1 + γn,t(φ
a
n, φ

d
n)). (3)

Here, S is the symbol length, which is the product of the
transmission time interval (TTI) and bandwidth BW of the
system. For determining the transmission success or failure,
the error model based on Shannon’s capacity (Eq. (3)) is
used; if the nth user’s packet size < Cn,t then the packet is
successfully transmitted, otherwise the packet transmission
for user n fails.

2.1 The Overhead Model
The frame structure proposed in [23] for 5G TDD based

system is considered for formulating an overhead model.
The total length of the frame is 0.2 ms and it consists of
42 OFDM symbols (Tsym,total = 42), and about 833 sub-
carriers (fsc,total = 833). The position information of the
users present in the system can be acquired using narrow-
band pilots (also called beacons in the uplink), typically
spanning the first symbol of the frame. The CSI for the
users can be obtained using 4 full-band pilots, placed at
the beginning of a frame just after the positioning beacons.
The adjacent CSI-sensing pilots are scheduled based on the
cyclic-prefix compensation distance, as explained in [3], to
avoid inter-carrier interference. Based on these parameters,
the overhead for position acquisition per user can be calcu-
lated as:

OHpos,n =
Tsym,pos,n × fsc,pos,n
Tsym,total × fsc,total

. (4)

Here, Tsym,pos,n is the number of OFDM symbols used for
position estimation of user n, and fsc,pos,n denotes the num-
ber of sub-carriers used in the positioning beacon. Similarly,
for CSI acquisition per user, the overhead can be computed
as:

OHCSI,n =
Tsym,CSI,n × fsc,CSI,n

Tsym,total × fsc,total
, (5)



where Tsym,CSI,n and fsc,CSI,n denote the number of OFDM
symbols and the number of sub-carriers, used for CSI ac-
quisition of user n, respectively. The system overhead for
position, or CSI, acquisition can be computed by multiply-
ing the corresponding overhead with the number of users for
which the position information, or CSI, is acquired.

2.2 Problem Statement
In the considered CRAN system, the task of the AN is to

allocate the resources efficiently for each RRH-user link, per
TTI, such that the system’s sum-throughput is maximized.
For this purpose, it needs to acquire the CSI of all users in
the system, on per TTI basis, which incurs a large system
overhead. The overhead is even larger for high mobility users
who are susceptible to outdated CSI measurements.

One way of avoiding the CSI overhead is to use the posi-
tion information of the high-speed users; since LOS exists,
the resource allocation for users can be done based on their
position information rather than using their instantaneous
CSI. However, the position information alone is not sufficient
for efficient resource allocation, rather, the hidden correla-
tion among the position estimates and the other system pa-
rameters has to be exploited together for this purpose. We
propose to use machine learning for accomplishing this task.
Specifically, we use machine learning to design a resource al-
location scheme for the aforementioned system, purely based
on the users’ position information, such that the CSI acqui-
sition is not needed at all. We will investigate the perfor-
mance of this learning-based resource allocation scheme in
comparison to the conventional CSI-based resource alloca-
tion technique, also taking into account the system overhead.
Furthermore, we want to test the robustness of our scheme
when the position information for the users in the system
is inaccurate. In the next section, we discuss the details re-
garding the design of the learning-based resource allocation
scheme, along with some relevant background on machine
learning.

3. DESIGN OF THE LEARNING-BASED RE-
SOURCE ALLOCATION SCHEME

Learning the different correlated parameters is accom-
plished using machine learning, which is defined as “the ca-
pability of a computer program or a machine to develop new
knowledge or skill from the existing and non-existing data
samples to optimize some performance criteria” [26]. ‘Ran-
dom forest algorithm’ [27] is the learning technique used in
this work for learning the system parameters, and predicting
the probability of successful or failed transmission of data
packets from a given RRH to the respective user(s). We first
provide some background on the random forest algorithm,
followed by the details about how can this algorithm be used
for designing the learning-based resource allocation scheme.

3.1 Background on Random Forest Algorithm
The random forest algorithm is a supervised learning tech-

nique, which consists of a number of decision trees (hence
the term ‘forest’) that are generated by using the statistical
information of the supplied dataset, to develop a hypothe-
sis for predicting the outcome of a future instance [18], [28].
Each instance x of the dataset xxx consists of two parts: a
set of data characteristics III, called features, and the rele-
vant output variable y. These two parts collectively form

Figure 2: An example of a binary random decision
tree

the input feature vector xi. To learn the information in the
data features III (the ‘training’ process), the random forest
algorithm constructs Tn binary random decision trees, each
having a maximum depth of Td. Each tree has one root node
and several interior and leaf nodes. Figure 2 shows an ex-
ample of a binary random decision tree, consisting of two
interior and four leaf nodes. Each root node and interior
node is constructed by a decision threshold based on a (ran-
domly selected) feature subset from the set of given III input
features. Thus, each tree has a different subset of features
considered for decision threshold at each of its nodes. The
output variable is represented by the leaf nodes of a decision
tree. The instance on which the prediction has to be made,
is traversed through all decision trees in the forest, to get
Tn output variables, called votes. The output variable y is
predicted by aggregating all the votes and selecting the ma-
jority class (category or value of the output variable) from
among those votes.

For making each tree in the training phase, a training
dataset zzz, having the same size as the training data xxx, is con-
structed by using training samples which are randomly cho-
sen, with replacement, from xxx. This random selection with
replacement makes some instances from the training data to
be used repeatedly, while some are not used at all. The later
instances are collectively known as out-of-the-bag (OOB) ex-
amples and represent almost 30% of the total training data
[27]. A random subset of input variables is used for every
node of a decision tree from the zzz training examples. A deci-
sion threshold is determined for the selected input variable,
based on which the left or right traversing path in the sub-
sequent levels of the random decision tree is chosen. It is
critical to select the input variable at a node, as well as the
decision threshold, such that the purity of the subsequent
levels of the random decision tree is maximized. Purity mea-
sures the extent to which the resulting child node is made
up of cases having the same output variable [29]. Thus, an
ideal threshold at any node would divide the data in such a
way that the resulting child nodes would give distinct values
of the output variable.

The generated random forest has two types of qualitative
measures. First is the prediction accuracy, which measures
how accurately the random forest predicts the output vari-
able for a given dataset. If the prediction accuracy is evalu-
ated on the training data, it is called the training accuracy,
while the same when evaluated on a newly collected dataset
is called the test accuracy. Second qualitative measure is the
importance of an input variable, which indicates how impor-



tant a particular input variable is in determining the desired
output variable. It is generally proven that the random for-
est algorithm can cater for the missing input data variables,
is robust to noisy data and is computationally efficient [27].
Also, it does not suffer from the problem of over-fitting,
by using only a subset of the training data for making the
random decision trees which make up the random forest.
Due to all these properties, the random forest algorithm has
been previously applied to system performance optimization
techniques including intrusion detection for mobile devices
[30], and designing a rate adaptation scheme in vehicular
networks using the random forest [18].

3.2 The Learning-Based Resource Allocation
Scheme

The main aim of the learning-based resource allocation
scheme is to use only the position estimate of the users
and learn its relationship with different system parameters
and resources, such that the system resources are efficiently
utilized without incurring any CSI overhead. We first ex-
plain the structure of the learning-based resource allocation
scheme, and then present its working details.

3.2.1 Structure of the Learning-Based Resource Al-
location Scheme

The structure of the learning-based resource allocation
scheme can be divided into three parts: the pre-processing
unit, the machine learning unit, and the scheduler.

The Pre-Processing Unit
The main function of the pre-processing unit is to design and
produce the training dataset. The training dataset is con-
structed off-line, and hence the CSI as well as the position
information of the users are available at the AN, along with
the information for the resources to be allocated. In (off-line
phase of) the pre-processing unit, the optimal transport ca-
pacity for each user is computed using its CSI (considering
all the other users in the system), based on the maximization
of the system’s sum-transport capacity. Then, the optimal
transmit beam bTx and receive filter bRx combinations for
a given user position Pn,(x,y,z) are identified, for which the
optimal transport capacity is obtained (i.e. the exhaustive
search), and are used as the input features for the training
dataset of the machine learning unit. Based on the values
of the optimal transport capacity for the overall system, a
set of packet sizes is designed, which consists of 5 discrete
values, and the optimal transport capacity for each user is
checked against those packet sizes (according to the Shan-
non’s capacity-based error model) to generate the output
variables, 0 or 1, for the training dataset. Thus, the user’s
ID n, its position information Pn,(x,y,z), optimal transmit
beam bTx, optimal receive filter bRx, the packet size PS,
and the output variable (0 or 1) form the input feature vec-
tor, and a set of those input feature vectors constitute the
training dataset to be used by the machine learning unit.

The Machine Learning Unit
The training of the machine learning unit is done off-line,
where the training dataset is used to learn the input fea-
tures, i.e. the user’s ID n, its position information Pn,(x,y,z),
optimal transmit beam bTx, optimal receive filter bRx, and
the packet size PS. The learning is essentially done to con-
struct the random forest, with the parameters like number

of decision trees Tn, tree depth Td and number of random
features for split at each tree node, chosen so as to opti-
mize the training accuracy of the random forest. Here, it
should be noted that the performance of the random for-
est is affected by the ‘bias’ in output variable distribution
for the overall training dataset, i.e. the training accuracy
is affected if, for example, a large number (> 80%) of in-
put feature vectors have class ‘0’ as output variable than
class ‘1’, and vice versa. This bias in class distribution is
being taken care of by the pre-processing unit, such that the
training dataset has a balanced number of input feature vec-
tors for both the classes ‘0’ and ‘1’, as the output variable.
Once an optimal training accuracy is achieved, the machine
learning unit is ready to be used for testing new dataset(s)
generated on run-time in a realistic system.

The Scheduler
This proposed scheme includes a scheduler as the last unit,
whose main task is to forward the information about the al-
located resources (obtained from the machine learning unit)
for each user in the system, to their corresponding RRH.
This scheduler is, however, sensitive to the occurrence of
false-positives in the output from the machine learning unit.
Technically, a false-positive occurs when an input feature
vector has ‘0’ as its output variable realistically, but the
learning algorithm wrongly predicts the output variable to
be ‘1’ for that input feature vector. In the proposed scheme,
false-positive occurrence makes the algorithm more error-
prone, by suggesting a higher packet size PSo+1 to serve a
particular user, though, realistically, the highest packet size
that can serve the user is PSo. In this case, the scheduler
backs-off the packet size for transmission, and transmits a
packet size, chosen randomly, from the set of packet sizes
one less than PSo+1, i.e. the packet size for which the false
positive detection occurred. We call this a ‘random back-off
scheduler’, which operates in combination with the output
predicted by the random forest, and thus completes the de-
sign structure of learning-based resource allocation scheme.
The false-positive occurrence for an input feature vector is
identified as follows: the given input feature vector is com-
pared with the input feature vectors available in the training
dataset, and the output for the closest-related input feature
vector in the training data is compared with the output pre-
dicted for the given input feature vector by the machine
learning unit. Based on this false-positive detection, the
scheduler operates more sensitively for those input feature
vectors. In this way, the resource allocation scheme ensures
that erroneous predictions by the machine learning unit does
not significantly impact the system’s performance.

3.2.2 Working of the Learning-Based Resource Allo-
cation Scheme

In a realistic system, the position estimate P̂n,(x,y,z) of the
user n is acquired by the corresponding RRH and reported
back to the AN. This position estimate is used by the pre-
processing unit, where it is compared against the user posi-
tion information Pn,(x,y,z) available in the training dataset,
and the position information in the training data that gives
the minimum value for |Pn,(x,y,z) − P̂n,(x,y,z)| is chosen to
construct the input feature vector for the test dataset. Once
the closest position estimate Po

n,(x,y,z) is obtained, it is com-
bined with the corresponding optimal transmit beam bTx,
receive filter bRx, and with the 5 discrete packet sizes PS to



Figure 3: The proposed Learning-Based Resource
Allocation Scheme

form a set of input feature vectors for different packet sizes
corresponding to the position estimate P̂n,(x,y,z).

This set of input feature vectors is then passed to the ma-
chine learning unit, where each of the input feature vector is
parsed through the random forest to obtain the votes for the
predicted output variable by each decision tree in the forest.
In essence, the votes are obtained for successful transmission
(i.e for y = 1) of a packet size PSp and denote the packet-
size success rate (PSR) for PSp. This PSR also denotes the
tendency of the machine learning unit’s predicted output
variable; if the PSR ≥ Tn/2 (Tn being the number of trees in
the random forest), then the predicted output variable is ‘1’,
otherwise, it is ‘0’. This predicted output variable is tested
for false-positive detection by the scheduler, by comparing
it to the output variable for the corresponding input feature
vector in the training dataset, which then, either retains the
packet size PSp if the prediction is correct, or chooses a
random packet size PSr in case of false-positive occurrence,
to derive a prediction for the packet size for transmission
PSos by the learning-based resource allocation scheme. The
PSR corresponding to PSos is used to compute the system
goodput predicted by the learning-based resource allocation
scheme, as follows:

Goodputos = PSRos × PSos (6)

Figure 3 shows the different steps of the proposed learning-
based resource allocation scheme. Overall, the random for-
est algorithm is expected to learn the assignment of opti-
mal packet size, transmit beam and receive filter for each
user, in order to maximize the system goodput, using only
the users’ position information but without knowing their
CSI. In reality, the position estimates of high-mobility users
can be acquired with certain precision using an extended
Kalman filter (EKF), along with the direction of arrival
(DoA) and time of arrival (ToA) estimates of those users
[31]. Since the random forest algorithm is robust to noisy
data, the learning-based resource allocation scheme is ex-
pected to perform well when noisy position estimates of the
users are available for either the training or test datasets (or
both). The performance of the proposed resource allocation
scheme is evaluated by performing system-level simulations,
which are discussed in the next section.

4. RESULTS AND DISCUSSION
In this section, we first compare the performance of the

proposed scheme to that of the traditional resource alloca-
tion scheme based on user’s CSI. We also investigate the
robustness of the proposed scheme when inaccurate posi-
tion estimates are available in the test dataset, or when the
propagation environment parameters vary in the training

Figure 4: The simulation scenario; each RRH serves
one user

and the test datasets (specifically, change of scatterers’ den-
sity and change in shadowing characteristics). Afterwards,
we present the effect of overhead on the proposed and the
traditional schemes on the theoretical system throughput for
a 5G CRAN system.

4.1 Evaluation Methodology
The performance evaluation of the proposed scheme in

section 3.2 is done by doing realistic simulations using a dis-
crete event simulator (DES) called Horizon [32]. The propa-
gation scenario, shown in figure 4, consists of 4 RRHs, each
serving one user, and is implemented in Horizon for simulat-
ing a CRAN based multi-users, multi-RRHs communication
system (as presented in section 2). Based on the propa-
gation scenario, a fixed set of transmit beams is designed
in the following way: the transmit beams are formed us-
ing geometric beamforming, where each consecutive beam is
separated by 3◦ angular resolution. The receive filters are,
essentially, geometric beams formed by using the multiple
antennas at the user end, and are designed in the same way
as the transmit beams but with an angular resolution of 12◦.
The parametrization for system simulations is given in ta-
ble 1. The channel coefficients for downlink communication
are extracted from the simulator for each TTI, i.e. after
every 1 ms. Ray-tracing based METIS channel model [33]
for Madrid grid is implemented in Horizon for generating
the channel coefficients. Details about the ray-tracer based
channel model can be found in [34].

After computing the channel matrices, the training dataset
is generated using the procedure explained in section 3.2.1.
As mentioned earlier, the training data is used to build ran-
dom forests for various parameter settings, from which the
random forest with the optimal training accuracy is chosen
for further processing. The random forest is constructed us-
ing the random forest implementation in WEKA software
[35]. Table 2 shows the values of training accuracy obtained
for different parameter settings of random forest algorithm.
Based on the results, the random forest with Tn = 10 and
Td = 3 was chosen for further processing, with the number of
random features used for split at each node of decision tree



Table 1: Parameter Settings for the Simulator
Parameter Value

fc 3.5 GHz
BW 5 MHz
RTx 8
NRx 2
hTx 10 m
hRx 1.5 m
PTx 1 mW
TTI 1 ms
vRx 30 m/s

Table 2: Training Accuracy of Random Forest for
Different Parameter Settings

Tn Td Training Accuracy (%)

5 3 83.3

10 3 86

10 4 86.9

20 3 86.65

20 4 87.2

as
√
I (I being the number of features in the input feature

vector) [27]. Here, it should be noted that selecting the ran-
dom forest with the highest training accuracy (from table 2,
for Tn = 20 and Td = 4) is not always the best choice; hav-
ing a larger number of trees for a small set of input features
III increases the correlation among the trees (thus reducing
the robustness of the random forest to noisy data), as well as
increases the computation time for constructing the random
forest.

A total of 100 user positions (for each user) are chosen ran-
domly from the available set of 1000 positions (for each user)
in the overall simulation scenario, for generating the train-
ing and test datasets, each having 0.25 million samples. The
output from the random forest is combined with the sched-
uler, as explained in section 3.2.2, and the system goodput
(in bits/TTI) is computed. The first simulation is performed
by setting the scattering objects’ density as 0.01/m2, i.e., 1
scatterer per 10×10 m2 area. The performance of learning-
based resource allocation scheme is compared against the
following schemes:

• Random packet scheduler: Schedules a randomly se-
lected packet size for each user using the optimal se-
lection strategy for transmit beam and receive filter.

• Random packet scheduler for geometric beam and filter
assignment: Schedules a randomly selected packet size
for each user using the location-based assignment of
transmit beam and receive filter.

• Optimal packet scheduler (the Genie): Schedules the
optimal packet size for each user based on the optimal
transport capacity for each user, obtained through the
instantaneous CSI of the users.

4.2 Results for the Proposed Scheme
Figure 5 shows the system goodput obtained for each of

the resource allocation schemes when perfect information
about each user position is available. The results are shown
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Figure 5: System goodput (in %age relative to the
Genie) for perfect position information of all users
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Figure 6: System goodput (in %age relative to the
Genie) for different schemes and various possibilities
of available position information

as the system goodput relative to the one obtained by the
Genie. It can be seen that the learning-based resource al-
location scheme performs very well compared to the Genie,
and achieves about 86% of the optimal system performance
(i.e. Genie without system overhead). The training accu-
racy of the random forest is 86%, where the performance
loss is due to the inequitable distribution of output vari-
ables in the training dataset. The random packet scheduler
performs worse, which highlights the importance of learning
the system parameters for optimal resource allocation. The
geometric assignment-based random scheduler also shows
poor performance (only 6% goodput compared to the op-
timal one), due to the fact that geometric-based allocation
of transmit beam and receive filter is not the optimal strat-
egy for serving a user in an interference-limited system.

In reality, the perfect position information is not always
available, rather there is some inaccuracy involved in the re-
ported coordinates for the user’s position. Figure 6 shows
the relative system goodput for all resource allocation schemes
when the user position is having a root mean squared error
of 0.4, 0.6 and 1.0 m. It can be seen that the position inac-
curacy affects the system performance for all sub-optimal
resource allocation schemes due to the fact that optimal
transmit beam and receive filter combination is not valid
for the inaccurate position information. Despite this, the
learning-based allocation scheme achieves more than 72% of
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Figure 7: System goodput (in %age relative to the
Genie) for different scattering densities for perfect
users’ position information

the optimal system performance (for the highest position in-
accuracy), which is 4 times better than any of the other com-
parison schemes. For having a fair performance comparison,
we trained the random forests for each of the cases of in-
accurate position availability, and tested their performance
against the relative test data for inaccurate position infor-
mation. The results show that no significant improvement in
performance can be obtained if the learning is performed for
inaccurate position information datasets; the random for-
est trained on accurate user position information can also
operate effectively for any case of inaccurate user position
information.

To observe the effect of randomness in the system pa-
rameters on the performance of different resource allocation
schemes, the scatterers’ density is varied. Figure 7 shows the
relative system goodput for learning-based resource alloca-
tion scheme for different values of scattering objects’ density
when perfect user position is available. The random forest
in the machine learning unit is trained for scatterers’ den-
sity of 0.01/m2 (the same as used for previous simulations),
and is tested for datasets generated using different values of
scatterers’ density. The results show that the relative sys-
tem goodput is not affected severely when learning-based
resource allocation scheme is used for changing scatterers’
density in the propagation environment. The maximum dif-
ference with respect to the Genie is 83% (for 10 scatterers
per 100 m2 area), when the dataset generated for different
densities of scattering objects is tested against the random
forest generated using a fixed scatterers’ density. Realisti-
cally, the goodput of the system is expected to be not af-
fected severely by the change of scatterers’ density, since
LOS link exists at all times between the users and their
corresponding RRHs. Keeping this into consideration, the
learning-based resource allocation scheme is seen to be ro-
bust for changing scatterers’ density, where the maximum
performance loss compared to the Genie varies by less than
5% as the number of scatterers per 100 m2 of area is in-
creased.

Another system parameter that can vary randomly in a
realistic propagation scenario is the effect of shadowing. Fig-
ure 8 shows the performance of the proposed scheme com-
pared to the optimal system performance when the height
of shadow object is increased from 1.5 m to 5.0 m. Here,
again, we observe that the performance loss does not vary
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Figure 8: System goodput (in %age relative to the
Genie) for different heights of the shadow object
for perfect users’ position information and σscatt =
0.01/m2

significantly; maximum loss of about 5% is observed, when
the shadowing effect is increased by increasing the height of
the shadow object. Since LOS is existent at all times be-
tween the users and their corresponding RRHs, therefore,
the channel coefficients do not vary significantly with the
variation in shadowing effect, which in turn does not affect
the transport capacity per user, and hence, the overall sum-
goodput of the system.

4.3 Effect of Overhead on Throughput of a
5G System

After comparing the performance of the proposed learning-
based scheme with the traditional CSI-based scheme for re-
source allocation, we now consider the effect of overhead
on the overall system performance for 5G CRAN. In UDN
deployment, a single RRH can either have a single user or
multiple users in its vicinity. Depending on the scenario,
an RRH will have to acquire the position or CSI estimates
for each user such that it can optimally serve the intended
user(s). Based on this assumption, the simulation scenario
in figure 4 represents the best case scenario in terms of low
system overhead, where each RRH is surrounded by only one
user, and thus, has to sense the position or CSI for minimal
number of users. On the other hand, the worst case sce-
nario may exist in a realistic system, where each RRH has
to acquire the position or CSI estimates for a large num-
ber of users (∼25), for resource allocation, thus resulting in
increased system overhead.

Figure 9 shows the theoretical system throughput for the
parametrization of a TDD-based 5G system for different
schemes under the aforementioned scenarios. It can be seen
that the learning-based resource allocation scheme, in the
best case scenario, does not suffer from the inclusion of the
system overhead, where 4 RRHs serve 1 user each, after
acquiring their position information. However, the theo-
retical system throughput for the same scenario using the
traditional CSI-based resource allocation scheme is reduced
by almost 19% considering the effect of the CSI acquisi-
tion overhead. In the worst case scenario, considering 24
users present in the system, the CSI overhead increases to
about 57%, resulting in a significantly lower effective system
throughput. The overhead for each of the cases is computed
by keeping in mind the assignment of CSI acquisition pilots
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Figure 9: Effect of overhead on system throughput
for the proposed learning-based scheme and the tra-
ditional CSI-based scheme

based on the cyclic-prefix compensation distance, as men-
tioned in section 2.1. Overall, it can be seen that the over-
head for CSI acquisition increases with the number of users,
thus decreasing the effective system throughput, whereas for
position acquisition, the overhead will not impact the effec-
tive system throughput since only narrow-band beacons are
sufficient for obtaining the position information for the users
to be served by a given RRH. This fact suggests the position-
based scheme to be a more cost effective solution for resource
allocation, compared to a conventional CSI-based approach.

5. CONCLUSION
This paper proposed a novel learning-based resource al-

location scheme for 5G CRAN systems, which allocates the
system resources based on only the position information of
the users present in the system. An overhead model is also
presented, for both the position information and CSI acqui-
sition of the users, and its effect on system performance is
evaluated. The operation of the proposed scheme based on
usage of only the positioning beacons avoids the CSI ac-
quisition overhead, while achieving close to optimal system
performance. Overall, less than 15% loss in system goodput
is observed when the proposed scheme is used for resource al-
location, compared to the optimal CSI-based scheme. How-
ever, the proposed scheme has an overhead of only 2.4% for
the presented simulation scenario, compared to an overhead
of about 19% for the CSI-based scheme, and thus, has a
better performance in terms of effective system throughput.
The proposed scheme is robust to realistic system changes as
well, where the maximum performance loss of about 30% is
observed for the case when the reported user’s position infor-
mation has an inaccuracy of 1.0 m. The proposed resource
allocation scheme is fairly robust to the changes in the prop-
agation environment; maximum performance loss of 5% is
observed when the system parameters affecting the scatter-
ing and shadowing phenomena are different for the training
and test datasets used for the machine learning unit of the
learning-based resource allocation scheme. The performance
loss for inaccurate position information availability can be
reduced by using restricted combinations of transmit beam
and receive filters (for a given user position) while training
the machine learning unit of the proposed scheme, which
is included in the related future work. Furthermore, the
performance of the proposed scheme can be evaluated when

intra-RRH interference is present in addition to the inter-
RRH interference, or for different transmit power settings,
or when LOS link is not ensured at all times between the
RRHs and the users, in the 5G CRAN system.
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